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In this section we define arithmetic operations with matrices and look at
some of their algebraic properties. Matrices are one of the most powerful



tools in mathematics. To use matrices effectively, we must be adept at matrix
arithmetic.

The entries of a matrix are called scalars. They are usually either real or
complex numbers. For the most part we will be working with matrices whose
entries are real numbers. Throughout the first five chapters of the book the
reader may assume that the term scalar refers to a real number. However,
in Chapter 6 there will be occasions when we will use the set of complex
numbers as our scalar field.

If we wish to refer to matrices without specifically writing out all their
entries, we will use cap(tal letters A, B, C, and so on. In general, g;; will
denote the entry of the matrix A that is in the ith row and the jth column.
Thus if A is an m X # matrix, then

ay dp s A

ayy dyp -+ Ay
A=

ml Am2  ° Qpp

We will sometimes shorten this to A = (a;;). Similarly, a matrix B may be
referred to as (b;;), a matrix C as (c;;), and so on.

EQUALITY

Definition. 1y, « ; matrices A and B are said to be equal if a;; = b
foreach i and j.

SCALAR MULTIPLICATION

If A is a matrix and « is a scalar, then o A is the matrix formed by multiplying
each of the entries of A by «. For example, if

48 2
A=(6 8 10)
2 4 1 2 24 6
LA = —
2A“<3 4 5) and 3A‘(18 24 30)

If A = (a;) and B = (b;;) are both m x n matrices, then the sum A + B is
the m x n matrix whose ijth entry is a;; + b;; for each ordered pair (i, j). For

example,
321+222_543
4 5 6 1 23)  \579
—8 —6

2
1|+ 3 = 4
8 2 10

then

MATRIX ADDITION



32 CH.1 MATRICES AND SYSTEMS OF EQUATIONS

If we define A — B to be A + (—1)B, then it turns out that A — B is
formed by subtracting the corresponding entry of B from each entry of A.

Thus (§ ?)_(3 g) _ (g ‘1*)+<—1>(3 g)
- (31)+(3 2)
- (i)

. -2 -1
- 1 =2
If O represents a matrix, with the same dimensions as A, whose entries are
all 0, then
A+ O0=0+A=A

That is, the zero matrix acts as an additive identity on the set of all m x n
matrices. Furthermore, each m x n matrix A has an additive inverse. Indeed,

A+(-NHA=0=(-1HA+A
It is customary to denote the additive inverse by —A. Thus

—-A=(-DA

MATRIX MULTIPLICATION

We have yet to define the most important operation, the multiplication of
two matrices. Much of the motivation behind the definition comes from the
applications to linear systems of equations. If we have a system of one linear
equation in one unknown, it can be written in the form

(1) ax =b

We generally think of a, x, and b as being scalars; however, they could also
be treated as 1 x 1 matrices. More generally, given an m X r linear system

anx; + apx; + - + apx, = by

anx, + apx; + -+ + awx, = b

Ay X + A2 X2 + -+ AmnXn = bm

it is desirable to write the system in a form similar to (1), that is, as a matrix
equation

AX =B
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where A = (g;;) is known, X is an n x 1 matrix of unknowns, and B is an
m X 1 matrix representing the right-hand side of the system. Thus we set

a, dap -+ 4 X1 b
dy dpp -+ oy, X2 b,
A = , X = , B =
ami (2% e App Xn bm
and 4

( anx; + apx; + -+ apx, \

2 AX — ax, + apx; + - + axx,

\amlxl + Ama X3 + -+ AunXn J

Given an m X n matrix A and an n x 1 matrix X it is possible to compute a
product AX by (2). The product AX will be an m x 1 matrix. The rule for
determining the ith entry of AX is

a;1xX + air X, + -+ AinXy

Note that the ith entry is determined using only the ith row of A. The entries
in that row are paired off with the corresponding entries of X and multiplied.
The n products are then summed. Those readers familiar with dot products
will recognize this as simply the dot product of the n-tuple corresponding to
the ith row of A with the n-tuple corresponding to the matrix X.

X1
X2
(an an - aw)| . | =awx +apx+ - +anx,

Xn

In order to pair off the entries in this way, the number of columns of A must
equal the number of rows of X. The entries of X can be either scalars or
unknowns having scalar values.

EXAMPLE 1

4 2 1 =
A:(s 3 7)’ X=1x»
X3

dx, + 2x + x3
le + 3x2 + 7X3 []

AX =
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EXAMPLE 2
-3 1
A= 2 51, X=(i>
4 2
-3.2+1-4 )
AX = 2.24+5.4 =] 24
16
4.2 +2-4 =

EXAMPLE 3. Write the following system of equations as a matrix
equation AX = B.

351 + 2%, + x3 = 5
x| — 2%y + Sx3 = =2
21 + x — 3x3 = 1

SOLUTION
3 2 1 X1 5
1 -2 5 X2 = -2
2 1 -3 X3 1 ]

More generally, it is possible to multiply a matrix A times a matrix B if
the number of columns of A equals the number of rows of B. The first column
of the product is determined by the first column of B, the second column by
the second column of B, and so on. Thus, to determine the (i, j) entry of the
product A B, we use the entries of the ith row of A and the jth column of B.

Definition. If A = (a;;) isan m x n matrix and B = (b;) isann X r
matrix, then the product AB = C = (¢;;) is the m x r matrix whose entries
are defined by

n
Cij = E Qi by
k=1

What this definition says is that to find the ijth element of the product,
you take the ith row of A and the jth column of B, multiply the corresponding
elements pairwise, and add the resulting numbers.

by;
by;
(ail dip - ain) .

bni
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NOTATIONAL RULES

Just as in ordinary algebra, if an expression involves both multiplication and
addition and there are no parentheses to indicate the order of the operations,
multiplications are carried out before additions. This is true for both scalar
and matrix multiplications. For example, if

3 4 13 2

=(132) r=(21) <=(32)
3 4 7 7 10 11
avse=(75)+ (1 3)=(% %)
9 12 13 10 15
3A+B:(3 6)+(2 1)“(5 7)

The following theorem provides some useful rules for doing matrix arithmetic.

then

and

ALGEBRAIC RULES

Theorem 1.3.1. Each of the following statements is valid for any scalars
a and B and for any matrices A, B, and C for which the indicated operations
are defined.

