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1 Introduction

There has been considerable interest recently in hyperfields, hyperrings and
multirings. This interest derives not so much from the actual objects them-
selves as from the success achieved in using these objects to understand and
explain other objects and phenomena. Hyperfields and hyperrings arise in

∗Corresponding author: phone +48 32 359 2228, fax +48 32 258 2976
†These lecture notes were prepared for series of seminar talks that the author is to

deliver in Ostrava, Konstanz, and Chambery.

1



the study of the algebraic structure of the adèle class space of a global field
and in exploring the deeper relationship between algebraic number fields
and algebraic function fields [3], [4]. Hyperfields occur naturally in the con-
text of quadratic form theory and spaces of orderings [15], Milnor K-theory
[16], tropical geometry [24], commutative algebras over fields with semi-linear
homomorphisms, abelian groups with injective homomorphisms, as well as
non-desarguesian plane projective geometries [3], whose examples include
Moulton plane, projective planes of order 9 with 91 points and 91 lines,
Hughes plane, Moufang planes and André planes; see [25] for an extensive
survey on the topic. The latter ones fit into the propositional formulation
of quantum theory as given by Piron: if the plane is coordinated by Cayley
numbers, the units can be identified with a base of infinitesimal generators
of the Lorentz group, as shown in [23]. Multirings are considered in [15], and
spaces of signs, also known as abstract real spectra, objects which arise nat-
urally in the study of constructible sets in real geometry [1], [13], are shown
to be multirings of a particular sort.

Hyperrings and hyperfields were introduced first by Krasner [10], [11] in
connection with his work on valued fields. Multirings and multifields were
introduced later and independently in [15]. All of these objects are very
natural and very useful, although they are not at all widely known. In the
present survey we outline some of the main concepts of the theory, and in-
vite the reader to enter the fascinating world of applications of multirings,
hyperrings, and hyperfields. In Section 2 we give some basic definitions and
discuss some of the issues that arise when choosing axioms of the theory. In
Section 3 we outline the theory of hyperfield extensions and show how it is
essentially tied to projective geometry; the case of Desarguesian geometries
corresponds to hyperfield extensions of a particularly pleasant form. In Sec-
tion 4 we recall how some phenomena in quantum physics can be interpreted
through orthocomplemented lattices and, in turn, can be rephrased in the
language of hyperrings via connection between complemented modular lat-
tices and projective geometries. In Section 5 we elaborate on applications of
multivalued addition to tropical geometry. In Section 6 we give an example
of the hyperring of adele classes of a global field.
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2 Basic definitions

A multiring [15] is a system (A, +, ·,−, 0, 1) where A is a set, + is a mul-
tivalued binary operation on A, i.e., function from A × A to the set of all
subsets of A, · is a binary operation on A, − : A → A is a function, and 0, 1
are elements of A such that

I. (A, +,−, 0) is a canonical hypergroup, terminology as in [18], i.e.,

(M1) c ∈ a + b ⇒ a ∈ c + (−b),
(M2) a ∈ b + 0 iff a = b,
(M3) (a + b) + c = a + (b + c),
(M4) a + b = b + a; and

II. (A, ·, 1) is a commutative monoid, i.e.,

(M5) ab = ba,
(M6) (ab)c = a(bc),
(M7) a1 = a for all a ∈ A.

III. Moreover, we require that

(M8) a0 = 0 for all a ∈ A, and
(M9) a(b + c) ⊂ ab + ac.

A multifield is a multiring with 1 6= 0 such that every non-zero element has
a multiplicative inverse. Hyperrings and hyperfields are defined by Krasner
in [10] and [11]. A hyperring is a multiring which also satisfies the second
half of the distributive property, i.e., ab + ac ⊆ a(b + c). For a multifield,
the second half of the distributive property is automatic from the first half,
i.e., hyperfields and multifields are the same thing. Let us start with some
examples of discussed structures.

