Midterm 1 – Math 363, instructor: Pawel Gladki Friday, August 3rd, 2007.

Time: 60 minutes

1. Prove the following theorem:

$$\sum_{k=1}^{n} (ak+b) = \frac{n}{2} [an + (a+2b)],$$

where a, b are some fixed real numbers.

2. Solve the equation

$$(4-3i)z^2 - (2+11i)z - (5+i) = 0.$$

3. Solve the following matrix equation:

	1	1	-1 -		1	-1	3
X	2	1	0	=	4	3	2
	1	-1	1		1	-2	5

- 4. Let R be the relation in the set \mathbb{Q} defined as follows: for two rational numbers x and y, xRy if and only if $\frac{x}{y} = t^2$ for some rational number t. Show that R is an equivalence relation, and has infinitely many equivalence classes.
- 5. In the set \mathbb{R} of real numbers we define the "addition" as follows: $x \oplus y = \sqrt[3]{x^3 + y^3}$. Find a neutral element *e* of this addition and show that (\mathbb{R}, \oplus, e) is an Abelian group.