(1) A+B=B+A

2) A+B+C=A+(B+0)
(3) (AB)C = A(BO)

4 AB+C)=AB+ AC

5) (A+B)C=AC+ BC

6) (xB)A = a(BA)

(7) a(AB) = (¢A)B = A(aB)
B (x+pA=cA+BA

9 alA+B)=aA + aB

We will prove two of the rules and leave the rest for the reader to verity.

Proof of (4). Assume that A = (a;;) is an m x n matrix and B = (b,;) and
C = (c;;) are both n x r matrices. Let D = A(B+ C) and E = AB + AC.
It follows that

n

di; = Zaik(bkj + ¢j)

k=1

and

n n
eij = E aicbyj + E ik Cyj
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But
Zaik(bkj +cy) = Zaikbkj + Zaikckj
k=1 k=1 k=1
so that d;; = e;; and hence A(B + C) = AB + AC. L]

Proof of (3). Let A be anm x n matrix, B ann x r matrix, and C anr X s
matrix. Let D = AB and E = BC. We must show that DC = AFE. By the
definition of matrix multiplication,

n

r
di = E aixby and €rj = E bklclj
=1

k=1
The i jth term of DC is

idﬂcﬁ = i (Zn: aikbkl> Cyj
=1

and the i jth entry of AE is

n n r
E ai€x; — E aik E bklclj
k=1 k=1 =1

Since

r hn r n hn r
E E a;iby Cij = E aikbklclj = E aii E bklclj
I=1 =1 k=1 =1

k=1 k=1
it follows that
(AB)C = DC = AE = A(BC) . []

The arithmetic rules given in Theorem 1.3.1 seem quite natural since
they are similar to the rules we use with real numbers. However, there are
some important differences between the rules for matrix arithmetic and those
for real number arithmetic. In particular, multiplication of real numbers is
commutative; however, we saw in Example 6 that matrix multiplication is not
commutative. This difference warrants special emphasis.

Warning: In general, AB # BA.
Matrix multiplication is not commutative.

Some of the other differences between matrix arithmetic and real number
arithmetic are illustrated in Exercises 13, 14, and 15.

EXAMPLE 7. If

B 12) _(21) _(1 0)
A={5 4 B={_3 ,| ~and C={,
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verify that A(BC) = (AB)C and A(B + C) = AB + AC.

SOLUTION
12\ (4 1 6 5
A(BC):(3 4)(1 2):(16 11)

~4 5\(1 0 6 5
(AB)Cz(—ﬁ 11)(2 1)=(16 11)

A(BC) = (12 1?) — (AB)C

12\ 3 1\_ (1 7
A(B+C)=(3 4)(-1 3)2(5 15)

45 52\ _ (1 7
AB+AC=(—6 11)+(11 4)=(5 15)

Therefore,

Thus

A(B+C) = AB + AC O

Notation. Since (AB)C = A(BC), one may simply omit the parentheses
and write ABC. The same is true for a product of four or more matrices. In
the case where an n x n matrix is multiplied by itself a number of times, it is
convenient to use exponential notation. Thus if k is a positive integer, then

AF = AA-.- A
——
k times

EXAMPLE 8. If

then
1 1 1 1 2 2
2 —
A (1 1)(1 1) (2 2)
1 1 2 2 4 4
3 2
A= AAA = AA _—(1 1)<2 2>_(4 4)

and in general
. on—1 n—l )
AT = (7_"-1 on-l M
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(a) Determine the adjacency matrix A of the graph.
(b) Compute A%. What do the entries in the first row of A tell you
about walks of length 2 that start from V,?

(c) Compute A*. How many walks of length 3 are there from V, to
V,? How many walks of length less than or equal to 3 are there
from V, to V,?

23. Let A be a2 x 2 matrix with a;; # 0 and let ¢ = a,;/a;,. Show that A
can be factored into a product of the form

1 0 ayy apnn
o 1 0 b

What is the value of b?

B srPeciAL TYPES OF MATRICES

In this section we look at special types of n x n matrices, such as triangular
matrices, diagonal matrices, and elementary matrices. These special types of
matrices play an important role in the solution of matrix equations. We begin
by considering a special matrix / that acts like a multiplicative identity, that
is,

TA=AI=A

for any n x n matrix A. We also discuss the existence and computation of.
multiplicative inverses.

THE IDENTITY MATRIX

One very important matrix 1s the n x n matrix / with 1’s on the diagonal and
0’s off the diagonal. Thus I = (§;;), where

5 — 1 ifi =
Y10 ifi #j
If Aisany n x n matrix, Al = IA = A. The matrix I acts as an identity

for the multiplication of » x n matrices and consequently is referred to as the
identity matrix. For example,

1 00 3 4 1 3 4 1
01 0 2 6 31=}12 6 3
0 0 1 01 8 01 8

and

_——-\

N W
- o B
L) =
~—
,—\\
S~
> = O
- O
‘-——//
I

3 41
2 6 3
n 1 g

n (o] N
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In general, if B is any m x n matrix and C is any n X r matrix, then

Bl =B and IC=C

Notation. The set of all n-tuples of real numbers is called Fuclidean
n-space and is usually denoted by R”. The elements of R" are called vectors.
Note, however, that the solution to the matrix equation AX = B will be an
n x 1 matrix rather than an n-tuple. In general, when working with matrix
equations it is more convenient to think of R" as consisting of column vectors
(n x 1 matrices) rather than row vectors (1 x » matrices). The standard notation
for a column vector is a boldface lowercase letter.

X1
X2 r
x=1 . X = (X1,..., %)
Xn
column vector oW vector

Following this convention, we will use the notation Ax = b, rather than
AX = B, torepresent a linear system of equations.

Given an m X n matrix A, it is often necessary to refer to a particular
row or column. The ith row vector of A will be denoted by a(i, :) and the jth
column vector will be denoted by a(:, j). In general we will be working pri-
marily with column vectors. Consequently, we will use the shorthand notation
a; in place of a(:, j). Since references to row vectors are far less frequent, we
will not use any shorthand notation for row vectors. In summation, if A is an
m X n matrix, then the row vectors of A are given by

a(l,:) = (a1, ain, ..., aq5,) i=1,....,m

and the column vectors are given by

a, =a(,j) = : j=1,...,n

amj

Similarly, if B is an n x r matrix, then B = (by, by, ..., b,). The only
exception to this notation is in the case of the identity matrix /. The standard
notation for the jth column vector of I is e; rather than i;. Thus the n x n
identity matrix can be written

I =(e,...,e,)

DIAGONAL AND TRIANGULAR MATRICES

An n x n matrix A is said to be upper triangular if a;; = O for i > j and
lower trianoylar if a.. = 0 fori < 7. Also. A is said to be trianeular if it is
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g either upper triangular or lower triangular. For example, the 3 x 3 matrices

[ 32 1 1 00
02 1 and 6 2 0
00 5 1 4 3

are both triangular. The first is upper triangular and the second is lower trian-
gular.

