Final examination – Math 363, instructor: Pawel Gladki

Friday, August 17th, 2007 Time: 180 minutes

- 1. Check if the set \mathbb{R} with "addition" defined by $a \oplus b = a + b + 1$ is a group.
- 2. Determine all subgroups of the group \mathbb{Z}_4 .
- 3. Determine the index $(GL(n, \mathbb{R}) : SL(n, \mathbb{R}))$.
- 4. Is the group $\mathbb{Z}_3 \times \mathbb{Z}_3$ cyclic?
- 5. Determine the Cayley table for the factor group $U(\mathbb{Z}_{21})/\{1, 8, 13, 20\}$.
- 6. Use the isomorphism theorem to show that $\mathbb{R} \cong \mathbb{R}^2/H$, where $H = \{(x, y) \in \mathbb{R}^2 : x + y = 0\}.$
- 7. Let

Is the permutation $\sigma\tau$ even?

8. Check if the set

$$\left\{ \left[\begin{array}{cc} a & b \\ 0 & c \end{array} \right] \in M(2,\mathbb{R}): a,b,c \in \mathbb{R} \right\}$$

is a subring of the ring $M(2,\mathbb{R})$.

- 9. Find all units and zero divisors in the ring \mathbb{Z}_8 .
- 10. Check if the function $f: M(2,\mathbb{R}) \to \mathbb{R}, f(X) = \det X$ is a ring homomorphism.