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# MATRIX ALGEBRA

In this section we define arithmetic operations with matrices and look at
some of their algebraic properties. Matrices are one of the most powerful



tools in mathematics. To use matrices effectively, we must be adept at matrix
arithmetic.

The entries of a matrix are called scalars. They are usuaily either real or
complex numbers. For the most part we will be working with matrices whose
entries are real numbers. Throughout the first five chapters of the book the
reader may assume that the term scalar refers to a real number. However,
in Chapter 6 there will be occasions when we will use the set of complex
numbers as our scalar field.

If we wish to refer to matrices without specifically writing out all their
entries, we will use capital letters A, B, C, and so on. In general, a;; will
denote the entry of the matrix A that is in the ith row and the jth column.
Thus if A is an m x n matrix, then

ag;; Ay v Ay

dyy dyy - Ay
A o=

(1] am2 v Qg

We will sometimes shorten this to A = (g;;). Similarly, a matrix B may be
referred to as (&;;), a matrix C as (c;;), and so on.

EQUALITY
Definition. Two m x n matrices A and B are said to be equal if a;; = b;;
foreach i and j.
SCALAR MULTIPLICATION

f If A is a matrix and « is a scalar, then @ A is the matrix formed by multiplying
each of the entries of A by «. For example, if

48 2
A“(ﬁ 8 10)
2 41 12 24 6
LA = =
2"‘““(3 4 5) and 3A“(18 24 30)

If A = (a;;) and B = (b;;) are both m x n matrices, then the sum A + B is
the m x n matrix whose ijth entry is a;; -+ b;; for each ordered pair (i, j). For

example,
321+222_543
4 5 6 123/ \5709
2 —8 -6

1+ 3 4
8 2 10

then

MATRIX ADDITION

I
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If we define A — B to be A + (—1)B, then it turns out that A — B is
formed by subtracting the corresponding entry of B from each entry of A.

(1)-G3) - Gh)ren()
- (31)+(5 5)
- (372 153)
- (77 2)

If O represents a matrix, with the same dimensions as A, whose entries are
all 0, then

A+ O0=0+A=A

That is, the zero matrix acts as an additive identity on the setof all m x n
matrices. Furthermore, each m x n matrix A has an additive inverse. Indeed,

A+(-NA=0=(-1A+A

It is customary to denote the additive inverse by —A. Thus

—A = (—-1)A

MATRIX MULTIPLICATION

We have yet to define the most important operation, the multiplication of
two matrices. Much of the motivation behind the definition comes from the
applications to linear systems of equations. If we have a system of one linear
equation in one unknown, it can be written in the form

(1) ax =1b

We generally think of @, x, and b as being scalars; however, they could also
be treated as 1 x 1 matrices. More generally, given an m X n linear system

anx, + apx; + 0+ oapx, = by

anxy + anx; + - A+ anx, = by

A1 X1 + QuaXz + b Auexe = bm

it is desirable to write the system in a form similar to (1), that is, as a matrix
equation

AX =8B
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where A = (a;;) 1s known, X is an n x 1 matrix of unknowns, and B is an
m x 1 matrix representing the right-hand side of the system. Thus we set

ay 4qiz - Qg X by
dyy Gy -+ Oy %) b,
A= ) , X=1 1, B =1
my Gpz - gy Xn bm
and r
anX) + o gxy b oo-- A digxy
aynxy + dppx; + -0+ dagx,
2) AX =
Am1Xy + 2 Xy + T '”}“ AnnXp

Givenan m x n matrix A and an r x 1 matrix X it is possible to compute a
product AX by (2). The product AX will be an m x 1 matrix. The rule for
determining the ith entry of AX is

A Xy + AipXy + - -+ Qi Xy

Note that the ith entry is determined using only the ith row of A. The entries
in that row are paired off with the corresponding entries of X and multiplied.
The n products are then summed. Those readers familiar with dot products
will recognize this as simply the dot product of the n-tuple corresponding to
the ith row of A with the n-tuple corresponding to the matrix X,

X
x2
(au gy - am)| .| =anx +apx o+ g,

Xn

In order to pair off the entries in this way, the number of columns of A must
equal the number of rows of X. The entries of X can be either scalars or
unknowns having scalar values.

