APPENDIX G (OWPLEX HUMBERS i A4

Theorem For a power series £ c.{x — a)" there are only three possibilities:
1. The series converges only when x = a.
2. The series converges for all x.

3. There is a positive number R such that the series converges if |x — a| < R and
diverges if |x — a| > R

Proof If we make the change of variable u = x — g, then the power series becomes

Z c.u" and we can apply the preceding theorem to this series. In case 3 we have coaver-
genee for fu| < R and divergence for |#| > R. Thus, we have convergence for

|x — a| < R and divergence for [x ~ a| > R. st
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Compiex numbers as points in
the Argand planc

A complex number can be represented by an expression of the form e + bi, where a and
b are real numbers and { is a symbol with the property that i* = ~]. The complex num-
ber @ + bi can also be represented by the ordered pair (a, b) and plotted as a point in a
plane {calied the Argand plane) as in Figure 1. Thus, the complex number i =0 + 1 - iis
identified with the point {0, 1).

The real part of the complex number ¢ + 5i is the real number @ and the imaginary
part is the real number & Thus, the real part of 4 — 3i is 4 and the imaginary part is =3,
Two complex numbers a + bi and ¢ + di are equal if @ = ¢ and b = d, that is, their real
parts are equal and their imaginary parts are equal In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis

The sum and difference of two complex numbers are defined by adding or subtracting
their real parts and their imaginary parts:

(a+biy+{c+diy={a+c)+(b+d)i

fa+bi)—{c+di)={a~c)+ (b—d}

For instance,
B-D+@+W=0+48+(~1+Ni=3+6i

The product of complex numbers is defined so that the usual commutative and distributive
laws hold:
(a + biMc + di) = alc + di) + {bi)c + di)

= gc + adi + bci + bedi?
Since i = —1, this becomes
{a + bi)c + di) = (ac ~ bd) + (ad + bc)i

ERARIFLEY
{~1+ 302 — 5} = {~1){2 — 3i) + 32 - 5))

= w2 5 4 6f — 15{~1) = 13 + 11;
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Division of complex numbers is much like rationalizing the denominator of a rational
expression, For the complex number z = a + bi, we define its complex conjugate to be
7 == g — bi. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator

—-}jﬁin the form a + bi

2+ 5i '
SOLUTION We multiply numerator and denominator by the complex conjugate of 2 + 3i,
namely 2 — 5i, and we take advantage of the resuit of Example 1:

EXAMELE 2 Express the number

~13i _ ~1+3 2-5 _ 13+ 13 11
245 2+5i 2-5 22+s 29 29 s

The geometric interpretation of the complex conjugale is shown in Figure 2: 7 is the
reflection of 2 in the real axis We list some of the properties of the complex conjugate in
the following box. The prools follow from the definition and arc requested in Exercise 18

i
" 2=+ hi
i
il Re
—i
Z o gt b
FIGURE 2

Properties of Conjegates
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The modulus, or abselute value, |z| of a complex number z = a + bi is its distance
from the origin. From Figure 3 we see that if z = a + bi, then

] = VAT J

Notice that
77 = (g + bi¥a — bi) = a® + abi = abi —~ bY* =a’ + b*

and $o0 z=|z]

This explains why the division procedure in Example 2 works in general:

z W W

w ww |w]
Since i = -1, we can think of i as a square root of —1 But notice that we also have
(=¥ = i* = —1 and so ~i is also 2 square rool of ~1. We say that i is the principal

square root of —1 and write /=1 = { In genetal, if ¢ is any positive number, we write

Ve =ei

With this convention, the usual derivation and formuia {or the roots of the quadratic equa-
tion ax? + bx + ¢ = ( ure valid even when b7 — dac < O:

:_b + b~ dae

2a

x =




FIGURE 4

Re

APPENDIX G (OMPLEX HUMBERS | A4®

EXAMPLE 3 Find the roots of the equation x* + x + 1 = 0.

