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DETERMINANTS

With each square matrix it is possible to associate a real number called the
determinant of the matrix. The value of this number will tell us whether or
not the matrix is singular.

In Section 1 the definition of the determinant of a matrix is given. In Sec-
tion 2 we study properties of determinants and derive an elimination method
for evaluating determinants. The elimination method is generally the simplest
method to use for evaluating the determinant of an n x n matrix whenn > 3.
In Section 3 we see how determinants can be applied to solving n X n lin-
ear systems and how they can be used to calculate the inverse of a matrix.
An application involving cryptography is also presented in Section 3. Further
applications of determinants are presented in Chapters 3 and 6.

B 7HE DETERMINANT OF A MATRIX

With each n x n matrix A it is possible to associate a scalar, det(A4), whose
value will tell us whether or not the matrix is nonsingular. Before proceeding
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Case 1. 1 x 1 Matrices
If A= (a)isal x 1 matrix, then A will have a multiplicative inverse if
and only if a 5 0. Thus, if we define

det(A) = a
then A will be nonsingular if and only if det(A) % 0.

A= (an ﬂlz)
yr ax
By Theorem 1.4.3, A will be nonsingular if and only if it is row equivalent

to /. Then if a;; # 0, we can test whether or not A is row equivalent to [ by
performing the following operations:

Case 2. 2 x 2 Matrices
tet

1. Multiply the second row of A by ay;

an dy
dyjda andxn

2. Subtract ay; times the first row from the new second row

ayy aja
0 anay —man

Since a;; # 0, the resulting matrix will be row equivalent to / if and only if
(1) apay — dyap 0
If a); = 0, we can switch the two rows of A. The resulting matrix
(aZI fx )
0 ap

will be row equivalent to [ if and only if ayay; # 0. This requirement is
equivalent to condition (1) when a;, = 0. Thus if A is any 2 x 2 matrix and
we define

det(A) = apax; — anay

then A is nonsingular if and only if det(A) # 0.

Notation. One canreferto the determinant of a specific matrix by enclosing
the atray between vertical lines. For example, if

()

2 4]

then
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represents the determinant of A,

Case 3. 3 x 3 Matrices

We can test whether or not a 3 x 3 matrix is nonsingular by performing
row operations to see if the matrix is row equivalent to the identity matrix /.
To carry out the elimination in the first column of an arbitrary 3 x 3 matrix
A let us first assume a;, # 0. The elimination can then be performed by
subtracting a,; /a;; times the first row from the second and as; /g, times the
first row from the third.

ay a2 a3
an diz 4y 0 Q% Tanlp  dudy - Gndi
dz; ap dzy | —* ay, dy
@3 Gz a3 0 @ufn —andp  dnGp — a0
) any

The matrix on the right will be row equivalent to [ if and only if

dydyy — dadiz Ay~ dndy
a a
ay i 1 £0
Qrday — a3y A day — a3dy
ay; agy

Although the algebra is somewhat messy, this condition can be simplified to
(2) nands — Gnaxnds — dpdyds; + 41203107
+ apanayn — apanan # 0
Thus if we define
(3) det(A) = anapasy — anayndss — 101033
+ a12a31a3 + A13021 33 — 130300

then for the case a;, # ( the matrix will be nonsingularif and only if det(A) #

0.
What if a;; = 07 Consider the following possibilities:

(1) ann =0,ay #0
(i1} ay = ay), =0, ay ?g 0
(i) ayy = az = a3 =0

In case (i), it is not difficult to show that A is row equivalent to / if and
only if
—Q2071A33 + Q12031093 *+ Q1302103 — Q13031822 F 0

But this condition is the same as condition (2) with a;; = 0. The details of
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In case (ii) it follows that

0 ap ap
A=| 0 an axn
a3y dyp ds

is row equivalent to [ if and only if

a3 (A1282 — anan) # 0

Again this is a special case of condition (2) with a;, = @z = 0.

Clearly, in case (iii) the matrix A cannot be row equivalent to [ and hence
must be singular. In this case if one sets a;;, a,;, and as; equal to 0 in formula
(3), the result will be det(A) = O.

In general, then, formula (2) gives a necessary and sufficient condition
for a3 x 3 matrix A to be nonsingular (regardless of the value of a;;).