EXAMPLE 1

4 2 1 i
A—(s 3 7)' X=1|x
X3

41; + 2)62 4 Xy
511 e 312 4+ 7X3 '

AX =
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EXAMPLE 2

4 2
~3-2 4+ 1.4 )
AX = 22454 =1 24
16
4-2+2-4

EXAMPLE 3. Write the following system of equations as a matrix
equation AX = B.

3.)6; + 2x2 -+ Xy == 5
Xy — 2.7C2 “i“ SX3 e
2 4+ X — 3x3 = |

SOLUTION
3 2 i X 5
1 -2 5 X | =1 —2
2 1 -3 X3 1 0J

More generally, it is possible to multiply a matrix A times a matrix B if
the number of columns of A equals the number of rows of B. The first column
of the product is determined by the first column of B, the second column by
the second column of B, and so on. Thus, to determine the (i, j) entry of the
product A B, we use the entries of the ith row of A and the jth column of B.

Definition. If A = (a;;) is an m x n matrix and B = (b)) isann x r
matrix, then the product AB = C = (¢;;) is the m x r matrix whaose entries
are defined by

H
Cij = E Dy
k=i

What this definition says is that to find the ijth element of the product,
you take the ith row of A and the jth column of B, multiply the corresponding
elements pairwise, and add the resulting numbers.

b]j
b, ;
(an Qiz ain) ?j

bni
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.:‘:J;"
i*‘_l_s

NOTATIONAL RULES

Just as in ordinary algebra, if an expression involves both multiplication and
addition and there are no parentheses to indicate the order of the operations,
multiplications are carried out before additions. This is true for both scalar
and matrix multiplications. For example, if

3 4 13 . (-2 1
=(12) =G 1) e-(F))
3 4 77 10 11
wene=(1a)+(0)-(0 )
9 12 13 10 15
wan=(5 %)+ (2 1)-(5 %)
ALGEBRAIC RULES

The following theorem provides some useful rules for doing matrix arithmetic.

then

and

Theorem 1.3.1. Each of the following statements is valid for any scalars
a and B and for any matrices A, B, and C for which the indicated operations
are defined.

() A+B=B+A

(2) (A+B)+C=A-+(B+C)
i (3) (ABYC = A(BCO)

4 AB+C)y=AB+ AC

(5) (A+B)YC = AC 4 BC

(6) (aB)A = (BA)

(7Y a(AB) = (¢dA)B = A(aB)

(8) (¢+pPpA=aA+ BA

(9) «ad + B) = aA + aB

We will prove two of the rules and leave the rest for the reader to verity.

Proof of (4) Assume that A = (a;;) is an m x n matrix and B = (b;;) and
C == (c¢;;) are both n x r matrices. Let D = A(B 4+ C)and E = AB + AC.
It follows that

dy =" aulby +cy)
k=1

and

n ﬂ‘
ejj = EJaikbkj + E @ Cyj



40 CH.1 MATRICES AND SYSTEMS OF EQUATIONS

But

h n n
Zaik(bkj + cpj) = E aiby; + E_J Ak C;
pamr P psr

so that d;; = e;; and hence A(B + C) = AB + AC. O

Proof of (3). Let Abeanm x nmalrix, Bann xr matrix,and Canr x s
matrix. Let D = AB and E = B(C. We must show that DC = AE. By the
definition of matrix multiplication,

n r
dy = E tixbi and ey = E bucy;
k=] 1=1

The i jth term of DC is

idﬁ(];j = i (i ar’kka) Clj
{=1 1 k=1

{=
and the { jth entry of AE is

i " r
E i€y = E Qi E brcy
= pay =1

Since

r " s n in r
§ E Qigby } €y = abucy = E Qi E bucy
T \k=1 =1 k=i =1 =

I=

it follows that
(ABYC = DC = AE = A(BC) M

The arithmetic rules given in Theorem 1.3.1 seem quite natural since
they are similar to the rules we use with real numbers. However, there are
some important differences between the rules for matrix arithmetic and those
for real number arithmetic. In particular, muitiplication of real numbers is
commutative; however, we saw in Example 6 that matrix multiplication is not
commutative. This difference warrants special emphasis.

Warning: In general, AB # BA.
Matrix multiplication is not commutative.

Some of the other differences between matrix arithmetic and real number
arithmetic are illustrated in Exercises 13, 14, and 15.