SOLUTIGN Using the quadratic formula, we have

-1 /T7-4-1 -1xJ/=3 -1x.3i

A 2 2 s

We observe that the solutions of the equation in Example 3 arc complex conjugates of
each other In general, the solutions of any guadratic equation ax? “ bx + ¢ = 0 with real
coefficients a, b, and ¢ are always complex conjugates. {(if z is real, 7 = z, s0 z i5 ils own
conjugate.)

We have seen that if we allow complex numbers as solutions, then every quadratic equa-
tion has a selution. More generally, it is true that every polynomial equation

QX F g™ et mx dap=10
of degree at least one has a solution among the complex numbers This fact is known as

the Fundamental Theorem of Algebra and was proved by Gauss

!|” Folar Form

We know that any complex number z = a -+ bf can be considered as a point (e, b) and that
any such point can be represented by polar coordinates (r, 8) with r = 0. In fact,

a = rcosf b= rsing
as in Figure 4 Thercfore, we have
z=a+ bi = (rcos8) + (r sin 9)i

Thus, we can write any complex number 2 in the form

z=r(cos  + {5inf) AJ

where r=lz|=Jat+ b and tanf=

2
a

The angle @ is called the argament of z and we write 8 = arg(z). Note that arg(z) is not
unique; any two arguments of z differ by an integer multiple of 27

EXAMPLE 4 Write the following numbers in polar form
@z=1+i ) w=3 i

SOLUTION
(2) Wehave r = |z| = I + 12 = \/Zand tan 8 = 1, so we can take 0 = 7/4. There-

fore, the polar form is
z = ﬁ (cos -;1 + {sin —Z—)

{b) Hese we have r = |w] = /3 + | =2andtan 8= ~1/+/3 Since w lies in the
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fourth quadrant, we take 6 = /6 and

o e ~2) (- 2]

The numbers z and w are shown in Figure 5. ooy
The polar form of complex numbers gives insight into multiplication and division Let

7t = rifeos 6 + §sinfh) 23 = racos f; + isin 6}
be two complex numbers written in polar form. Then

7172 = riralcos 8 + §sin 6 Ycos By + [ sin 62)

= pra[{cos B cos 8; — sin By sin ;) + i(sin 8 cos B, + cos §; sin 6;)]

Therefore, using the addition formulas for cosine and sinc, we have

im 217: = nnfcos(8 + 8) + isin{g + 81)]

This formnula says that to multiply two complex numbers we multiply the moduli and add
the arguments. {See Figure 6.}

A similar argument using the subtraction formulas for sine and cosine shows that to
divide two complex numbers we divide the moduli and subtract the arguments.

B Dofeos(By —~ 8;) + isin(8 — 62)]
Zz ¥

22#0

in particular, taking z; = | and 2 = z (and therefore #, = (O and §; = @), we have the fol-
lowing, which is illustrated in Figore 7.

. 1 i .
If z=rlcos0+ ising), then = = —{cosf — isinf)
z r

EXARIPLE 5 PFind the product of the compiex numbers 1 + i and /3 — iin polar {orm
SOLUTION From Example 4 we have

1+ im\ﬁ(cosg- + isin—l’-)

5 1=af{ ) - 5n( )

and
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So, by Equation 1,

(1 + D3~ i)=2/2 [cos(g - %T) + :‘sin(i{ - ng)]
= Zﬂ (cos-}% + isin %)
This is illustrated in Figure 8. aris
Repeated use of Formula | shows how 1o compule powers of a complex number. If
z=r{cos @ + isin§)
then 7% = r¥cos 28 + isin 26)

and 2’ = 227 = r¥{cos 30 + i sin 38)

In peneral, we obtain the following result, which is named after the French mathematician
Abraham De Moivre (1667-1754),

[Z] De Moivre's Theorem [If z = r{cos @ + isin @) and n is a positive integer, then

z" = [r{cos 8 + isin )]" = r"(cos nd + i sin nf)

"This says that o take the nth power of a complex number we take the nth power of the
modulus and multiply the argument by n.

