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Theorem For a power series X c,(x — a)" there are only three possibilities:
1. The series converges only when x = a.
2. The series converges for all x.

3. There is a positive number R such that the series converges if |x — a| < R and
diverges if |x — a| > R.

Proof If we make the change of variable u = x — a, then the power series becomes

2 c¢,u" and we can apply the preceding theorem to this series. In case 3 we have conver-
gence for |u| < R and divergence for |u| > R. Thus, we have convergence for

|x — a| < R and divergence for |x ~a|>R. st

Im
o 2+3i
o —4+2i
i
ol | Re
~—1
—2—2ie e3—2i
FIGURE 1
Complex numbers as points in
the Argand plane

A complex number can be represented by an expression of the form a + bi, where a and
b are real numbers and i is a symbol with the property that i = —1. The complex num-
ber a + bi can also be represented by the ordered pair (a, b) and plotted as a point in a
plane (called the Argand plane) as in Figure 1. Thus, the complex number i =0 + 1 - iis
identified with the point (0, 1).

The real part of the complex number a + bi is the real number g and the imaginary
part is the real number &. Thus, the real part of 4 — 3/ is 4 and the imaginary part is —3.
Two complex numbers a + bi and ¢ + di are equal if @ = ¢ and b = d, that is, their real
parts are equal and their imaginary parts are equal. In the Argand plane the horizontal axis
is called the real axis and the vertical axis is called the imaginary axis.

The sum and difference of two complex numbers are defined by adding or subtracting

their real parts and their imaginary parts:

{a+bi)+(ct+di)y=(@+c)+ (b +d)i

(a+bi)—(c+di)=(a—c)+ (b —d)i

For instance,
1-D+@+7)=00+dH+(1+7Di=5+6i

The product of complex numbers is defined so that the usual commutative and distributive
laws hold:
(a + bi)(c + di) = alc + di) + (bi)(c + di)

= ac + adi + bci + bdi’

Since i? = —1, this becomes

(a + bi)(c + di) = (ac — bd) + (ad + bc)i

(—1 4+ 3)2 —5) = (=12 — 5i) + 32 - 5i)
=245+ 6i—15(-1) =13 + 11{
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Division of complex numbers is much like rationalizing the denominator of a rational
expression. For the complex number z = a + bi, we define its complex conjugate to be
z = a — bi. To find the quotient of two complex numbers we multiply numerator and
denominator by the complex conjugate of the denominator.

3
,l in the form a + bi.

+
XAMPLE 2 Express th ber ————
13 Xpress the number Y

SOLUTION We multiply numerator and denominator by the complex conjugate of 2 + 5,
namely 2 — 5i, and we take advantage of the result of Example 1:

-1+ 3i -1+3 2-5 13+ 11 13+11,

245  2+5 2-5 22+5 29 29"

The geometric interpretation of the complex conjugate is shown in Figure 2: Z is the
reflection of z in the real axis. We list some of the properties of the complex conjugate in
the following box. The proofs follow from the definition and are requested in Exercise 18.

Properties of Conjugates

ztw=z+w w=zw Zhi=7

The modulus, or absolute value, |z | of a complex number z = o + bi is its distance
from the origin. From Figure 3 we see that if z = a + bi, then

t N

Notice that
zz = (a + bi)la — bi) = a* + abi — abi — b%* = a* + b*

and so zz = ’2‘2

This explains why the division procedure in Example 2 works in general:

z . zZw . Zw

w  ww  |w|
Since i* = —1, we can think of ; as a square root of — 1. But notice that we also have
(—i)*=i*= —1 and so —i is also a square root of —1. We say that / is the principal

square root of —1 and write v/ —1 = j. In general, if ¢ is any positive number, we write

Ve =i

With this convention, the usual derivation and formula for the roots of the quadratic equa-
tion ax® + bx + ¢ = 0 are valid even when 6% — 4ac < 0:

—b *+ /b? — 4ac

2a

X =



Im
a+ bi
-
b
‘\8
0[ a Re
FIGURE 4

APPENDIX G COMPLEX KUMBERS i A49

EXAMPLE 3 Find the roots of the equation x*> + x + 1 = 0.
SOLUTION Using the quadratic formula, we have

-1+J/17-4-1 -1x/-3 -1x.3i

z 2 2 i

X =

We observe that the solutions of the equation in Example 3 are complex conjugates of
each other. In general, the solutions of any quadratic equation ax® + bx + ¢ = 0 with real
coefficients a, b, and ¢ are always complex conjugates. (If z is real, z = z, 5o z is its own

conjugate.)
We have seen that if we allow complex numbers as solutions, then every quadratic equa-
tion has a solution. More generally, it is true that every polynomial equation

ax"+ apx" '+ - +ax+a=20

of degree at least one has a solution among the complex numbers. This fact is known as
the Fundamental Theorem of Algebra and was proved by Gauss.

||” Polar Form

We know that any complex number z = a + bi can be considered as a point (a, b) and that
any such point can be represented by polar coordinates (r, §) with r = 0. In fact,

a=rcosf =rsiné
as in Figure 4. Therefore, we have
z=a+ bi= (rcosd) + (rsin )i

Thus, we can write any complex number z in the form

z=r{cos@ + isinh)

b
where r=|z|=+a*+5b*> and tanf=—
a

The angle 6 is called the argument of z and we write 6 = arg(z). Note that arg(z) is not
unique; any two arguments of z differ by an integer multiple of 2.

EXAMPLE 4 Write the following numbers in polar form.
@ z=1+1i (b) w=+3 —i

SOLUTION
(a) Wehave r = |z| = /1> + 12 = /2 and tan 6 = 1, so we can take 6 — 7/4. There-

fore, the polar form is
z= ﬁ(cos—z— + isin%)

(b) Here we have r = |w| = /3 + | = 2 and tan § = —1/+/3. Since w lies in the
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fourth quadrant, we take # = — /6 and
w = 2| cos -z + {sin -z
6 6
The numbers z and w are shown in Figure 5. s

The polar form of complex numbers gives insight into multiplication and division. Let
z; = ri(cos B, + isin6) 7, = ry{cos @, + isin6;)
be two complex numbers written in polar form. Then

2122 = rir(cos 8; + isin 6;)(cos 6, + isin 8,)

= rir[(cos ) cos B, — sin B sin B,) + i(sin @, cos B, + cos 6; sin 6,)]

Therefore, using the addition formulas for cosine and sine, we have

[II Z1Zy = r1r2[COS(91 + 92) + isin(91 + 92)] ‘I

This formula says that to multiply two complex numbers we multiply the moduli and add

the arguments. (See Figure 6.)
A similar argument using the subtraction formulas for sine and cosine shows that to

divide two complex numbers we divide the moduli and subtract the arguments.

a Q[COS(QJ - 8,) + isin(f, — 6,)] 70
43 rn

In particular, taking z; = 1 and z; = z (and therefore 6, = 0 and 8, = 6), we have the fol-
lowing, which is illustrated in Figure 7.

J . 1 1 .
If z=r(cos0@+ isinf), then — = —(cosh — isinh).
z r

|

EXAMPLE 5 Find the product of the complex numbers 1 + i and v/3 — iin polar form.

SOLUTION From Example 4 we have

1+ i=\/§(cosg—+ isin%)

and S-i= 2[}03(—%) + isin<—%):l
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So, by Equation 1,

1+ i)(\/g - i) = 2\/5 [cos(% - %T) + isin<% — —g)]
= 2ﬂ (COS% + isin -1—7;—>
This is illustrated in Figure 8.
Repeated use of Formula 1 shows how to compute powers of a complex number. If
z=r(cos8 + isinb)
then z? = r¥cos 26 + isin 26)

and 23 =2z = r*(cos 36 + isin 36)

In general, we obtain the following result, which is named after the French mathematician
Abraham De Moivre (1667-1754).