EXAMPLE 7. If

12 (2 _(1 )
A"(aa* B={_3 ) amd C=(,,
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verify that A(BC) = (AB)C and A(B + C) = AB + AC.
SOLUTION
(1 2\[(4 1\ _[(6 5
A(B")“(s 4)(1 2)_(16 11)

—4 5\(1 0 6 5
(AB)C*“’“(ws 11)(2 1):(16 11)

Thus
6 5
A(BC):(lﬁ ll)ﬂ(AB)C
12\ 3 1\ _ (1 7
A(B+C)"(3 4)(_1 3)"—"(5 15)
4 s 52\ (1 7
AB+AC“(—6 11)+(z1 4):(5 15)
Therefore,

A(B+C)=AB + AC Ll

Notation. Since (AB)C = A(BC), one may simply omit the parentheses
and write ABC. The same is true for a product of four or more matrices. In
the case where an n x n matrix is multiplied by itself a number of times, it is
convenient to use exponential notation. Thus if & is a positive integer, then

k — ok
A= AA-.. A
k times

EXAMPLE 8. If

then
. (1 1\[(1 1\_(2 2
A_(z 1)l t)=\2 2
- oo (1 1\ (2 2\ (4 4
A'=AAA = AA "“(1 1)(2 2)“(4 4)

and in general
. 2::—1 2n~«] )
A = (gn—l ')n—i M
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(a) Determine the adjacency matrix A of the graph.
(b) Compute A%, What do the entries in the first row of A tell you
about walks of length 2 that start from V)7

(c) Compute A?. How many walks of length 3 are there from V; to
V4? How many walks of length less than or equal to 3 are there
from V to V,?

23, Let A be a2 x 2 matrix with a;; # 0 and let & = a,;/a,,. Show that A
can be factored into a product of the form

)% %)

What is the value of &7
. SPECIAL TYPES OF MATRICES

In this section we look at special types of n x n matrices, such as triangular
matrices, diagonal matrices, and elementary matrices. These special types of
matrices play an important role in the solution of matrix equations. We begin
by considering a special matrix / that acts like a multiplicative identity, that
is,

JA=AlI=A

for any n x n matrix A. We also discuss the existence and computation of
i multiplicative inverses.

THE IDENTITY MATRIX

One very important matrix is the n X n matrix I with 1’s on the diagonal and
(s off the diagonal. Thus / == (§;;), where

1 ifi=j

0 ifistj

If Ais any n x n matrix, A/ = [A = A, The matrix [ acts as an identity

for the multiplication of n x n matrices and consequently is referred to as the
identity matrix. For example,

8” -

1 00 3 4 1 3 4 1
010 2 6 31=1|2 6 3
0 01 01 8 01 8

and

h\
[N
- O
[« B S Sl
e
—
DD -
e
- D
R
It

——
oo I S L WS
- O B
X g e
"-u—u-—'/

n
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In general, if B is any m x n matrix and C is any n % r matrix, then

Bl =B and IC=C

Notation. The set of all n-tuples of real numbers is called Euclidean
n-space and is usually denoted by R”. The elements of R” are called vectors.
Note, however, that the solution to the matrix equation AX = B will be an
n x 1 matrix rather than an n-tuple. In general, when working with matrix
equations it is more convenient to think of R” as consisting of column vectors
(n x 1 matrices) rather than row vectors (1 x n matrices). The standard notation
for a column vector is a boldface lowercase letter.

X1
A2 )
X = . xfﬂ(x],“":xn)
xli
cofumn vector oW vector

Following this convention, we will use the notation Ax = b, rather than
AX = B, to represent a linear system of equations.

Given an m x n matrix A, it is often necessary to refer to a particular
row or column. The ith row vector of A will be denoted by a(i, :) and the jth
column vector will be denoted by a(:, j). In general we will be working pri-
marily with column vectors. Consequently, we will use the shorthand notation
a; in place of a(:, j). Since references to row vectors are far less frequent, we
will not use any shorthand notation for row vectors. In sumnmation, if A is an
m x n matrix, then the row vectors of A are given by

a(l,:} = (@, Gz, ..., Qi) i=1,...,m
and the column vectors are given by

ay;
yj

a =a(, j)= : j=1,...,n
amj

Similarly, if B is an n x r matrix, then B = (b, by, ..., b,). The only
exception to this notation is in the case of the identity matrix /. The standard
notation for the jth column vector of I is e; rather than i;. Thus the n x n
identity matrix can be written