We would now like to define the determinant of an n x n matrix. To see
how to do this, note that the determinant of a 2 x 2 matrix

a (23]
A il 1
a1 dm

can be defined in terms of the two 1 x 1 matrices

My = (an) and M = (@)

The matrix M;, is formed from A by deleting its first row and first column
and M, is formed from A by deleting its first row and second column.
i The determinant of A can be expressed in the form

4 det(A) = @1182 ~ G120y = a;; det(M},) — ayp det(My;)
For a 3 x 3 matrix A we can rewrite equation (3) in the form
det(A) = ay;(a2a33 — A12023) — A12(@21033 — A31a13) + a13(az a3 ~ A a)

For j =1,2,3 let M,; denote the 2 x 2 matrix formed from A by deleting
its first row and jth colurnn. The determinant of A can then be represented in
the form

(3) det(A) = a; det(My)) — a;, det(M ) -+ a3 det(M3)
where
M,y = (222 azz) } My, = (azx 023) ‘ My = (am azz)
32 daz Gy di d3; as;
To see how to generalize (4) and (5) to the case n > 3, we introduce the
following definition.

Definition. Let A = (a:;Ybeann xn matrix. Let M. bethe (n— 1 x (n—1)
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determinant of M; is called the minor of a;;. We define the cofactor A;; of
aij by
A,‘j = (“1)I+j det(M;j)
In view of this definition, for a 2 x 2 matrix A, we may rewrite equation (4)
in the form
(6) det(A) = an Ay +apdnp (n=12)

Equation (6) is called the cofactor expansion of det(A) along the first row of
A. Note that we could also write

(7) det(A) = agy(—ajy) + axpa), = an Ay +andyp

Equation (7) expresses det(A) in terms of the entries of the second row of A
and their cofactors. Actually, there is no reason why we must expand along
a row of the matrix; the determinant could just as well be represented by the
cofactor expansion along one of the columns.

det(A) = ayax + an(—an)
= a; Ay +andy {first column)
det(A) = ap(~ayn) + axan
= @A+ apiy (second column)
For a 3 x 3 matrix A, we have
(8) det(A) = ay Ay +aplp +anis
Thus the determinant of a 3 x 3 matrix can be defined in terms of the elements

in the first row of the matrix and their corresponding cofactors.

EXAMPLE 1. If

T
I
TR
B tn
>N RN

then
det(A) = anAy +aphAp +apin
= (—1)%a; det(M ;) + (—1)’ap; det(M),)
+(=1)*aj3 det(My3)

I 2 3 2 3 1
4 6 56 5 4

= 2(6 ~ 8) — 5(18 — 10) 4 4(12 - 5)

o o 2
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As in the case of 2 % 2 matrices, the determinant of a 3 » 3 matrix can be
' represented as a cofactor expansion using any row or column. For example,
equation (3) can be rewritten in the form

det(A) = anaz @ — aay Gy — a1axnan + a;3a3dn + a;10203
- g — 12031033
= a3 {apan — a3a) ~ dplanan — a;3ay)
+ananan — and)
= a3 Ay + @Ay + ays Ay
This is the cofactor expansion along the third row of A.

EXAMPLE 2. Let A be the matrix in Example 1. The cofactor expan-
sion of det(A) along the second columnn is given by

3 2] |2 4] _,|2 4
d"‘(“‘)m“‘“sl:s 6'“’5 6‘_4’3 2'
= —5(18 — 10) + 1(12 — 20) — 4(4 — 12)
— 16 1

The determinant of a 4 x 4 matrix can be defined in terms of a cofactor
expansion along any row or column. To compute the value of the 4 x 4
determinant, one would have to evaluate four 3 x 3 determinants.

; Definition. The determinant of an n x n matrix A, denoted det(A), is a
scalar associated with the matrix A that is defined inductively as follows:

ap ifn=1
det(A) =
apnAntanlAnt -+ andn ifn>1
where
Ay = (=1 det(M,}) ji=1,....n
are the cofactors associated with the entries in the first row of A.

As we have seen, it is not necessary to limit ourselves to using the first
row for the cofactor expansion. We state the following theorem without proof.