A triangular matrix may have 0’s on the diagonal. However, for a linear
system AX = b to be in triangular form, the coefficient matrix A must be
triangular with nonzero diagonal entries.

Ann x n matrix A is diagonal if a;; = 0 whenever i # j. The matrices

L o 1 00 0 0 O
(09 (o30) (o020
0 01 0 0O

are all diagonal. A diagonal matrix is both upper triangular and lower trian-
gular.

MATRIX INVERSION

Definition. An n x n matrix A is said to be nonsingular or invertible if
there exists a matrix B such that AB = BA = I. The matrix B is said to be
a multiplicative inverse of A.

If B and C are both multiplicative inverses of A, then
B =Bl =B(AC)=(BA)C=1IC=C

Thus a matrix can have at most one multiplicative inverse. We will refer to
the multiplicative inverse of a nonsingular matrix A as simply the inverse of
A and denote it by A~

EXAMPLE 1. The matrices

2 4 % 3
10 5

(3 1) and ( 3 _1)
5

are inverses of each other, since

GO(T -6

and
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EXAMPLE 2. The triangular matrices

1 2 3 5
01 4 1 -4
0 0 1 1
are inverses, since
1 2 3 1 1 0 O
01 4 0 =101 O
0 0 1 0 0 01
and
1 - 5 1 2 3 1 0 0O
0 1 —4 01 4]} = 1
0 1 0 01 0 01 N

EXAMPLE 3. The matrix
1 0
4= (o o)
has no inverse. Indeed, if B is any 2 x 2 matrix, then
_ (b bn I 0 (by O
ba = (bzl bzz) (o 0)=\ba 0
Thus BA cannot equal /. ' (]

Definition. An n x n matrix is said to be singular if it does not have a
multiplicative inverse.

EQUIVALENT SYSTEMS

Given an m X n linear system AX = b, we can obtain an equivalent system
by multiplying both sides of the equation by a nonsingular m x m matrix M.

(1 Ax=Db

(2) MAX = Mb

Clearly, any solution to (1) will also be a solution to (2). On the other hand,
if X is a solution to (2), then

M~Y(MAR) = M~ (Mb)
X=b

so the two systems are equivalent.

To obtain an equivalent system that is easier to solve, we can apply a
nnnnnnnnnn € rmAnainanilan canteinna LT L 4t~ laath cidan AF tlha Asvvatins
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Ax = b to obtain a simpler system
Ux=c¢

whereU = E;---EjAand ¢ = E, - - - E;E1b. The new system will be equiv-
alent to the original provided that M = E, --- E; is nonsingular. However,
M is the product of nonsingular matrices. The following theorem shows that
any product of nonsingular matrices is nonsingular.

Theorem 1.4.1. If A and B are nonsingular n X n matrices, then AB is
also nonsingular and (AB)™' = B7'A~".

Proof
(B-'A™YAB=B'Y(A'A)B=B"'B=1
(AB)(B—IAWI) = A(BB_I)A_I =AA ' =1 O]
It follows by induction that if Ey, ..., E; are all nonsingular, then the

product £ E, - - - E; is nonsingular and
(E\E;---E)'=E'---EJ'E,'

We will show next that any of the three elementary row operations can be
accomplished by multiplying A on the left by a nonsingular matrix.

ELEMENTARY MATRICES

A matrix obtained from the identity matrix / by the performance of one
elementary row operation is called an elementary matrix.

There are three types of elementary matrices corresponding to the three
types of elementary row operations.

Typel
An elementary matrix of type I is a matrix obtained by interchanging two

rows of I.

EXAMPLE 4. Let

010
E]: 1 O O
0 0 1

E is an elementary matrix of type I, since it was obtained by interchang-
ing the first two rows of 7. Let A be a 3 x 3 matrix.

010 ay dap aps az axp A
EA=|1 00 ) dpp dy | = | @i 4y dps
N N 1 Ve P A Flan Ve P MNan fTnn
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app adpp a3
AE, = | ay ap apn
az; dz 43

1 0 ap dpip 43
0 O0|=1|ax a; ax
0 1 daz dsz; d4sz

S - O

Multiplying A on the left by E, interchanges the first and second rows
of A. Right multiplication of A by E; is equivalent to the elementary
column operation of interchanging the first and second columns. L]

Type Il
An elementary matrix of type Il is a matrix obtained by multiplying a
row of I by a nonzero constant.

EXAMPLE 5
1 0 O
E2= 0 1 0
0O 0 3
is an elementary matrix of type II.
1 00 ayy dpp a4 an an a3
010 dz Gy A = ar ax an
0 0 3 as; A4z dxs 36131 36132 36133

0 an ap 3ap
0 = ay an 3ax
3 as; axn 3axp

ayp dip dps 10
axr dn ap 0 1
asy 4z  dss 00
Multiplication on the left by E, performs the elementary row operation
of multiplying the third row by 3, while multiplication on the right by

E, performs the elementary column operation of multiplying the third
column by 3. []

Type llI
An elementary matrix of type III is a matrix obtained from 7/ by adding
a multiple of one row to another row.

EXAMPLE 6

E3:

SO =~
— O W

0
1
0
is an elementary matrix of type III. If A is a 3 x 3 matrix, then

ay +3a3 ap+3an ap+3as
E3A =

as an a
(1~ (T~ (141
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an an 3apn +ap
AEs = | ay axn 3ay +axn
as; axn 3a; + ass

Multiplication on the left by E; adds 3 times the third row to the first
row. Multiplication on the right adds 3 times the first column to the third
column. 0

In general, suppose that E is an n x n elementary matrix. We can think of
E as being obtained from I by either a row operation or a column operation.
If A is an n x r matrix, premultiplying A by E has the effect of performing
that same row operation on A. If B is an m X n matrix, postmultiplying B by
E is equivalent to performing that same column operation on B.

Theorem 1.4.2. If E is an elementary matrix, then E is nonsingular and
E~! is an elementary matrix of the same type.