I=A(e,...,e)

DIAGONAL AND TRIANGULAR MATRICES

An n x n matrix A is said to be upper triangular if a;; = O for i > j and
lower trianeular if a.. = O fori < i. Also. A is said to be trianeular if it is
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either upper triangular or lower triangular. For example, the 3 x 3 matrices

3 2 1 1 0 0
0 2 1 and 6 2 0
0 0 5 1 4 3

are both triangular. The first is upper triangular and the second is lower trian-
gular.

A triangular matrix may have 0’s on the diagonal. However, for a linear
system AX = b to be in triangular form, the coefficient matrix A must be
triangular with nonzero diagonal entries.

Ann x n matrix A is diagonal if a;; = 0 whenever i # j. The matrices

1 0 1 00 000
(0 2) 0 30 0 2 0
0 0 1 000

are all diagonal. A diagonal matrix is both upper triangular and lower trian-
gular.

MATRIX INVERSION

Definition. Ann x n matrix A is said to be nonsingular or invertible if
there exists a matrix B such that AB = BA = [. The matrix B is said to be
a multiplicative inverse of A.

If B and C are both multiplicative inverses of A, then
B =Bl = B(AC) = (BAYC=IC=C

Thus a matrix can have at most one multiplicative inverse. We will refer to
the multiplicative inverse of a nonsingular matrix A as simply the inverse of
A and denote it by A~'.

EXAMPLE 1. The matrices

2 4
31

e
o)
=]
o
T
]
Sl S~
i
W= it
e

and
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EXAMPLE 2. The triangular matrices

1 2 3 1 =2 5
01 4 and 0 1 -4
0 0 1 0 0 1

are inverses, since

1 2 3 1 -2 5 1 0 0
01 4 0 1 -4 ]|=101 0
0 0 1 0 0 1 0 0 1
and
| 5 1 2 3 1 0 0
0 1 -4 01 4}=101 0
0 0 i 0 0 1 0 01 =

EXAMPLE 3. The matrix
I 0
+=(0 o)
has no inverse. Indeed, if B is any 2 x 2 matrix, then
(b b 1 0 (b, O
B“‘“(bﬂ b JN0 0) = \ba 0
Thus BA cannot equal /. Ll

i Definition. An n x n matrix is said to be singular if it does not have a
multiplicative inverse.

EQUIVALENT SYSTEMS

Given an m x n linear system Ax = b, we can obtain an equivalent system
by multiplying both sides of the equation by a nonsingular m x m matrix M.

(1) Ax=Db

(2) MAX = Mb

Clearly, any solation to (1) will also be a solution to (2). On the other hand,
if X is a solution to (2), then

M~Y(MAR) = M~ (Mb)
AX=h

s0 the two systems are equivalent.
To obtam an equivalent system that is easier to solve, we can apply a

Ay o weamate vt line vmonbedmme B L' 4o liasle adidiie oof thaoy mvivedbd oo
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Ax = b to obtain a simpler system
Ux=¢

where / = E;--- EjAande = E, -- - E;Eb. The new system will be equiv-

alent to the original provided that M = E, --- E; is nonsingular. However,

M is the product of nonsingular matrices. The following theorem shows that
; any product of nonsingular matrices is nonsingular.

Theorem 1.4.1. If A and B are nonsingular n x n matrices, then AB is
also nonsingular and (AB)™' = B7'A~".

Proof
(BT'AWAB=B"Y(AT'AB=B"'B=1
(ABUB™'A™ ) = A(BB WA= AA" =] N
It follows by induction that if E,, ..., E; are all nonsingular, then the

product £, E, - - - £y is nonsingular and
(EyEy-- Ey)' = E] ~~E;‘E;"‘

We will show next that any of the three elementary row operations can be
accomplished by multiplying A on the left by a nonsingular matrix.

ELEMENTARY MATRICES

A matrix obtained from the identity matrix / by the performance of one
elementary row operation is called an elementary matrix.

There are three types of elementary matrices corresponding to the three
types of elementary row operations.

Typel
An elementary matrix of type I is a matrix obtained by interchanging two
rows of 1.