EXAMPLE 6 Find (3 + i)
$OLUTION Since § + §i = L(1 + i), it follows from Example 4(a) that § + i has the polar

form
1 I ] " w
M+m‘mm m4m"m
5 2: 5 (0054 :s;n4)

So by De Moivre’s Theorem,

[ AT V2 )¢ Wr 10+
J— —_— = —_— - + QY wemm—
(2+21) (2) (cos isin )

2% 57 .. Sw}y 1
=?o' 005“2—4-15!“—5- -_-.ﬁl

Dre Moivre's Theorem can also be used to find the nth roots of compiex numbers. An
nth root of the complex number z is a complex number w such that

w"

= Z
Writing these two numbers in trigonometric foim as

w = s(cos ¢ + is5in ) and z = r{cos 6 + isin )
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and using De Moivre's Theorem, we get
s"(cosndg + isinneh) = r{cos 6 + isin8)
The equality of these two complex numbers shows that
she=p or 5 = plin
and cos ng = cos B and sinndg = sin §

From the fact that sine and cosine have period 2 it follows that

8+ 2k
ng =8+ 2w or g = Mr"z"”-?—?-
+ 2k + 2k
Thus w == r”'”f:cos(-a———w-) + isin(—g-———z—-ﬁ)jl
n n
Since this cxpression gives a different value of w for k=0, 1,2,. ., n = 1, wc huve the

following

[3] Roots of a Complex Number Letz = r(cos f + isin @) and let n be 2 positive

integer. Then z has the n distinct nth roots
. (0 + 2kw)]
i sin| e
n

,,”[ (9 + 2im)
we = % cos| —— | +
n

where k=0, 1,2, . .,n— L

Notice that each of the nth roots of z has modulus |w] = #'" Thus, all the ath roots
of z lie on the circle of radins #V/" in the complex plane Also, since the argument of cach
successive nth root exceeds the argument of the previous root by 27/n, we see that the
nth roots of 2 are equally spaced on this circle.

EXAMPLE 7 Find the six sixth roots of z = ~8 and graph these roots in the complex
plane
SCLUTION In trigonometric form, z = 8(cos 7 + i sin 7). Applying Equation 3 with n = 6,

we get
+ 2k +
oy = gllﬁ(cm AT L SN mg,%m)

We get the six sixth roots of —8 by taking &k = 0, 1, 2, 3, 4, 5 in this formula:

Wy == SUG(COS"E‘ "i“' flsin"?‘r“) == ﬁ (._\éi -+ _;'l)

6 6 2

w; = 8"'“(005%{ + isin M}) NY

5 1
ty = Sllﬁ(cnséég* + §sin »-5) - ﬁ (_.l/_g_ +_j_i)

2
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The six sixth roots of 2 =—8
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ki
twy = 8"5(cos—w+ i sin "é")

T
t0g = Slfﬁ(cos—w + § sin —2—) -

i 1
Wy = ?.‘l“'“(c:os}m!ﬁmﬁ + §sin m) —_—_) (_}./3 - m;)

6 2 2

All these points lie on the circle of radius /2 as shown in Figure . e

(Il Somplex Exponentials

We also need to give a meaning to the expression ¢° when z = x + iy is a complex num-
ber. The theory of infinite serfes as developed in Chapter 11 can be extended to the case
where the terms are complex numbers. Using the Taylor series for ¢ (11.10.11) as our
guide, we define

¥
2 z -4
e‘=2~—!—=l+z+—i-!—+§+

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

i el = g Mgt

If we put z = iy, where y is a real number, in Equation 4, and use the facts that

it=1, Pe=it=—f f=1, P=]|
we get e"m1+iy+&§'!)z+(2?]+(2’3d+(2’!}5+w ‘
=1+1yw-—§—-—i—§!i+—§;+i;’—:+-w
=(1—~2};+%-—%:+ ~')+i(‘y—%+—§—;——~)

q

cosy + isiny

Here we have used the Taylor series for cos y and sin y (Equations 11.10.16 and 11.10.15).
The result is a famous formula called Euler’s formula:

(5] L e" =cosy+ isiny i

Combining Buler's formula with Equation 5, we get

"t e = ¢ cos y 4 fsiny)

EXAMPLE § Evaluate: {a) ¢ (b) e téri?
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SOLUTION
It We could write tha resull of Example Blal as
¢m s 1 =0

This equation refates the five most famous sur-
bars in 2!l of mathematics: 0, 1, ¢ 4, and =

) .
e it = e’*(ccs T 4 isin ﬂ) e [ op ((1)] =
2 e ¢

{a) From Euler's equation (6) we have
em=coswH isinmw= ~1+ i(0) = —1

(b} Using Equation 7 we get

2

wled

Finally, we note that Euler's equation provides us with an easier method of proving

De Moivre's Theoram:

[r{cos § + isin @)} = (re)" = r'e™

|

ASSIGNMENT
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= r"{cos nf + 1 sinnd)

4
¥

due dote : K@&’)dﬂa T()gi;mg

1-14 i Evaluate the expression and write your answer in the
form a + bi

LS - 6i) + (3 + 20)
. (2+35M4 -0

L

-1-6+1)
oL = 2018 - 34)

(X

.

5. 12+ 7 6. 2i(F ~ i}
|+ 4 g 32
"3 ¥ 2 1 - 4
! 3
Y TET 0T
n i (’),q 12, o0
13, /=25 . V=312

15-17 1 Find the complex cenjugate and the modulus of the
numbet
15, 12 - 5i 16 -1 + 242i 1. —4i

s PR R » a s N a «
18. Prove the following propertics of complex numbers
(B Fw=2z+w (b) Zw==Iw
(c) 2% = 2", where n is a positive integer
[Hint: Writc z = a + [?i, w = ¢ + di]
oo i Find all solutions of the equation.
19 41+ 9=190 20, x* = |
2. x*+2x+5=0 22 %P -2+ 1 =0
M4z +2=0 (R 2 2t vbavi=
S50 i Write the number in polar {form with argument between 0
and 2
25. -3 4+ 3i

2%. 1 — /3i

27,3+ 4

L3

28. 8i

3

sl i Find paiar forms for zw. z/w, and 1/z by lirst pulting z

and w into polar form
99, s = I+ 0 w3

30, z =43 ~ 4/, w=8i

2=2/3~2 w=-|+i
32, :=4{/F+i), w=-3-3

33~36 w Find the indicated power using De Moivre's Theorem
B M (- VE R eV u) o - o

3740 1 Find the indicated roots. Sketch the roots in the complex
plane
37, The eighth roots of | (;k) 38. The fifth roots of 32

40. The cube roots of | 4§

a o a a

3%. The cube roots of |

a @ & a [ a E a

41-46 w Write the number in the form a + bf

41, elm’l 42, o 43, gt
44, e7iv 45, e3” 46, ="

47, If 1(x) = f{x} + ig{x} is s complex-valued function of a rea
varinble x and the real and imaginary parts f(x) and g{x) are
differentiable functions of x, then the derivative of « is defined
to be u{x) = f{x) + ig'(x) Use this together with Equation 7
to prove that if F(x) = &, then F'(x) = re” when r = a + bi
is a complex number

48, (a) IT u is a complex-vatued Function of a real variable, its

indefinite integral [ w(x} dx is an antiderivative of u
Evaluate

f gltrile gy

(b) By considering the real and imaginary parts of the integral
in part {a), evaluate the real intepgrals

J e’ cos x dx and J e” sinx dr
(c) Compare with the methad used in Example 4 in Sec-

tion 7.1



