Name: Perm number:

Final — take-home part

1. (100 points) Let A € R” be a matrix of a linear operator T : R” — R", whose characteristic polynomial can be factored

as follows:

(A= al)’Cl (A= ag)k2 oo (A= am)k’"
where k1 + ko + ... + kp, = n, and suppose that (v;1,vi2,...,v,), for 1 <i < m is a basis of the eigenspace associated with
the eigenvalue a;, for 1 < i < m, where I; + > + ...+ [, < n In other words, we have m different eigenvalues a1, ..., am,

but dimensions of all eigenspaces might not add up to the dimension of the space R™.

For each eigenvalue a;, 1 < i < m, we proceed with the following algorithm, that will result with a sequence of I; numbers
(ri1,...,7i,), and a sequence of s; vectors (w;1, ..., W;s, ), where s; = r;1 +r;2+...+7;,. In the description of the algorithm
we use j to denote both the current step of the algorithm, and a number in the sequence (wj1, ..., w;s,) (for example j =7
means we are at the 7th step, and are currently working with the vector w;7), whereas ¢ will be used to denote both the
number of the last used vector from the basis (v;1, ..., v, ), and a number in the sequence (741, ...,7,) (for example ¢t = 3
means we last used vector v;3, and are currently working with the number r;3). We start with j =1 and ¢ = 1.

in the first step), increase j by 1, increase t by 1, and go back to (1).
Apply the above algorithm to solve the following problems:

(a) Test the algorithm for two linear operators, one whose matrix (in the standard basis) is

6 2 -2
-2 2 2 ,
2 2 2
and the second one whose matrix is:
6 2 2
-2 2 0
0 0 2

(b) Find matrices of the above operators in the bases (w11, we1,wa2) obtained in (a) for each operator.

(c) Let, as before, A € R be a matrix of a linear operator T': R” — R™, whose characteristic polynomial can be factored

as follows:
(/\ — al)kl . (/\ — ag)kQ EE (/\ — am)k’”

where k1 +ka+ ...+ ky = n, and let, for 1 <i < m, (ri,...,7r,), and (w1, ..., w;s, ), where s; = ryp + 1o+ ...+ 1,
be sequences of numbers and vectors obtained by using our algorithm for eigenvalues a;. It can be, in fact, proven
that s; + s2 + ...+ s, = n, and that the vectors:

Wiy« -5 Wisy, W21y - -+ 5y W2s55 -+ -y Wy -+ -y Wins,,

form a basis of R™ — we will skip that proof, although you have already noticed that in the examples that you worked
a while ago. A matrix

a 1 0 --- 0 O
0O a; 1 --- 0 O
0 0 a --- 0 O
Jg=1 . . . . .. | ER
0 0 O a; 1
0 0 0 0 a |




is called the Jordan matrix of degree r;; for the eigenvalue a;.
Show that the matrix of T" in the basis

w117~"7w1817w217"' 7w2527'~'7wm17'~'7wm8m
is the following one:
r Jll 0 . 0 T
0 Jig | ... 0
; . . 0 0
0 0 J1l1
J21 0 . 0
0 Joo | ... 0
0 . . . . 0
00 ot
J}nl 0 0
0 | Jme 0
0 0 . .
L 0 0 e L];71l,n ]

We will denote such a matrix by
J@Ji2@..0J1, ... B Jn1 B In2® ... B I,

or, equivalently, @;" @i:l Ji for simplicity. We therefore found the method of finding the Jordan decomposition

of a matrix: .
A=p! @ @ JiP.

i=1 t=1
2. Find Jordan decompositions for matrices
6 2 -2
-2 2 2 |,
2 2 2
and
6 2 2
-2 2 0
0 0 2

studied before.

3. Is it always possible to find a Jordan decomposition? What are possible obstacles in the above described process? (hint:
think of the characteristic polynomial)

4. (bonus 50 points) How Jordan decomposition can be used for solving systems of differential equations? So far we have
learned that if
A=P'BP
then e = P~1eBP. In the special case when it was possible to get B as a diagonal matrix @?zl[bi], we checked that
n

eB = @izl[ebi]. Can we pull off something similar with Jordan decompositions? The following exercises will help you to
answer this question.

(a) Let A=P 1P, EBiZl Jit P be the Jordan decomposition of some matrix A. Prove that:

m l;

A= P D@ P

i=1 t=1



(b) Let, as before

Jit =
Prove that
e
0
6']” = 0
0
(¢) Find
and

0 O
0 O
0 0
a; 1
0 ai_

oD (r—3)!