Theorem 2.1.1. If A is an n x n matrix with n = 2, then det(A) can be
expressed as a cofactor expansion using any row or column of A.

det(A) = a;; Aj| + anApn + - + @y Ay
=ay A+ A+ A
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The cofactor expansion of a 4 x 4 determinant will involve four 3 x 3
determinants. One can often save work by expanding along the row or column
that contains the most zeros. For exampie, to evaluate

0 2 30
0 4 5 0
010 3
201 3
one would expand down the first column. The first three terms will drop out,
leaving
2 30
24 5 0 w__.m__g_;,li ;‘:zz
1 0 3

The cofactor expansion can be used to establish some important results
about determinants. These results are given in the following theorems.

Theorem 2.1.2. If A is an n x n matrix, then det(A7) = det(A).

Proof. The proof is by induction on n. Clearly, the result holds if n = 1,
since a 1 x 1 matrix is necessarily symmetric. Assume that the result holds
for all k x k matrices and that A is a (k 4 1} x (k + 1) matrix. Expanding
det(A) along the first row of A, we get

det(A) = a; det(My)) — ajpdet(M3) + — - £ ay gy det(M, z41)

Since the M;;’s are all k x k matrices, it follows from the induction hypothesis
that

(9) dew(A) = ay;det(M])) —aypdet(M}3) + — - Fayqr det(M] )

The right-hand side of (9) is just the expansion by minors of det(A”) using
the first column of A? . Therefore,

det(A") = det(A) ]

fi
[
¢
%
i

B
[
A

Mo
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L
¥ :I.
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Theorem 2.1.3. If A is an n x n triangular matrix, the determinant of A
equals the product of the diagonal elements of A.

Proof In view of Theorem 2.1.2, it suffices to prove the theorem for lower
triangular matrices. The result follows easily using the cofactor expansion and
induction on n. The details of this are left for the reader (see Exercise 8). [

Theorem 2.1.4. Let A be an n x n matrix.

() If A has a row or column consisting entirely of zeros, then
det{A) = (.

(i) If A has two identical rows or two identical columns, then
det(A) = 0
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Bl PROPERTIES OF DETERMINANTS

In this section we consider the effects of row operations on the determinant
of a matrix. Once these effects have been established, we will prove that a
matrix A is singular if and only if its determinant is zero and we will develop
a method for evaluating determinants using row operations. Also, we will
establish an important theorem about the determinant of the product of two
matrices. We begin with the following lemma.

Lemma 2.2.1. Let A be an n x n matrix. If A;, denotes the cofactor of a;
fork=1,...,n, then

det(A) ifi = j
(1) anAj +aphp+ -+ ap A, =

0 ifi#j

Proof. Ifi = j, (1) is just the cofactor expansion of det(A) along the ith
row of A. To prove (1) in the case i % j, let A* be the matrix obtained by
replacing the jth row of A by the ith row of A.

| dyp ap P
( \

SE "

E;s‘

| a;  ap in | jthrow
Py A =

; ! dy dp iy

i :

\anl [ 09) Oun )

Since two rows of A* are the same, its determinant must be zero. It follows
from the cofactor expansion of det(A*) along the jth row that

0= det(A*) = a”A;! -+ angjz + a,‘nA}"

= a5 Aj FapnAp -+ aAj, -

Let us now consider the effects of each of the three row operations on the
value of the determinant. We start with row operation I

ROW OPERATION |l

A row of A is multiplied by a nonzero constant.

Let £ denote the elementary matrix of type II formed from 7 by multiplying
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along the ith row, then
det(EA) = aaj Ajy + ¢anAp + -+ adp A

= a(anAn + andp + - + dinAin)

= ¢ det(A)
In particular,

det(E) = det(El) = adet(l]) = a
and hence
det(EA) = w det(A) = det(E) det(A)

ROW QPERATION lii

A multiple of one row is added to another row.

Let £ be the elementary matrix of type III formed from / by adding ¢ times
the ith row to the jth row. Since E is triangular and its diagonal elements are
all 1, it follows that det(E) = 1. We will show that

det(EA) = det(A) = det(E) det(A)

If det(EA) is expanded by cofactors along the jth row, it follows from
Lemma 2.2.1 that

det(EA) = (a;; + ca)An + (a2 + can)hjz
' Ao (@ + caim) Ay
={(apAjp+-- -+ aphp)
+claAj +apnhp + -+ amdAj)
= det(A)
Thus
det{ EA) == det(A) = det(E) det(A)

ROW OPERATION |

Two rows of A are interchanged.