EXAMPLE 4. Let

E;=

Q= O
QO =
- O o

E, is an elementary matrix of type I, since it was obtained by interchang-
ing the first two rows of /. Let A be a 3 x 3 matrix.

010 ay ap 4 az Ay an
EEA=11 00 ay dap x| = | an daiz an
A T A T . Flem Fhe- e FIvw  fTan
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ay dyy dy 0190 iz dyy 4y
AE )=} ay axn apy 1 0 Ol=1}an an ap
a3 dyp  dy 0 01 dzp a4y asp

Multiplying A on the left by £, interchanges the first and second rows
of A. Right multiplication of A by E; is equivalent to the elementary
column operation of interchanging the first and second columns. £

Type ll
An elementary matrix of type II is a matrix obtained by multiplying a
row of I by a nonzero constant.

EXAMPLE 5
I 00
E=f01 0
0 0 3
is an elementary matrix of type 11,
( 1 0 ¢ an ap an\ ay  ap  ags
g 10 as G Gy = an  an  dxp
\0 0 3 3y G adn ) 3613] 3032 3(133
[an an ap 1 0 0) an ap 3ap
dz1 doa Gy 01 0 = ay  dy 3{.123
\ 41 a3z axn 00 3) ay ap 3as

Multiplication on the left by E; performs the elementary row operation
of multiplying the third row by 3, while multiplication on the right by
E, performs the elementary column operation of multiplying the third
column by 3. [J

Type il
An elementary matrix of type lII is a matrix obtained from / by adding
a multiple of one row to another row.

EXAMPLE 6

Eg:

s RS
O = O
— W

is an elementary matrix of type HL If A is a 3 x 3 matrix, then

ay +3ay ap+3an  ap+ 3an
E3A = ay a1, ans
1oy Tan fInna
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an ay 3ap +ap
AEy= | aay ax 3ay +an
ay ayp  3ay +as

Muitiplication on the left by E; adds 3 times the third row to the first
row. Multiplication on the right adds 3 times the first column to the third
colurnn, g

In general, suppose that E is an n x n elementary matrix. We can think of
E as being obtained from J by either a row operation or a column operation.
If A is an n x r matrix, premultiplying A by E has the effect of performing
that same row operation on A. If B is an m x n matrix, postmultiplying B by
E is equivalent to performing that same column operation on B.

Theorem 1.4.2. If E is an elementary matrix, then E is nonsingular and
E~!is an elementary matrix of the same type.

Proof. If E is the elementary matrix of type I formed from / by interchanging
the ith and jth rows, then E can be transformed back into 7 by interchanging
these same rows again. Thus EE = [ and hence E is its own inverse. If £ is
the elementary matrix of type II formed by multiplying the ith row of / by a
nonzero scalar ¢, then E can be transformed into the identity by multiplying
either its ith row or its ith colurnn by 1/c. Thus

(t \

E7! = 1/ ith row

\ 1)

Finally, suppose that E is the elementary matrix of type III formed from I by
adding m times the ith row to the jth row.

(1 )

S 0

0 -1 ith row
0 -~~~ m --- 1 jthrow
\f) R | TR | 1)

E can be transformed back into / by either subtracting m times the ith row
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column. Thus

(1 \
D 0
0 - 1
E_lm : .
\0 R S S , 1

Definition. A matrix B is row equivalent to A if there exists a finite
sequence Ey, E,, ..., E; of elementary matrices such that

B = EkEk—l L E;A
In other words, B is row equivalent to A if B can be obtained from A
by a finite number of row operations. In particular, two augmented matrices
(A|b) and (B |c) are row equivalent if and only if Ax = b and Bx = ¢ are
equivalent systems.
The following properties of row equivalent matrices are consequences of
Theorem 1.4.2.

(i) If A is row equivalent to B, then B is row equivalent to A.
(ii) If A is row equivalent to B, and B is row equivalent to C, then A is
row equivalent to C.

The details of the proofs of (i) and (ii) are left as an exercise for the reader.

Theorem 1.4.3. Let A be an n x n matrix. The following are equivalent:
(a) A is nonsingular.
{b) Ax = 0 has only the trivial solution 0.
(c) Aisrow equivalent to I.