Proof. 1f E is the elementary matrix of type I formed from 7 by interchanging
the ith and jth rows, then E can be transformed back into / by interchanging
these same rows again. Thus EE = I and hence E is its own inverse. If E is
the elementary matrix of type II formed by multiplying the ith row of I by a
nonzero scalar «, then E can be transformed into the identity by multiplying
either its ith row or its ith column by 1/a. Thus

o \

E'l= 1/a ith row

0 ..
\ 1/
Finally, suppose that E is the elementary matrix of type III formed from I by
adding m times the ith row to the jth row.

(! )

Co 0

0 - 1 ith row
0O -+ m - 1 jth row
\0 i 0 e 0 e 1)

E can be transformed back into I by either subtracting m times the ith row
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column. Thus

[
0 1
E' =
0 —m 1
\0 e 0 .. 0 1) n

Definition. A matrix B is row equivalent to A if there exists a finite
sequence Ey, E,, ..., E, of elementary matrices such that

B = EkEk-l M ElA
In other words, B is row equivalent to A if B can be obtained from A
by a finite number of row operations. In particular, two augmented matrices
(A |b) and (B | ¢) are row equivalent if and only if Ax = b and Bx = ¢ are

equivalent systems.
The following properties of row equivalent matrices are consequences of

Theorem 1.4.2.

(i) If A is row equivalent to B, then B is row equivalent to A.
(i1) If A is row equivalent to B, and B is row equivalent to C, then A is
row equivalent to C.

The details of the proofs of (1) and (ii) are left as an exercise for the reader.

Theorem 1.4.3. Let A be an n x n matrix. The following are equivalent:
(a) A is nonsingular.
(b) Ax = 0 has only the trivial solution 0.
(c) Aisrow equivalent to I.

Proof. We prove first that statement (a) implies statement (b). If A is non-
singular and X is a solution to Ax = 0, then

R=Ik=(ATA%=A4""'A4%)=A4"10=0

Thus Ax = 0 has only the trivial solution. Next we show that statement (b)
implies statement (c). If we use elementary row operations, the system can be
transformed into the form Ux = 0, where U is in row echelon form. If one of
the diagonal elements of U were 0, the last row of U would consist entirely of
0’s. But then Ax = 0 would be equivalent to a system with more unknowns
than equations and hence by Theorem 1.2.1 would have a nontrivial solution.
Thus U must be a triangular matrix with diagonal elements all equal to 1. It
follows then that / is the reduced row echelon form of A and hence A is row

-
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Finally, we will show that statement (c) implies statement (a). If A is row
equivalent to /, there exist elementary matrices Eq, E,, ..., E; such that

A=EE - E]=EE. ;- E

But since E; is invertible, i = 1,...,k, the product E E;_,--- E; is also
invertible. Hence A is nonsingular and

AV = (EiEv---Ey) ' =E'E;' - E]! O

Corollary 1.4.4. The system of n linear equations in n unknowns Ax = b
has a unique solution if and only if A is nonsingular.

Proof. If A is nonsingular, then A~'b is the only solution to Ax = b. Con-
versely, suppose that Ax = b has a unique solution Xx. If A is singular, Ax = 0
has a solution z # 0. Let y = X + z. Clearly, y # X and

Ay=AX+1z) =AX+Az=b+0=Db

Thus y is also a solution to AX = b, which is a contradiction. Therefore, if
Ax = b has a unique solution, A must be nonsingular. O

If A is nonsingular, A is row equivalent to /, so there exist elementary
matrices E1, ..., E; such that

EkEk—l ce ElA = I
Multiplying both sides of this equation on the right by A™!, one obtains
ExEy_y---El =A""

Thus the same series of elementary row operations that transform a nonsin-
gular matrix A into I will transform I into A~!. This gives us a method
for computing A~'. If we augment A by I and perform the elementary row
operations that transform A into / on the augmented matrix, then / will be
transformed into A~!. That is, the reduced row echelon form of the augmented
matrix (A|l) willbe (1|A7Y).

EXAMPLE 7. Compute A~ if
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SOLUTION
1 4 3|1 0 O 1 4 3, 1 0 O
-1 =2 o/j0o0 1 0O} =10 2 3] 110
2 2 3|10 01 0O -6 -3|-2 01
1 _3 _1
1 4 3|1 0 O 140222
— 02 3110 —>O20%—%—%
0 06|1 31 0061 3 1
1 00[—- -5 3 1002 -1 1
Sloz2o0] L - -1l ]o1of & -1 -l
0O 0 6/ 1 3 1 OOl%%é
Thus
1 _1r 1
2 2 2
Al=] 1 _1 _1
- 4 4 4
5 3 b 0

EXAMPLE 8. Solve the system

X, + 4X2 + 3X3 = 12
—X| — 2X2 = —12
2x1 + 2xy + 3x3 = 8

The coefficient matrix of this system is the matrix A of the last example.
The solution to the system then is

1 1
2 2 2 12 4
x=A'b= - -121= 4
8 _8
1
§ 1 s ’ O

EXERCISES

1. Which of the following are elementary matrices? Classify each elemen-
tary matrix by type.

2
@) ((1’ é) ®) (O ;’)

\/100\ /100\
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2. Find the inverse of each of the matrices in Exercise 1. For each elemen-
tary matrix, verify that its inverse is an elementary matrix of the same

type.

3. For each of the following pairs of matrices, find an elementary matrix
E such that EA = B.

2 —1 —4 2
war(E ) e (3

2 1 3 2 1 3
b A=[-2 4 5], B=1| 3 1 4
31 4 2 45
4 -2 3 4 -2 3
© A={ 1 o 2|, B=[1 0 2
2 3 1 0 5

4. For each of the following pairs of matrices, find an elementary matrix -
E such that AE = B.

4 1 3 31 4
@ A=1{2 1 41, B=14 1 2
1 3 2 2 31
2 4 2 =2
®a=(7 o) (1 73)
4 -2 3 2 =2 3
! (?K) © A=|-2 4 21, B=1] -1 4 2
6 1 -2 3 1 =2
5. Given
1 2 4 1 2 4 1 4
A=112 1 3], B=}12 1 3], C=10 -1 -3
1 0 2 2 26 2 6

(a) Find an elementary matrix E such that FA = B.
(b) Find an elementary matrix F such that FB = C.
(c) Is C row equivalent to A? Explain.