Example 1. The simplest example of a hyperfield is Q2 = {−1, 0, 1}. Here
addition and multiplication are defined in the obvious way, by interpreting 1
to mean positive, −1 to mean negative, and 0 to mean zero, i.e., 0·x = x·0 =
0, (1) · (1) = (−1) · (−1) = 1, (1) · (−1) = (−1) · (1) = −1, x+ 0 = 0 +x = x,
1 + 1 = 1, (−1) + (−1) = −1, and 1 + (−1) = (−1) + 1 = {−1, 0, 1} (since
positive plus negative is indeterminate).

There are many interesting examples of multirings which are not hy-
perrings. The real reduced multirings constructed in [15] are typically not
hyperrings. Let us have a look at a relatively obvious example.
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Example 2. Let V be an algebraic set in Rn where R is a real closed field,
and let A denote the coordinate ring of V , i.e., the ring of all polynomial
functions f : V → R. Define an equivalence relation ∼ on A by declaring
f ∼ g to mean that f, g have the same sign (+,−, or 0) at each point of V .
The set of equivalence classes is the real reduced multiring denoted by Qred(A)
in [15]. It is made into a multiring as follows: Denote the equivalence class
of f by f . Define f ∈ g + h to mean ∃ f ′, g′, h′ ∈ A such that f ′ = g′ + h′,
f ′ = f , g′ = g and h′ = h. Define gh = gh, −f = −f , 0 = 0, and 1 = 1.
The multiring Qred(A) is not a hyperring if dim(V ) ≥ 1. For example, if
V = R (so n = 1 and A is the polynomial ring R[x]), and a, b, c and d are
the classes of the polynomials x, x, 1 and x2+x3, respectively, then d ∈ ab+ac
but d /∈ a(b + c). This is because d is positive for x close to zero, x 6= 0, but
any element of a(b + c) is negative for x close to zero, x < 0. We also use
the fact that x3 and x have the same sign.

If S, T are subsets of a multiring A then S+T := the union of the sets x+y,
x ∈ S, y ∈ T , and ST := {xy | x ∈ S, y ∈ T}. Also, S−T := S+(−T ), where
−T := {−y | y ∈ T}.

∑
S denotes the union of all finite sums x1 + · · ·+ xn,

x1, . . . , xn ∈ S, n ≥ 1.
We refer the reader to [15] for basic terminology and basic facts concerning

multirings and hyperfields. We recall parts of this. A multiring homomor-
phism from A to B, where A and B are multirings, is a function f : A → B
satisfying f(a+b) ⊆ f(a)+f(b), f(ab) = f(a)f(b), f(−a) = −f(a), f(0) = 0,
and f(1) = 1. Note that in the ring case some of these axioms are conse-
quences of the other ones, for example f(0) = 0 is a consequence of f(1) = 1
and f(a + b) = f(a) + f(b), but this is no longer true in the multiring case,
as it might happen that {0} ( 1− 1. There are more interesting phenomena
concerning multiring homomorphisms – for example it is no longer equivalent
for a homomorphism to be injective and to have a zero kernel.

Example 3. Let V be an algebraic set in Rn where R is a real closed field,
let A denote the coordinate ring of V , and consider the multiring Qred(A)
defined above. The natural homomorphism A → Qred(A) given by f 7→ f
has kernel equal to {0}, but is clearly not injective, for example f 3 = f , but
rarely f 3 = f .

We say A is strongly embedded in B by a multiring homomorphism i :
A → B if i is injective and, for all a, b, c ∈ A, i(c) ∈ i(a) + i(b) ⇒ c ∈ a + b.
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This does not necessarily mean that i(A) is a submultiring of B. There is no
requirement that i(a) + i(b) is a subset of i(A)!

Ideals and multiplicative sets are defined in an obvious way. If S is a
multiplicative set in A and I is an ideal of A, then one can form the lo-
calization S−1A and the factor multiring A/I, and there are natural multi-
ring homomorphisms A → S−1A and A → A/I. The principal ideal of A
generated by x ∈ A is the set

∑
Ax := the union of all sets of the form

a1x + · · · + anx, ai ∈ A, n ≥ 1. If A is a hyperring, this coincides with the
set Ax := {ax | a ∈ A}.