Proof. 'We prove first that statement (a) implies statement (b). If A is non-
singular and X is a solution to Ax = 0, then

F=Ili=(A"TAR=A"1A) =A4"'0=0

Thus Ax = @ has only the trivial solution. Next we show that statement (b)
implies statement (c). If we use elementary row operations, the system can be
transformed into the form Ux = 0, where U/ is in row echelon form. If one of
the diagonal elements of I were 0, the last row of U would consist entirely of
0’s. But then Ax = 0 would be equivalent to a system with more unknowns
than equations and hence by Theorem 1.2.1 would have a nontrivial solution.
Thus U must be a triangular matrix with diagonal elements all equal to 1. It
follows then that 7 is the reduced row echelon form of A and hence A is row
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Finally, we will show that statement (c) implies statement (a). If A is row
equivalent to /, there exist elementary matrices E|, Es, ..., E; such that

A=EE._ - E\]l =EE_, - E

But since E; is invertible, { = 1,...,k, the product E E,_, --- E; is also
invertible. Hence A is nonsingular and

AV = BBy EN ' = ETVEST - EDY 0

Corollary 1.4.4. The system of n linear equations in n unknowns AX = b
has a unique solution if and only if A is nonsingular.

Proof. If A is nonsingular, then A~'b is the only solution to Ax = b. Con-
versely, suppose that Ax = b has a unique solution &. If A is singular, Ax = 0
has a solution z 5 0. Let y = % + z. Clearly, y # X and

Ay = A(R+2)=Ax+Az=b+0=bD

Thus y is also a solution to Ax = b, which is a contradiction, Therefore, if
Ax = b has a unique solution, A must be nonsingular. O

If A is nonsingular, A is row equivalent to /, so there exist elementary
matrices E;, ..., E; such that

EEr - ENA=1
Multiplying both sides of this equation on the right by A™', one obtains
EtEpoy - Eil = A7
Thus the same series of elementary row operations that transform a nonsin-
gular matrix A into 7 will transform [ into A~'. This gives us a method
for computing A~". If we augment A by / and perform the elementary row
operations that transform A into / on the augmented matrix, then I will be

transformed into A~'. That is, the reduced row echelon form of the augmented
matrix (A|J) will be (7{A™).

EXAMPLE 7. Compute A7} if

[T 4 3



EXERCISES

SOLUTION

1 4
-1 =2
2 2

1 4 3
—s 0 2 3
0 0 6
1 0 0}~
- 10 2 0
0 0 6
Thus
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EXAMPLE 8. Solve the system

Xy ‘i‘ 4x2

—X; ~ 2xy

(1

\0 -

(1
0
\ 0
/1

0 1

o s N O R 4
feun R e B o S o B o ]

!

= N N A
LAt Ean =N Ll 3 T

-+ 3X3

2):; -+ 212 + 3x3

0 0

pam—y

= L e Y E SR

D= Pl WA

12
= —]2
= 8

59

1 0 0

1 10

-2 0 1
i 1
2 2
—d 1
2 7
3 1

e 1

3 2

1 1

3 3

1 1

2 8

The coefficient matrix of this system is the matrix A of the last example.
The solution to the system then is

x=A"b=

!

= L L
P e RIfew

!

N e S

-

4
4
8
3 ]

1. Which of the following are elementary matrices? Classify each elemen-

tary matrix by type.
01

@ (V)

(100\

20
03

(b) (

)

20
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2. Find the inverse of each of the matrices in Exercise 1. For each elemen-
tary matrix, verify that its inverse is an elementary matrix of the same

type.

3. For each of the following pairs of matrices, find an elementary matrix

E such that EA — B.

2 -1
(a)A~—-(5 3),

21

by A=1{-2 4
[

4 -2

(C)A-“'m( 1 0
~2 3

4. For each of the following pairs of matrices, find an elementary matrix

E such that AE = B.

4 1 3
(a) A=1{2 1 41},

1 3 2
2 4
(b)Atm(I 6)’
4 -2
(%K) ©A=|-2 4
/ 6 1
5. Given
1 2 4
A=|21 3},
1 0 2

31 4
B=|4 1 2
2 3 1
2
B(l)
)
~1 4
31-
1 2 4 1 2 4
=12 13}, ¢c=]o0o -1 -3
2 2 6 2 2 6

(a) Find an elementary matrix E such that FA = B.
(b) Find an elementary matrix F' such that FB = C.
{c) Is C row equivalent to A? Explain.