6. Given

o>
I
TN )

1
4
1

L N =

(a) Find elementary matrices E|, E,, E; such that

F.F.F. A —1T7]
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where U is an upper triangular matrix.

(b) Determine the inverses of F,, E,, E; and set L = El“lEz_lE;l.
What type of matrix is L? Verify that A = LU.

7. Let

1 0 1

A=1]13 3 4

2 23

(a) Verify that

1 2 -3
Al={-1 1 -1
0 -2 3

(b) Use A~! to solve Ax = b for the following choices of b.
i) b=(,1,1T
(i) b= (1, 2,3)7
(iii) b = (=2,1,0)7

8. Find the inverse of each of the following matrices.

-1 1 25
(a)( 1 0) (b) (1 3)

2 6 30
© (3 8) @ (9 3>
' 1 11 (205
© [0 1 1 ® o3 0
00 1 \1 0 3
1 -3 3 (1 0 1
QK) @ 2 6 1 w[-1 1 1
3 8 3 \ -1 2 -3

compute A~! and use it to:

(a) Find a 2 x 2 matrix X such that AX = B.
(b) Find a2 x 2 matrix Y such that YA = B.

10. Given

a=(33) s=(32) e=(72)

Snlve each of the following matrix equations.
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11.

12.

13.

15.

16.

17.

18.

19.

(a) AX+B=C
(b) XA+B=C
) AX+B=X
d XA+C=X

Let
a a
A— 11 12
d; a4

Show that if d = ay1ayn — aza; # 0, then
Al = l dp —an
d \ —au an

Let A be a nonsingular matrix. Show that A™! is also nonsingular and
(AH 1= A

Prove that if A is nonsingular, then A” is nonsingular and
(AT)—I — (A—I)T
[Hint: (AB)T = BTAT ]

Let A be a nonsingular n x n matrix. Use mathematical induction to
prove that A™ is nonsingular and

(Am)—l — (A—l)m
form=1,2,3,....
Is the transpose of an elementary matrix an elementary matrix of the

same type? Is the product of two elementary matrices an elementary
matrix?

Let U and R be n x n upper triangular matrices and set T = UR. Show
that T is also upper triangular and that ¢;; = u;;r;; for j = 1,..., n.

Let A and B be n x n matrices and let C = AB. Prove that if B is

singular, then C must be singular.
[Hint: Use Theorem 1.4.3.]

Let U be an n x n upper triangular matrix with nonzero diagonal en-
tries.

(a) Explain why U must be nonsingular.
(b) Explain why U ! must be upper triangular.

Let A be a nonsingularn x n matrix and let B be an n x r matrix. Show
that the reduced row echelon form of (A|B) is (/|C), where C = A~'B.
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20. In general, matrix multiplication is not commutative (i.e., AB # BA).

21.

22.

23.

24,

25.

However, there are certain special cases where the commutative property
does hold. Show that:

(a) If D, and D, are n x n diagonal matrices, then D, D, = D, D,.
(b) If A is an n x n matrix and

B=a01+a1A+a2A2+---+akAk

where ay, ay, . . ., a; are scalars, then AB = BA.

Show that if A is a symmetric nonsingular matrix, then A~! is also
symmetric.

Prove that if A is row equivalent to B, then B is row equivalent to A.

(a) Prove that if A is row equivalent to B and B is row equivalent to
C, then A is row equivalent to C.
(b) Prove that any two nonsingular n x n matrices are row equivalent,

Prove that B is row equivalent to A if and only if there exists a nonsin-
gular matrix M such that B = MA.

Given a vector x € R"™!, the (n + 1) x (n + 1) matrix V defined by

R ifj =1
Vi =y forj=2,...,n+1

I3
is called the Vandermonde matrix.

(a) Show that if

Ve=y
and
p(x) =c;+cx+ -+ x”
then
px)y=y, i=12,...,n+1
(b) Suppose that x|, x3, ..., x,,; are all distinct. Show that if ¢ is a
solution to Vx = 0, then the coefficients ¢, ¢;, . . ., ¢, must all be

zero, and hence V must be nonsingular.

& PARTITIONED MATRICES

Often it is useful to think of a matrix as being composed of a number of
submatrices. A matrix A can be partitioned into smaller matrices by drawing



DETERMINANTS

With each square matrix it is possible to associate a real number called the
determinant of the matrix. The value of this number will tell us whether or
not the matrix is singular.

In Section 1 the definition of the determinant of a matrix is given. In Sec-
tion 2 we study properties of determinants and derive an elimination method
for evaluating determinants. The elimination method is generally the simplest
method to use for evaluating the determinant of an n X n matrix when n > 3.
In Section 3 we see how determinants can be applied to solving n X n lin-
ear systems and how they can be used to calculate the inverse of a matrix.
An application involving cryptography is also presented in Section 3. Further
applications of determinants are presented in Chapters 3 and 6.

DETERMINANT OF A MATRIX

With each n x n matrix A it is possible to associate a scalar, det(A), whose
value will tell us whether or not the matrix is nonsingular. Before proceeding



82

CH.2 DETERMINANTS.

Case 1. 1 x 1 Matrices
If A = (a)is al x 1 matrix, then A will have a multiplicative inverse if
and only if a # 0. Thus, if we define
det(A) = a

then A will be nonsingular if and only if det(A) # 0.

A= (011 an )
a1 a2
By Theorem 1.4.3, A will be nonsingular if and only if it is row equivalent

to I. Then if a;; # 0, we can test whether or not A is row equivalent to / by
performing the following operations:

Case 2. 2 x 2 Matrices
Let

1. Multiply the second row of A by a;

an a
dpaz; dpdx

2. Subtract a,; times the first row from the new second row

ay an
0  apax —anap

Since ay; # O, the resulting matrix will be row equivalent to / if and only if -

(1) ayayp — axap 70
If a;; = 0, we can switch the two rows of A. The resulting matrix
a dan
0 ap

will be row equivalent to [ if and only if ayya;; # 0. This requirement is
equivalent to condition (1) when a;; = 0. Thus if A is any 2 x 2 matrix and
we define

det(A) = ay1an — anay

then A is nonsingular if and only if det(A) # 0.

Notation. One canrefer to the determinant of a specific matrix by enclosing
the array between vertical lines. For example, if

3 4
= (2)

|3 4]

then
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represents the determinant of A.

