
Take home final

1. Bases. A basis of an n-dimensional vector space is a set of vectors v1, . . . , vn which are linearly independent. Verify that
the following sets of vectors are bases of indicated spaces:

(a) R3, α1 = [1, 0, 1], α2 = [1, 1, 0], α3 = [1, 1, 1],

(b) R3, α1 = [2, 1, 1], α2 = [1, 3, 1], α3 = [1, 1, 4],

(c) R2
2, α1 =

[
1 0
0 1

]
, α2 =

[
1 1
0 0

]
, α3 =

[
1 0
0 0

]
, α4 =

[
0 0
−1 0

]
,

2. Linear maps as matrices. Suppose that T : V → W is a linear map, that V is a n−dimensional vector space with a
basis α1, . . . , αn, and that W is a m−dimensional vector space with a basis β1, . . . , βm. We build the matrix A = [aij ] of
T in the bases α1, . . . , αn by definiting its entries as follows:

T (αi) = ai1β1 + ai2β2 + . . . + aimβm.

In other words, coefficients ai1, ai2, . . . , aim of the combination of the image of αi form i-th column of the matrix A. We
choose

[1, 1, 0], [−1, 2, 1], [1, 0, 1]

to be the basis of R3, and
[2, 1, 0, 1], [−1, 1,−1, 1], [0, 1, 2, 0], [−2, 0, 0, 0]

to be the basis of R4. Verify that the following maps are linear and find their matrices in the respective bases:

(a) ϕ : R3 → R3, ϕ([x, y, z]) = [x + z, 2x + z, 3x− y + z],

(b) ϕ : R3 → R3, ϕ([x, y, z]) = [x− y + z, y, z],

(c) ϕ : R4 → R3, ϕ([x, y, z, t]) = [x− y + 2t, 2x + 3y + 5z − t, x + z − t],

3. Compositions of linear maps. Let T : V → V and S : V → be two linear maps (we assume for simplicity that both
the domain and codomain of these maps is the same space V ). Take three bases of the space V , say A, B and C. Let A be
the matrix of T in the bases A and B, and B the matrix of S in the bases B and C. Prove that the matrix of S ◦ T in the
bases A and C is BA. Stick to the case when dim V = 2.

4. Change of bases vs. change of matrices.

(a) Let T : V → V be a linear map whose matrix in the bases A in B is equal to A. Use the result from the previous
problem to show that the matrix of T−1 in the bases B and A is A−1.

(b) That the vector v has coordinates [1, 2, 3] means that it can be represented as the following linear combination of basic
vectors [1, 0, 0], [0, 1, 0] and [0, 0, 1]:

[1, 2, 3] = 1 · [1, 0, 0] + 2 · [0, 1, 0] + 3 · [0, 0, 1].

Suppose we want to write it as a linear combination of vectors from another basis, say [1, 1, 0], [1, 0, 1], [0, 1, 1]. Say
that a, b, c are the resulting coefficients in the linear combination (find them!). Now write down the matrix of the
identity mapping Id : R3 → R3 in the bases [1, 0, 0], [0, 1, 0], [0, 0, 1] and [1, 1, 0], [1, 0, 1], [0, 1, 1], call it P . Show
that [a, b, c]T = A · [1, 2, 3]T . What will be the new “coordinates” in the basis [1, 1, 0], [1, 0, 1], [0, 1, 1] of the vector
[77,−15, 99]? Of an arbitrary vector [x, y, z]?

(c) Now suppose that a mean and vicious math professor gives you problems with all vectors written in “coordinates” in
the basis [1, 1, 0], [1, 0, 1], [0, 1, 1]. Show that multiplying them by P−1 gives you vectors in “normal” coordinates.

(d) Combine (a), (b), (c) and the previous problem to show the following theorem: let T : V → V be a linear map whose
matrix in the basis A (i.e. we treat A as the basis of both domain and codomain) is equal to A, let P be the matrix
of the identity map in the bases A and B, let B be the matrix of T in the basis B. Then:

B = PAP−1.

5. Eigenvalues and eigenvectors. If A is a matrix then a number λ is called an eigenvalue if for some v, which is then
called an eigenvector, Av = λv.
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(a) How can we find eigenvalues? Suppose we are given a matrix A; we are looking for a number λ and a vector v such
that

Av = λv

or, equvalently:
Av = λIv

where I denotes the identity matrix. Moving everything to the left side of the equation and factoring out v gives

(A− λI)v = 0.

This is a system of equations with the parameter λ, where variables are coordinates of the vector v, right? It has one
trivial solution, when we simply take v = 0, but we are more interested in nontrivial solutions. Think of the matrix
A− λI. What condition shall we impose on this matrix in order to guarantee existence of nontrivial solutions to our
system? (hint: think determinants). Does it give you a method of finding eigenvalues? (it sure does! – just name it).
Once you found an eigenvalue, finding corresponding eigenvectors is easy – you just solve system of linear equations
Av = λv, where now λ is a given number.

(b) Find eigenvalues and corresponding eigenvectors for the following matrices:

[
−3 4
2 −1

]
,

[
1 1
1 −1

]
,

 1 0 1
0 2 1
0 0 3


6. Diagonalization. Now the real fun begins! Suppose we have a square n × n matrix A, and we want to decompose it as

PBP−1, where B is diagonal.

(a) Think of A as of a matrix of some linear mapping T in the “cannonical” basis [1, 0, 0, . . . , 0], [0, 1, 0, . . . , 0], [0, 0, 1, . . . , 0],
. . ., [0, 0, 0, . . . , 1]. Suppose that we found n eigenvalues for A, call them λ1, λ2, . . . , λn, and that the corresponding
eigenvectors, call them v1, v2, . . . , vn, form a basis. Find the matrix B of T in the basis v1, v2, . . . , vn.

(b) Write down the matrix of the identity map in the bases v1, v2, . . . , vn and the “cannonical” basis; call it P .

(c) You scored big time! Use what you already have to show that A = PBP−1.

(d) Write down the diagonal decompositions PBP−1 for matrices from the previous problem.

7. Cleaning up and filling in gaps. Go back to Project 4 (Mixing salt and water) and fill in the missing part of your
solution to Problem 8.

8. Life is brutal... So, now you think you can solve every single problem involving systems of linear differential equations
with constant coefficients, eh? Not to let you down after all the work you put in this project, but... think what can go
wrong. First of all, would you be able to find eigenvalues of a matrix, say, 100× 100? Why? Why not? Use Wikipedia to
learn something about Abel-Ruffini theorem. Secondly, who said that eigenvalues, or, at least, real eigenvalues, exist for
every single matrix? Can you, perhaps, give some examples (if you can, they will count as bonus points!)? But don’t despair
– diagonal decomposition of a matrix is just one of many decompositions that help us deal with systems of differential
equations, dynamical systems etc. In fact, what you’ve just seen, is merely a tip of an iceberg – but hey, that’s a good
reason for taking Math 5BI!

9. Kaplansky’s principle. Verify that the previous problem satisfies the following Kaplansky’s 1 principle: “As the work
comes to a close the theorems fade away in favor of hand-waving on a large scale. But that is the way every course should
finish”.

1Irving Kaplansky (1917-2006) – was a Canadian mathematician, born to Polish parents. He worked for most of his
life at the University of Chicago, his research interests included commutative algebra and geometry. For more details see
http://www-history.mcs.st-andrews.ac.uk/Biographies/Kaplansky.html
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