Math 5AI Third Project Getting back to Linear Algebra: The Wronskian

1. An important result about second order homogenous linear ODE's

$$y'' + p(x)y' + q(x)y = g(x)$$

is that, assuming p(x), q(x), and g(x) are continuous on an interval, there is a unique solution defined on that interval that satisfies initial conditions $y(x_0) = y_0$ and $y'(x_0) = y_1$. We used power series to see that this result is plausible although what we did is not quite a proof.

(a) Show that this means the homogenous equation y'' + p(x)y' + q(x)y = 0 has a 2-dimensional space of solutions. (In other words, show that there are two linearly independent solutions for which em every solution is a linear combination. (Assume that p(x) and q(x) satisfy the continuity condition.)

(b) What can you say about the solutions to y'' + p(x)y' + q(x)y = 0 for which y(0) = 0and y'(0) = 0? (Assume that p(x) and q(x) satisfy the continuity condition.)

Let y_1 and y_2 be two functions. Then we define the Wronskian of y_1 and y_2 to be

$$W(y_1, y_2) = y_1 y_2' - y_2 y_1' := \det \begin{pmatrix} y_1 & y_2 \\ y_1' & y_2' \end{pmatrix}$$

2. One use of the Wronskian is to determine if a pair of solutions to an ODE are linearly independent.

(a) Suppose that every solution to y'' + p(x)y' + q(x)y = 0 can be expressed as a linear combination of y_1 and y_2 . Show that the function $W(y_1, y_2)$ is never 0. (Hint: Suppose the Wronskian was 0 at a point x_0 . What would it mean that you can find solutions to the ODE of the form $y = Ay_1 + By_2$ for all possible initial conditions y(c) = d and y'(c) = e?)

(b) Conversely, if the Wronskian of never vanishes y_1 and y_2 , show that they must be a basis for the vector space of solutions to the ODE.

(c) Find the Wronskian of a pair of solutions to y'' + y = 0.

(d) Find the Wronskian of a pair of solutions to y'' - y = 0.

3. Calculating the Wronskian. In general, it may not be clear whether or not the Wronskian vanishes at a point or not. But you will show next that the Wronskian of two solutions to a linear ODE is either never zero or is always zero. For this, suppose that y_1 and y_2 are solutions to y'' + p(x)y' + q(x)y = 0. Then we have

$$y_1'' + p(x)y_1' + q(x)y_1 = 0$$

$$y_2'' + p(x)y_2' + q(x)y_2 = 0$$

Multiply the first equation by $-y_2$ and the second equation by y_1 and add to obtain a new equation. See that this equation is an ordinary differential equation in the function $W(y_1, y_2)$ by factoring out expressions equal to $W(y_1, y_2)$ and to $W(y_1, y_2)'$ in this expression. Now solve this ODE using an integrating factor. You will find why the Wronskian is identically zero or never zero.

4. The Viewpoint of Linear Oerators. (a) Consider the expression

$$T(y) = y'' + p(x)y' + q(x)y$$

This is what we call a *linear operator* because the function L(y) operates linearly on functions. This means that $L(y_1 + y_2) = L(y_1) + L(y_2)$ for all twice differentiable functions y_1 and y_2 and that L(ky) = kL(y) for all all twice differentiable functions y and real numbers k. Explain this.

(b) Now consiser the operator

$$T(y) = y'' + 2xy' + 2y$$

Calculate, T(1), T(x), $T(x^2)$, $T(e^x)$, $T(e^{-x^2}$.

(c) Find a solution to $T(y) = x^2$.

(d) Find a solution to $T(y) = x^2$ for which y(0) = 0.

(e) Are there other solutions to $T(y) = x^2$ for which y(0) = 0? What would you have to do to find another?