Case 3. 3 x 3 Matrices

We can test whether or not a 3 x 3 matrix is nonsingular by performing
row operations to see if the matrix is row equivalent to the identity matrix /.
To carry out the elimination in the first column of an arbitrary 3 x 3 matrix
A let us first assume a;; # 0. The elimination can then be performed by
subtracting a,;/a,; times the first row from the second and a;;/a,; times the
first row from the third.

an 3] a3
an diz a3 o Gudn —andp Ands — dadi
a1 dyp 43 | —> ap dn
as; dzp 433 0 udxn —dudp  duds — d3di
aig aii

The matrix on the right will be row equivalent to I if and only if

a1 dz; — dndip  Ands — dxdsg

ai ap # 0
a;dsz; — dsdip Andsz — dzdgg

an

ai an

Although the algebra is somewhat messy, this condition can be simplified to
(2) ananas; — A1103023 — 412021033 + A12031023
+ apayas — apaynan #0
Thus if we define
(3) det(A) = ayanas; — a11a3a; — A12G71433
+ aas1ax3 + a;3a21a3 — a13a3102

then for the case a;; # 0 the matrix will be nonsingular if and only if det(A) #

0.
What if a;; = 0? Consider the following possibilities:

(1) a1 =0,a, #0
(1) a;y =ax =0,a3 #0
(iii) ayy = apy = a3 =0

In case (1), it is not difficult to show that A is row equivalent to / if and
only if
~a1221033 + A12G31a23 + 41302103, — A13a310 F 0

But this condition is the same as condition (2) with a;; = 0. The details of
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In case (ii) it follows that

0 an as
A= 0 axn anxn
azy dsz dasj

is row equivalent to / if and only if

as1(a12G3 — Gpay3) ?5 0

Again this is a special case of condition (2) with a;; = a,; = 0.

Clearly, in case (ii1) the matrix A cannot be row equivalent to I and hence
must be singular. In this case if one sets ay;, a,;, and a3, equal to 0 in formula
(3), the result will be det(A) = 0.

In general, then, formula (2) gives a necessary and sufficient condition
for a 3 x 3 matrix A to be nonsingular (regardless of the value of a;;).

We would now like to define the determinant of an n x n matrix. To see
how to do this, note that the determinant of a 2 x 2 matrix

ay; a
A = 1 an
ay; dan
can be defined in terms of the two 1 x 1 matrices

M = (ax) and M, = (axn)

The matrix M, is formed from A by deleting its first row and first column
and M, is formed from A by deleting its first row and second column.
The determinant of A can be expressed in the form

4) det(A) = anan — apnayn = ay det(Myy) — app det(M,)
For a 3 x 3 matrix A we can rewrite equation (3) in the form
det(A) = ai1(axnass — axnax) — app(anas — asz ax) + ai3(axasn — asan)

For j = 1,2, 3 let M;; denote the 2 x 2 matrix formed from A by deleting
its first row and jth column. The determinant of A can then be represented in
the form

(5) det(A) = a; det(M;) — ap det(My,) + a3 det(M3)
where ;
a» a a, a
M11=(a22 23)’ M1z=( 21 23), M,3=<a21 azz)
32 A3z az;  dsz as; ds;
To see how to generalize (4) and (5) to the case n > 3, we introduce the

following definition.

Definition. Let A = (a:;:) beann xn matrix. Let M:;: bethe (n—1) x (n—1)
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determinant of M;; is called the minor of a;;. We define the cofactor A;; of
a;; by
A = (—1)"™ det(M;;)
In view of this definition, for a 2 x 2 matrix A, we may rewrite equation (4)
in the form
(6) det(A) = ap Ay +apAnp (n=2)

Equation (6) is called the cofactor expansion of det(A) along the first row of
A. Note that we could also write

(7) det(A) = az1(—apn) + axnay = a2 Az + anlxn

Equation (7) expresses det(A) in terms of the entries of the second row of A
and their cofactors. Actually, there is no reason why we must expand along
a row of the matrix; the determinant could just as well be represented by the
cofactor expansion along one of the columns.

det(A) = ajan + ax(—ap)
= anAny + ax Ay (first column)
det(A) = app(—ay) + anay
= apAp+anin (second column)
For a 3 x 3 matrix A, we have
(8) det(A) = ay Ay + apln +aiiis
Thus the determinant of a 3 x 3 matrix can be defined in terms of the elements

in the first row of the matrix and their corresponding cofactors.

EXAMPLE 1. If

.

I
»n W N
N Y,
SN SR

then
det(A) = an A + apndn +aiAns
= (—1)%a;; det(My;) + (—1)°a;, det(M,,)
+ (—1)*ay3 det(M3)

1 2 3 2
4 6 5 6

=2(6—-8) —5(18 — 10) +4(12 - 5)

2o &l ol

5 4
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As in the case of 2 x 2 matrices, the determinant of a 3 x 3 matrix can be
represented as a cofactor expansion using any row or column. For example,
equation (3) can be rewritten in the form

det(A) = a;paszi1ays — 130314 — A11a3Aa3 + A13G21A3 + 41102033
— dpdy)dss
= a3 (anay3 — az1an) — an(a)an — apay))
+asz(agap — anay)
= a3 Az + anAsp + aAs;
This is the cofactor expansion along the third row of A.

EXAMPLE 2. Let A be the matrix in Example 1. The cofactor expan-
sion of det(A) along the second column is given by

3 2 2 4 2 4
det(A):_st 6|+1)5 6‘_4’3 2|
= —5(18 — 10) + 1(12 ~ 20) — 4(4 — 12)
=16 0l

The determinant of a 4 x 4 matrix can be defined in terms of a cofactor
expansion along any row or column. To compute the value of the 4 x 4
determinant, one would have to evaluate four 3 x 3 determinants. ‘

Definition. The determinant of an n x n matrix A, denoted det(A), is a
scalar associated with the matrix A that is defined inductively as follows:

ap ifn=1
det(A) =
anAn +apAp+ -+ anAy, ifn>1
where
A= (=) det(M)) j=1,...,n
are the cofactors associated with the entries in the first row of A.

As we have seen, it 1S not necessary to limit ourselves to using the first
row for the cofactor expansion. We state the following theorem without proof.