To see the effects of row operation I, we note that this operation can be
accomplished using row operations II and III. We illustrate how this is done

for 3 x 3 matrices.
ay dyiz apn
A= | ay ap an
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Subtracting row 3 from row 2 yields

ap; ay apa
) -
AP = a3 —ay ap-—ayn ap—ay
a3y s a

Next, the second row of A? is added to the third row:

apy g ap
2
AP = ta] — @31 dyp — A4y dyp — a3
tdyy ay; 25%]

Subtracting row 3 from row 2, we get

apy 22 ajs

3
A® = —d3 —dyp —dn
253} an 4%}

Since all of these matrices have been formed using only row operation 11, it
follows that

det(A) = det(A") = det(A®) = det(AD)
Finally, if the second row of A is multiplied through by —1, one obtains

a) 4 danp

4
A= 1ay ap an
Iy dy;z an

Since row operation II was used, it follows that
det(A®) = ~1det(A?) = — det(4)

AW is just the matrix obtained by interchanging the second and third rows
of A.

This same argument can be applied to n x n matrices to show that when-
ever two rows are switched the sign of the determinant is changed. Thus if A
isn x n and E,; is the n x n elementary matrix formed by interchanging the
ith and jthrows of 7, then

det(E;;A) = — det(A)
In particular,
det(E;;) = det(E;; 1) = — det(f) = —1
Thus for any elementary matrix E of type I,
det{ EA) = —det(A) = det(E) det(A)

In summation, if E is an elementary matrix, then

Adead THAN L o AU B AN




SEC.2 PROPERTIES OF DETERMINANTS 93

where
-1 if E is of type 1
(2) det(E) = { a0 if Eisoftypell
1 if E is of type IiI

Similar results hold for column operations. Indeed, if E is an elementary
matrix, then

det(AE) = det((AE)") = det(ETA")
= det(E7) det(A”) = det(E) det(A)

Thus the effects that row or column operations have on the value of the
determinant can be summarized as follows:

I. Interchanging two rows (or columns) of a matrix changes the sign of the
determinant.
1. Multiplying a single row or column of a matrix by a scalar has the effect
of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change
the value of the determinant.

Note. As a consequence of III, if one row (or column) of a matrix is a
multiple of another, the determinant of the matrix must equal zero.

If follows from (2) that all elementary matrices have nonzero determi-
nants. This observation can be used to prove the following theorem.
Theorem 2.2.2. Ann x n matrix A is singular if and only if

det(A) = 0
Proof The matrix A can be reduced to row echelon form with a finite number
of row operations. Thus
U=FEE., - EA

where U is in row echelon form and the E;’s are all elementary matrices.

det(U) = det(Er Eg—y - - - E1 A)
= det(E;) det(Ey_,) - - - det( £} det(A)

Since the determinants of the E;’s are all nonzero, it follows that det(A) =0
if and only if det(U) = 0.1f A is singular, then U has arow consisting entirely

of zeros and hence det(I/) = 0. If A is nonsingular, U is triangular with 1's
alreme tha dinranal and honeca AatfTTY — 1 ™
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From the proof of Theorem 2.2.2 we can obtain a method for computing
det(A). Reduce A to row echelon form.

U=EE._ - EA

If the last row of U consists entirely of zeros, A is singular and det{A) = 0.
Otherwise, A is nonsingular and

det(A) = [det(E;) det(Ey_,) - - - det(E)] ™

Actually, if A is nonsingular, it is simpler to reduce A to triangular form. This
can be done using only row operations I and III. Thus

T = EmErmml U EIA
and hence
det(A) = idet(f’) = ﬂ:t];tgg S 9

The sign will be positive if row operation I has been used an even number of
times and negative otherwise.

EXAMPLE 1. Evaluate

2 1
4 2 1
6 -3 4
SOLUTION
2 1 3 2 1 3
4 2 1i=[0 0 -5
6 -3 4 0 -6 -5
2 1 3
=(-110 -6 -5
g 0 -5
= (—~1(2}(—6)(-5)
= —60 ]

We now have two methods for evaluating the determinant of an n x n
matrix A, Ifn > 3 and A has nonzero entries, elimination is the most efficient
method in the sense that it involves less arithmetic operations. In Table 1
the number of arithmetic operations involved in each method is given for
n=2,3,4,5, 10. It is not difficult to derive general formulas for the number
ot operations in each of the methods (see Exercises 16 and 17).
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TABLE 1

Cofactors Elimination

Multiplications
n Additions Multiplications Additions  and Divisions

2 1 2 1 3
3 5 9 5 10
4 23 40 14 23
5 119 205 30 45
10 3,628,799 6,235,300 285 339

We have seen that for any elementary matrix E,
det( EA) = det(E) det(A) = det(AE)

This is a special case of the following theorem.