[2] De Moivre’s Theorem If z = r(cos @ + isin6) and n is a positive integer, then

z" =[r(cos 8 + i sin §)]" = r"(cos n + i sin nb)

This says that to take the nth power of a complex number we take the nth power of the
modulus and multiply the argument by n.

EXAMPLE 6 Find (% + 3i)".
SOLUTION Since 2 + 3i = 5(1 + i), it follows from Example 4(a) that 5 + 3/ has the polar

form
V2

5 21 2 COS4 zsm4

So by De Moivre’s Theorem,

1 1 .\® NORAL 107 . 107
— + —1 =|— cCOs—— + i sin
22 2 4 4

23 5’TT+‘ . 5T 1,
= —= | cos — in— | =—
is 321

210 2 2

De Moivre’s Theorem can also be used to find the nth roots of complex numbers. An
nth root of the complex number z is a complex number w such that

w' =z
Writing these two numbers in trigonometric form as

w = s(cos ¢ + isin ¢) and z=r(cos @ + isin@)
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and using De Moivre’s Theorem, we get
s*(cosng + isinng) = r(cos @ + isinB)
The equality of these two complex numbers shows that
s"=r or s=rln
and cos n¢p = cos B and sinng = sin @

From the fact that sine and cosine have period 27 it follows that

6+ 2km
neg =0+ 2kmw or = ———
n
[/[ (0+2k77-) ,,<9+2kw)]
Thus w=r"cos| ——— ] + isinf ————
n n
Since this expression gives a different value of w fork =0, 1,2,...,n — 1, we have the

following.

[3] Roots of a Complex Number Let z = r(cos 8 + i sin #) and let n be a positive
integer. Then z has the » distinct nth roots

l/n[ (0+2k7r) . (0+2k7r)]
Wy =7T cos{ — | +isin| ——
n n

wherek=0,1,2,...,n — 1.

Notice that each of the nth roots of z has modulus |w,| = r'/". Thus, all the nth roots
of z lie on the circle of radius r'/" in the complex plane. Also, since the argument of each
successive nth root exceeds the argument of the previous root by 27/n, we see that the
nth roots of z are equally spaced on this circle.

EXAMPLE 7 Find the six sixth roots of z = —8 and graph these roots in the complex
plane.

SOLUTION In trigonometric form, z = 8(cos 7 + i sin 7). Applying Equation 3 with n = 6,
we get

16 T+ 2km T+ 2k
we = 8 cos—~6~—+zs1nT

We get the six sixth roots of —8 by taking k = 0, 1, 2, 3, 4, 5 in this formula:

3 1
wo = 8'/6(cos76T + isin1> =2 (i i —z')

6 2 2

w, = 81/6<cosg + isin §> =J2i

5 5 3 1
wy = 8”6<cos% + isin%) =2 (-i + -;z)

2
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The six sixth roots of z=—8
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7 7 3 1
ws = 8Y5{ cos — + isin— ) = /2 —i——i
6 6
3 3
wy = 81/6((;08—271 + isin—z—ﬂ-> = ~/2i

11 11 3
Ws = 81/5<COS‘?7T‘ + iSln—67I-> = \/E(I___l)

All these points lie on the circle of radius /2 as shown in Figure 9. i

||| _Compiex Exponentials

We also need to give a meaning to the expression e’ when z = x + iy is a complex num-
ber. The theory of infinite series as developed in Chapter 11 can be extended to the case
where the terms are complex numbers. Using the Taylor series for e* (11.10.11) as our
guide, we define

z" 2 7
=tz

Nk

@ et =

I

n

and it turns out that this complex exponential function has the same properties as the real
exponential function. In particular, it is true that

@ ez|+z; —_ ezlez;[
If we put z = iy, where y is a real number, in Equation 4, and use the facts that

it=—1, P=iti=—i it=1, °=|

WF | GF , @), GF

iy — ;
we get e 1+iy+ 2 + A a1 S0 +
2 3 4 5
- SRS AR T SN T
=1+1iy 0 13!+4!+15!+
2 4 6 3 5
=(1__X_+L_L+...)+i(y_L+ y _>
20 4 6! 3t sy