Theorem 2.1.1. If A is an n x n matrix with n > 2, then det(A) can be
expressed as a cofactor expansion using any row or column of A.

det(A) = a; A + anAp + - -+ ai Ay
=a;j A+ ajAy; 4+ a, Ay
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The cofactor expansion of a 4 x 4 determinant will involve four 3 x 3
determinants. One can often save work by expanding along the row or column
that contains the most zeros. For example, to evaluate

0 2 30
0 4 50
01 0 3
2 01 3

one would expand down the first column. The first three terms will drop out,
leaving

2 30
2 3
—2? 5 O:—2.3-|4 5

=12

The cofactor expansion can be used to establish some important results
about determinants. These results are given in the following theorems.

Theorem 2.1.2. [f A is an n x n matrix, then det(AT) = det(A).

Proof. The proof is by induction on n. Clearly, the result holds if n = 1,
since a 1 x 1 matrix is necessarily symmetric. Assume that the result holds
for all k x k matrices and that A is a (k + 1) x (k + 1) matrix. Expanding
det(A) along the first row of A, we get

det(A) = a,, det(M},) —appdet(My;) + — - - £ ay gy det(M 41)

Since the M;;’s are all k x k matrices, it follows from the induction hypothesis
that

(9) det(A) = ay; det(M])) — apdet(M) + — - £ ar . det(M],, )

The right-hand side of (9) is just the expansion by minors of det(A”) using
the first column of A7, Therefore,

det(A") = det(A) ]
Theorem 2.1.3. If A is an n x n triangular matrix, the determinant of A
equals the product of the diagonal elements of A.

Proof. In view of Theorem 2.1.2, it suffices to prove the theorem for lower
triangular matrices. The result follows easily using the cofactor expansion and
induction on n. The details of this are left for the reader (see Exercise 8). [

Theorem 2.1.4. Let A be an n x n matrix.

(1) If A has a row or column consisting entirely of zeros, then
det(A) = 0.

(1) If A has two identical rows or two identical columns, then
det(A) = 0.
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Bl PROPERTIES OF DETERMINANTS

In this section we consider the effects of row operations on the determinant
of a matrix. Once these effects have been established, we will prove that a
matrix A is singular if and only if its determinant is zero and we will develop
a method for evaluating determinants using row operations. Also, we will
establish an important theorem about the determinant of the product of two
matrices. We begin with the following lemma.

Lemma 2.2.1. Let A be an n x n matrix. If Aj, denotes the cofactor of a;
fork=1,...,n, then

det(A) ifi =j
(1) anAj + anAjp + -+ anAjn =

0 ifi #j

Proof. If i = j, (1) is just the cofactor expansion of det(A) along the ith
row of A. To prove (1) in the case i # j, let A* be the matrix obtained by
replacing the jth row of A by the ith row of A.

(011 Ay - Qi \
in Qip - Qin | jthrow
A* =
ajg 4ap - Qi
\anl an MR £ )

Since two rows of A* are the same, its determinant must be zero. It follows
from the cofactor expansion of det(A*) along the jth row that

O = det(A*) - ailA;'(l + ai2A;2 + o + ainA;n

=anAj tanljp+-+ainAj, -

Let us now consider the effects of each of the three row operations on the
value of the determinant. We start with row operation II.

ROW OPERATION I

A row of A is multiplied by a nonzero constant.

Let E denote the elementary matrix of type Il formed from / by multiplying
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along the ith row, then

det(EA) = aa;1A; + aapApn + - - + aai A,
=a(anAi + apnAp + -+ ainAin)
= o det(A)

In particular,
det(E) = det(El) = adet(l) =«
and hence

det(EA) = adet(A) = det(E) det(A)

ROW OPERATION |li

A multiple of one row is added to another row.

Let E be the elementary matrix of type III formed from / by adding ¢ times
the ith row to the jth row. Since F is triangular and its diagonal elements are
all 1, it follows that det(£) = 1. We will show that

det(EA) = det(A) = det(E) det(A)

If det(EA) is expanded by cofactors along the jth row, it follows from
Lemma 2.2.1 that

det(EA) = (a;, + ca;))Aj1 + (aj, + can)Ajp
+- 4 (@ +Cain)Ajy
= (a1Aj) + -+ ajnAjn)
+clanAj +apAp + -+ ai,Ajy)
=det(A)
Thus
det(EA) = det(A) = det(E) det(A)

ROW OPERATION |

Two rows of A are interchanged.

To see the effects of row operation 1, we note that this operation can be
accomplished using row operations II and III. We illustrate how this is done

for 3 x 3 matrices.
aj; dypp 4
A=\ ay ay axp
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Subtracting row 3 from row 2 yields
, ap a2 aps
1
AV = ayy —dzy dxn —dzp dyy — dag
asz) az; ass

Next, the second row of A? is added to the third row:

a a; a3
2 _
AP =\ ay —ay an—an apn-—ay
az) an as;

Subtracting row 3 from row 2, we get

ap an aps

3
AP = | —a3; —ay —-an
as; az az

Since all of these matrices have been formed using only row operation I1I, it
follows that

det(A) = det(A?) = det(A®) = det(AD)
Finally, if the second row of A is multiplied through by —1, one obtains

ap 4 an
4 _
A" =1 a3 ax asy
dy 4y an

Since row operation II was used, it follows that
det(AW) = —1det(A®) = — det(A)

A® is just the matrix obtained by interchanging the second and third rows
of A.

This same argument can be applied to n x n matrices to show that when-
ever two rows are switched the sign of the determinant is changed. Thus if A
isn x n and E;; is the n x n elementary matrix formed by interchanging the
ith and jth rows of /, then

det(E;;A) = —det(A)
In particular,
det(E;;) = det(E;;1) = —det(]) = —1
Thus for any elementary matrix E of type I,
det(EA) = —det(A) = det(E) det(A)

In summation, if E is an elementary matrix, then

Al TOAN DRI o AN B I
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where
—1 if E is of type |
(2) det(E) =4 a#0 if E is of type 11
1 if E 1s of type III

Similar results hold for column operations. Indeed, if E is an elementary
matrix, then

det(AE) = det((AE)") = det(ETAT)
= det(E") det(A”) = det(E) det(A)

Thus the effects that row or column operations have on the value of the
determinant can be summarized as follows:

I. Interchanging two rows (or columns) of a matrix changes the sign of the
determinant.
II. Multiplying a single row or column of a matrix by a scalar has the effect
of multiplying the value of the determinant by that scalar.

III. Adding a multiple of one row (or column) to another does not change
the value of the determinant.

Note. As a consequence of III, if one row (or column) of a matrix is a
multiple of another, the determinant of the matrix must equal zero.