Theorem 2.2.3. If A and B are n x n matrices, then

det(AB) = det(A) det(B)

Proof If Bis singular, it follows from Theorem 1.4.3 that A B is also singular
(see Exercise 15 of Chapter 1, Section 4), and therefore

det(AB) = 0 = det(A) det(B)

If B is nonsingular, B can be written as a product of elementary matrices. We
have already seen that the result holds for elementary matrices. Thus

det(AB) = det(AE,Ey—, - - E})
= det(A) det(E,) det(Ey_) - - - det(E,)
= det(A) det(EyE_, - - E)
= det(A) det(B) 0

If A is singular, the computed value of det(A) using exact arithmetic
must be 0. However, this result is unlikely if the computations are done by
computer. Since computers use a finite number system, roundoff errors are
usually unavoidable. Consequently, it is more likely that the computed value of
det(A) will only be near 0. Because of roundoff errors, itis virtually impossible
to determine computationally whether or not a matrix is exactly singular. In
computer applications it is often more meaningful to ask whether a matrix
is “close” to being singular. In general, the value of det(A) is not a good
indicator of nearness to singularity. In Chapter 7 we will discuss how to

Aetermine whether nr nnt a matriv ic clnee tn heino cinoular
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1. Evaluate each of the following determinants by inspection.

(a)

(c)

(x) 2 L

o~ O MO

= OO Wbk O

3

-0 OO

o0 O -

1

® | o

~1

—_— = O

1
1
~2
2

1
3
0
-1

1 3

1 1

2 2

-1 2
2 3
1 1
3 3
-2 =3

(a) Use the elimination method to evaluate det(A).
(b) Use the value of det{A) to evaluate

€

@ (2

(d)

()

(

2
4
\ 2
1
2

0

\ 0

2)

1
3
1

1
3
2

0

0
-2
1
1

~3 MW -

|
-2 3

T 1

U et PO

3
3

1
1
2 —2 3|F |1
3

1

ek i N3

0
1

B B = W

2
1
4
2 1

3. For each of the following, compute the determinant and state whether
the matrix is singular or nonsingular.

® (i) © (

(e} (w

31
1 2
23

Do W oW

R

|

4. Find all possible choices of ¢ that would make the following matrix
singular.

1
1
1

1
9

~

1
C
q
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5. Let A be an n x n matrix and o a scalar. Show that

det{aA) = " det(A)

6. Let A be a nonsingular matrix. Show that

1

det(A™") = ToHA)

7. Let A and B be 3 x 3 matrices with det(A) = 4 and det(B) = 5. Find

the value of:
(a) det(AB) (b) det(34) (c) det(ZAB) (d) det{A™'B)

8. Let E|, Ey, E5 be 3 x 3 elementary matrices of types I, II, and III,
respectively, and let A be a 3 x 3 matrix with det(A) = 6. Assume,
additionaily, that E, was formed from I by multiplying its second row
by 3. Find the values of each of the following.

(a) det(E,A) (b) det(E£,A) (c) det(E4A)
(d) det(AE)) (e) det(E]) (f) det(E | E,E3)

w

. Let A and B be row equivalent matrices and suppose that B can be
obtained from A using only row operations I and HI. How do the values
of det(A) and det(B) compare? How will the values compare if B can
be obtained from A using only row operation IH? Explain your answers.

(?K) 10. Consider the 3 x 3 Vandermonde matrix

(a) Show that det{V) = (x, — x){x3 ~ x;H{x3 ~ Xx3).
(b) What conditions must the scalars x;, xy, x3 satisfy in order for V
to be nonsingular?

11. Suppose thata 3 x 3 matrix A factors into a product

1 0 0O Uy MKy Uy
lz; | 0 0 Hyp
13; 13'_7_ 1 O 0 Haa