=cosy +isiny

Here we have used the Taylor series for cos y and sin y (Equations 11.10.16 and 11.10.15).
The result is a famous formula called Euler’s formula:

(6] e =cosy + isiny T\

Combining Euler’s formula with Equation 5, we get

et = g% = ¢*(cosy + isiny)

EXAMPLE 8 Evaluate: (a) e (b) ¢ '+
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SOLUTION
11l We could write the result of Example 8fajas ~ (a) From Euler’s equation (6) we have

e+ 1=0 em"=cosm+isinT=—1+i(0)=—1

This equation relates the five most famous num-
bers in all of mathematics: 0, 1, e, £, and ar.

(b) Using Equation 7 we get
. 1 [
e 1t = e1<cos T 4 isin —;) = ;[0 + ()] = .

2 e g

Finally, we note that Euler’s equation provides us with an easier method of proving
De Moivre’s Theorem:

[r(cos 8 + isin 0)]" = (re’®)" = r"e™® = r*(cos n6 + i sin no)

G Exercises ASSIENMENT 7). dug  dele - M“”d“ﬂ /.T\)oluJ\%l,;

714 1 Evaluate the expression and write your answer in the 30. =43~ 4i, w=28i
+ bi.
form a + bi 1 5 M 2=23-2 w=—1+i
1. (5—6i) +(3+2i) 2 (4—-3)—-0+30) Ok) 39, =45+ 0) w— -3 3
3. (2 +50)4—1i) 4. (1 — 2i)(8 — 30) B o o ° o a . ° o a .
5. 12 + 7; 6. Zi(% — ,‘) 33-36 i Find the indicated power using De Moivre’s Theorem.
L iva NERT 31+ 3 (1 VA MBS (V3 +2)f 36 (1 iy
. 3 + 2[- . 1 — 4[‘ o o o o o o a o a o Q a
1 3 37-40 i Find the indicated roots. Sketch the roots in the complex
. 10. .
9 — 04—31' plane
_— OK\ — 37. The eighth roots of | (}K) 38. The fifth roots of 32
39. The cube roots of i 40. The cube roots of 1 + i

13. /=25 4. V-34-12 e e e e e e e e e

a o a o o o o o o o

41-46 1 Write th ber in the fi + bi.
15-17 1 Find the complex conjugate and the modulus of the rie the iumber m the form ¢ '

number. 41, o™ 42, o2 43, ¢
15. 12 — 5i 16. —1 + 242 17. —4i 44, e 45, e*tm 46, o™
18. Prove the following properties of complex numbers. 47. If u(x) = f(x) + ig(x) is a complex-valued function of a real
@ztw=z+tw by zw=zuw variable x and the real and imaginary parts f(x) and g(x) are
(c) z" = z", where n is a positive integer differentiable functions of x, then the derivative of u« is defined
[Hint: Write z = a + bi,w = ¢ + di] to be u'(x) = f'(x) + ig'(x). Use this together with Equation 7

to prove that if F(x) = e”*, then F'(x) = re” when r = a + bi

i34 m Find all solutions of the equation. .
is a complex number.

19. 4x*+9=0 0. =1 48. (a) If u is a complex-valued function of a real variable, its

2. x4+ 2x+5=0 2. 2> —2x+ 1 =0 indefinite integral | u(x) dx is an antiderivative of u.

B.2+z+2=0 (')E W 22 +3z+5=0 Evaluate

. . - . > 5 A . . . 5 fe“*”" dx

“Z=2% i Write the number in polar form with argument between 0

and 2. (b) By considering the real and imaginary parts of the integral
28. 8; in part (a), evaluate the real integrals

25. —3 + 3i 26, 1 — /3i 27. 3 + 4i

‘ . f e” cos x dx and f e*sin x dx
2% # Find polar forms for zw, z/w, and 1/z by first putting z

and w into polar form. (c) Compare with the method used in Example 4 in Sec-
2. :=3+i w=1+3i tion 7.1.