If follows from (2) that all elementary matrices have nonzero determi-
nants. This observation can be used to prove the following theorem.

Theorem 2.2.2. Ann X n matrix A is singular if and only if
det(A) =0
Proof. The matrix A can be reduced to row echelon form with a finite number
of row operations. Thus
U= EkEk—I e EIA

where U is in row echelon form and the E;’s are all elementary matrices.

det(U) = det(EkEk41 v EIA)
=det(Ey) det(E,_y) - - -det(E,) det(A)

Since the determinants of the E;’s are all nonzero, it follows that det(A) = 0
if and only if det(U) = 0. If A is singular, then U has a row consisting entirely

of zeros and hence det(U) = 0. If A 1s nonsingular, U is triangular with 1’s
alane~s tha Aiaconanal and hanca Aot(T7TY — 1 [_\
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From the proof of Theorem 2.2.2 we can obtain a method for computing
det(A). Reduce A to row echelon form.

U=EE_, ---E\A

If the last row of U consists entirely of zeros, A is singular and det(A) = 0.
Otherwise, A is nonsingular and

det(A) = [det(E,) det(Ey_;) - - - det(E )]

Actually, if A is nonsingular, it is simpler to reduce A to triangular form. This
can be done using only row operations I and III. Thus

T = EmEm—l te ElA
and hence
det(A) = idet(T) = :L‘_t“tzz I

The sign will be positive if row operation [ has been used an even number of
times and negative otherwise.

EXAMPLE 1. Evaluate

2 1
4 2 1
6 —3
SOLUTION
2 1 3] 2 1 3
4 2 1|=l0 0 -5
6 -3 4| |0 —6 -5
2 1 3
= (-0 -6 -5
0 0 -5
= (=D(2)(—=6)(-3)
— —60 Ol

We now have two methods for evaluating the determinant of an n x n
matrix A. If n» > 3 and A has nonzero entries, elimination is the most efficient
method in the sense that it involves less arithmetic operations. In Table 1
the number of arithmetic operations involved in each method is given for
n =2,3,4,5, 10. It is not difficult to derive general formulas for the number
of operations in each of the methods (see Exercises 16 and 17).
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TABLE 1

Cofactors Elimination

Multiplications
n Additions Multiplications Additions  and Divisions

2 1 2 1 3
3 5 9 5 10
4 23 40 14 23
5 119 205 30 45
10 3,628,799 6,235,300 285 339

We have seen that for any elementary matrix E,
det(EA) = det(E) det(A) = det(AE)

This is a special case of the following theorem.

Theorem 2.2.3. If A and B are n x n matrices, then

det(AB) = det(A) det(B)

Proof. 1If B issingular, it follows from Theorem 1.4.3 that A B is also singular
(see Exercise 15 of Chapter 1, Section 4), and therefore

det(AB) = 0 = det(A) det(B)

If B is nonsingular, B can be written as a product of elementary matrices. We
have already seen that the result holds for elementary matrices. Thus

det(AB) = det(AELE,_, --- E))
= det(A) det(Ey) det(Ey_,) - - - det(E})
= det(A) det(E E,_, - - - E})
= det(A) det(B) ]

If A is singular, the computed value of det(A) using exact arithmetic
must be 0. However, this result is unlikely if the computations are done by
computer. Since computers use a finite number system, roundoff errors are
usually unavoidable. Consequently, it is more likely that the computed value of
det(A) will only be near 0. Because of roundoff errors, it is virtually impossible
to determine computationally whether or not a matrix is exactly singular. In
computer applications it is often more meaningful to ask whether a matrix
is “close” to being singular. In general, the value of det(A) is not a good
indicator of nearness to singularity. In Chapter 7 we will discuss how to

determine whether ar nat a matriy ie rlnee tn heino cinonlar
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EXERCISES

1. Evaluate each of the following determinants by inspection.
0 1 1 1 3
®) 0O 3 1 1
O 0 2 2
-1 -1 -1 2

—_ LD

(a)

[

(c)

(x) 2. Le

SO = O NOO

O =, OO WhH
— O O O
OO O

0 1
1 1
-2 =2
1 2

(a) Use the elimination method to evaluate det(A).
(b) Use the value of det(A) to evaluate

o 1 2 3 o 1 2 3
2 -2 3 3 11 1 1
1 2 =2 =3|T|=1 =1 4 4
11 11 2 3 -1 =2

3. For each of the following, compute the determinant and state whether
the matrix is singular or nonsingular.

33 1
m>(g é) m)(i é) ©lo 1 2
02 3
21 1 2 -1 3
@ |4 3 5 @ | -1 2 -2
21 2 1 4 0
1 11
2 -1 3 2
® 1o 21
0 7 3

4, Find all possible choices of ¢ that would make the following matrix

singular.
1 1 1
1 9 ¢
1 ~ 3
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5. Let A be an n x n matrix and « a scalar. Show that

det(eA) = " det(A)

6. Let A be a nonsingular matrix. Show that

-1y __
detA™) = Tai

7. Let A and B be 3 x 3 matrices with det(A) = 4 and det(B) = 5. Find

the value of:
(a) det(AB) (b) det(3A) (c) det(2AB) (d) det(A~'B)

8. Let E, E,, E; be 3 x 3 elementary matrices of types I, II, and III,
respectively, and let A be a 3 x 3 matrix with det(A) = 6. Assume,
additionally, that E, was formed from 7 by multiplying its second row
by 3. Find the values of each of the following.

(a) det(E,A) (b) det(E,A) (c) det(EzA)
(d) det(AE,) (e) det(E})  (f) det(E | E,E3)

9. Let A and B be row equivalent matrices and suppose that B can be
obtained from A using only row operations I and II. How do the values
of det(A) and det(B) compare? How will the values compare if B can
be obtained from A using only row operation I1I? Explain your answers.

10. Consider the 3 x 3 Vandermonde matrix

2

1 X Xl

2

V = 1 Xz X,
) 2

1wy x)

(a) Show that det(V) = (x, — x)(x3 — x1) (x5 — x»).
(b) What conditions must the scalars x;, x;, x3 satisty in order for V
to be nonsingular?

11. Suppose that a 3 x 3 matrix A factors into a product

1 0 O Uy Uy U
lz] 1 0 0 Ury Uos
131 132 1 0 0 Us3