6. Given

A=

B h N

1 1
4 35
1 3

(a) Find elementary matrices E,, E,, E; such that

F.F.FE A —1T]
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where U is an upper triangular matrix.
(b) Determine the inverses of E|, E,, E; and set L = ET'E; ETL
What type of matrix is L7 Verify that A = LU,

7. Let

(a) Verify that

1 2 -3
Al | =1 1 =1
0 -2 3

(b) Use A™! to solve Ax = b for the following choices of b.
(i b=(1,1, D
(i) b=(1,2,3)7
(iii) b = (=2,1,0)7

8. Find the inverse of each of the following matrices.
-1 1 25
@ (o) ol
2 6 30
i) 0
1 (2 05
1 ) {0 3 0
1 \1 0 3
-3 ——3 (1 0 1
6 (hy | —1 1 1
g8 3 \ -1 -2 -3

31 1 2
Am(s 2) and 82(3 4)

compute A~! and use it to:

(a) Find 2 2 x 2 matrix X such that AX = B.
(b) Find a 2 x 2 matrix ¥ such that YA = B.

10. Given

a=(33) =(50) e=(£ )

Snlve each of the following matrix equations.
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11.

12.

13.

15.

16.

17.

18.

19.

() AX+B=C
by XA+B=C
(c) AX+B=X
d) XA+ C=X
Let

a a
A= 1 12
azy  dag

Show that if d = Q3127 — Q310172 # (3, then
Al = _1_ n A
d \ —axn ap

Let A be a nonsingular matrix. Show that A~! is also nonsingular and
(A"1)y !t = A,

Prove that if A is nonsingular, then A’ is nonsingular and
(AT)—vE — (A-})T
[Hint: (AB) = B7A" ]

. Let A be a nonsingular #n x n matrix. Use mathematical induction to

prove that A™ is nonsingular and
(AM~ = (A"
form=123,....
Is the transpose of an elementary matrix an elementary matrix of the

same type? Is the product of two elementary matrices an elementary
matrix?

Let I/ and R be n x n upper triangular matrices and set T = UR. Show
that 7' is also upper triangular and that ¢;; = w;;r;; for j=1,...,n.

Let A and B be n x n matrices and let C = AB. Prove that if B is

singular, then C must be singular.
[Hint: Use Theorem 1.4.3.]

Let U be an n x n upper triangular matrix with nonzero diagonal en-
tries.

(a) Explain why U must be nonsingular
(b) Explain why /™! must be upper triangular.

Let A be a nonsingular z x n matrix-and let B be an n x r matrix. Show
that the reduced row echelon form of (A| B} is (7]C), where C = A~'B.
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20. In general, matrix multiplication is not commutative (i.e., AB # BA).
However, there are certain special cases where the commutative property
does hold. Show that:

(a) If Dy and D, are n x n diagonal matrices, then Dy Dy = D, D).
(b) If A is an n x n matrix and

B =ayl + @A+ amA*+- - +a A

where ag, 4y, . . ., a; are scalars, then AB = BA.

21. Show that if A is a symmetric nonsingular matrix, then A~ is also
symmetric.

22. Prove that if A is row equivalent to B, then B is row equivalent to A.

23. (a) Prove thatif A is row equivalent to B and B is row equivalent to
C, then A is row equivalent to C.
(b) Prove that any two nonsingular n x n matrices are row equivalent.

24, Prove that B is row equivalent to A if and only if there exists a nonsin-
gular matrix M such that B = MA.

25. Given a vector x € R"*! the (n + 1) x (n + 1) matrix V defined by

ol if j =1
A IThe forj=2,...,n+1

| is called the Vandermonde matrix.
{a) Show thatif

Ve=y
and
px)y=ci+ex+ -+ cppux”
then
plx)=y, i=1L2,...,n+1
(b) Suppose that x|, x5, ..., x4 are all distinct. Show that if ¢ is a
solution to Vx = 0, then the coefficients ¢|, ¢, .. ., ¢, must all be

zero, and hence V must be nonsingular.

8 PARTITIONED MATRICES

Often it is useful to think of a matrix as being composed of a number of
submatrices. A matrix A can be partitioned into smaller matrices by drawing




