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Final – take-home part

1. (100 points) Let A ∈ Rn
n be a matrix of a linear operator T : Rn → Rn, whose characteristic polynomial can be factored

as follows:
(λ− a1)k1 · (λ− a2)k2 · . . . · (λ− am)km

where k1 +k2 + . . .+km = n, and suppose that (vi1, vi2, . . . , vili), for 1 ≤ i ≤ m is a basis of the eigenspace associated with
the eigenvalue ai, for 1 ≤ i ≤ m, where l1 + l2 + . . . + lm ≤ n In other words, we have m different eigenvalues a1, . . . , am,
but dimensions of all eigenspaces might not add up to the dimension of the space Rn.

For each eigenvalue ai, 1 ≤ i ≤ m, we proceed with the following algorithm, that will result with a sequence of li numbers
(ri1, . . . , rili), and a sequence of si vectors (wi1, . . . , wisi), where si = ri1+ri2+ . . .+rili . In the description of the algorithm
we use j to denote both the current step of the algorithm, and a number in the sequence (wi1, . . . , wisi) (for example j = 7
means we are at the 7th step, and are currently working with the vector wi7), whereas t will be used to denote both the
number of the last used vector from the basis (vi1, . . . , vili), and a number in the sequence (ri1, . . . , rili) (for example t = 3
means we last used vector vi3, and are currently working with the number ri3). We start with j = 1 and t = 1.

(a) Denote wij = vij .

(b) For the vector wij we consider the system of equations T (w) = aiw + wij .

(c) If the above system of equations has a solution w, we take wi,j+1 = w, increase j by 1, and go back to (2).

(d) If the above system of equations does not have a solution, we take rit = j− (ri1 + . . .+ ri,t−1) (we assume that ri0 = 0
in the first step), increase j by 1, increase t by 1, and go back to (1).

Apply the above algorithm to solve the following problems:

(a) Test the algorithm for two linear operators, one whose matrix (in the standard basis) is 6 2 −2
−2 2 2
2 2 2

 ,

and the second one whose matrix is:  6 2 2
−2 2 0
0 0 2

 .

(b) Find matrices of the above operators in the bases (w11, w21, w22) obtained in (a) for each operator.

(c) Let, as before, A ∈ Rn
n be a matrix of a linear operator T : Rn → Rn, whose characteristic polynomial can be factored

as follows:
(λ− a1)k1 · (λ− a2)k2 · . . . · (λ− am)km

where k1 +k2 + . . .+km = n, and let, for 1 ≤ i ≤ m, (ri1, . . . , rili), and (wi1, . . . , wisi), where si = ri1 + ri2 + . . .+ rili ,
be sequences of numbers and vectors obtained by using our algorithm for eigenvalues ai. It can be, in fact, proven
that s1 + s2 + . . . + sm = n, and that the vectors:

w11, . . . , w1s1 , w21, . . . , w2s2 , . . . , wm1, . . . , wmsm

form a basis of Rn – we will skip that proof, although you have already noticed that in the examples that you worked
a while ago. A matrix

Jit =



a 1 0 · · · 0 0
0 ai 1 · · · 0 0
0 0 ai · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ai 1
0 0 0 · · · 0 ai


∈ Rrit

rit
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is called the Jordan matrix of degree rit for the eigenvalue ai.
Show that the matrix of T in the basis

w11, . . . , w1s1 , w21, . . . , w2s2 , . . . , wm1, . . . , wmsm

is the following one:

J11 0 · · · 0
0 J12 . . . 0
...

...
. . .

...
0 0 · · · J1l1

0 · · · 0

0

J21 0 · · · 0
0 J22 . . . 0
...

...
. . .

...
0 0 · · · J2l2

· · · 0

...
...

. . .
...

0 0
...

Jm1 0 · · · 0
0 Jm2 . . . 0
...

...
. . .

...
0 0 · · · Jmlm


We will denote such a matrix by

J11 ⊕ J12 ⊕ . . .⊕ J1l1 ⊕ . . .⊕ Jm1 ⊕ Jm2 ⊕ . . .⊕ Jmlm ,

or, equivalently,
⊕m

i=1

⊕li
t=1 Jit for simplicity. We therefore found the method of finding the Jordan decomposition

of a matrix:

A = P−1
m⊕

i=1

li⊕
t=1

JitP.

2. Find Jordan decompositions for matrices  6 2 −2
−2 2 2
2 2 2

 ,

and  6 2 2
−2 2 0
0 0 2


studied before.

3. Is it always possible to find a Jordan decomposition? What are possible obstacles in the above described process? (hint:
think of the characteristic polynomial)

4. (bonus 50 points) How Jordan decomposition can be used for solving systems of differential equations? So far we have
learned that if

A = P−1BP

then eA = P−1eBP . In the special case when it was possible to get B as a diagonal matrix
⊕n

i=1[bi], we checked that
eB =

⊕n
i=1[e

bi ]. Can we pull off something similar with Jordan decompositions? The following exercises will help you to
answer this question.

(a) Let A = P−1
⊕m

i=1

⊕li
t=1 JitP be the Jordan decomposition of some matrix A. Prove that:

eA = P−1
m⊕

i=1

li⊕
t=1

eJitP.
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(b) Let, as before

Jit =



a 1 0 · · · 0 0
0 ai 1 · · · 0 0
0 0 ai · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · ai 1
0 0 0 · · · 0 ai


.

Prove that

eJit =


eai eai

1!
eai

2! · · · eai

(rit−2)!
eai

(rit−1)!

0 eai eai

1! · · · eai

(rit−3)!
eai

(rit−2)!

0 0 eai · · · eai

(rit−4)!
eai

(rit−3)!

...
...

...
. . .

...
...

0 0 0 · · · 0 eai

 .

(c) Find

e

2664
6 2 −2
−2 2 2
2 2 2

3775
and

e

2664
6 2 2
−2 2 0
0 0 2

3775
.
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