We denote the hyperfield of fractions of a multidomain D by ff(D), i.e.,
ff(D) := (D\{0})−1D. It is important to realize that the natural multiring
homomorphism D → ff(D) is not injective in general:

Example 4. Let V be an algebraic set in Rn where R is a real closed field,
let A denote the coordinate ring of V , and consider the multiring Qred(A)
defined above. Assume further that V is irreducible. Then A is a domain
and D = Qred(A) is a multidomain. For example, suppose V is the elliptic
curve y2 = x(x + 1)2 in R2 . Since (x + 1)x and (x + 1)x2 have the same
sign on V , x + 1 · x = x + 1 · x2 in D. Since x + 1 6= 0 in D, this implies
x = x2 in ff(D). But x 6= x2 in D (since x and x2 have different signs at the
isolated point).

To make things more complicated, even in the case when D → ff(D)
turns out to be injective, D might not be strongly embedded into ff(D):

Example 5. In the above example take V = R (so A is the polynomial ring
R[x]). In this case the homomorphism D → ff(D) is injective. Since 1 ∈ 1+1
holds in D and x2 = 1 holds in ff(D) (since x3 = x holds in D and x 6= 0),
we see that x2 ∈ 1 + 1 holds in ff(D). But x2 ∈ 1 + 1 cannot hold in D
(because x vanishes at the origin but 1 is positive at the origin). Thus the
embedding D → ff(D) is not a strong embedding.

If S is a multiplicative subset in a multiring A, there is another construc-
tion one can perform, which we denote by A/mS and refer to as the quotient
construction [11], [15, Example 2.6]. A/mS is the set of equivalence classes
with respect to the equivalence relation ∼ on A defined by a ∼ b iff as = bt
for some s ∈ S. The operations on A/mS are the obvious ones induced by
the corresponding operations on A. Denote by a the equivalence class of a.
Then a ∈ b + c iff as ∈ bt + cu for some s, t, u ∈ S, ab = ab, −a = −a.
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Also, 0 = 0, and 1 = 1. A special case of this construction appears already
in quadratic form theory.

Example 6. Let F be a field of characteristic 6= 2, F 6= F3, F5 , and consider
the multifield Q(F ) := F/mF ∗2, where F ∗2 denotes the subgroup {a2 : a ∈
F ∗} of the multiplicative group F ∗ = F \ {0} of F . (Q(F3) and Q(F5) are
also defined, but the definition is not quite the same.) Q(F ) is nothing more
or less than the special group of F [5] (also called the quadratic form scheme
of F [14]) with zero adjoined. If ai ∈ Q(F ), ai 6= 0, i ∈ {1, ..., n}, then
a1 + +an is precisely the value set of the associated diagonal quadratic form.
If F 2 has finite index in F ∗, then Q(F ) = F ∗/F ∗2∪{0} has order 2n+1, where
2n = (F ∗ : F ∗2). The possible structures of Q(F ) (as F varies) have been
computed for n ≤ 5; see [14]. For n = 0 there is just one possibility, namely
Q1 := {0, 1} with addition and multiplication defined by x · 0 = 0 · x = 0,
1 ·1 = 1, 0+x = x+0 = x, 1+1 = {0, 1}. For n = 1 there are 3 possibilities
(the multifield Q2 defined earlier and 2 others). For n = 2 (resp., 3, 4, 5),
there are 6 (resp., 17, 51, 155) possibilities.

For a multiring A, we are interested in the set {xk | x ∈ A}, which
we denote by Ak for short, so

∑
Ak denotes the union of all finite sums

xk
1 + · · ·+ xk

n, x1, . . . , xn ∈ A, n ≥ 1. We are especially interested in the case
where k = 2ℓ.

Let A be a multiring, ℓ ≥ 1 and integer. A preordering of level ℓ of A is
a subset T of A satisfying T + T ⊆ T , TT ⊆ T and a2ℓ

∈ T for all a ∈ A.
One can readily see that a preordering of level 1 is simlply what was defined
as a preordering in [15]. We say the preordering T of A is proper if −1 /∈ T .
A T -module of A is a subset M of A satisfying M + M ⊆ M , TM ⊆ M , and
1 ∈ M .

For a prime ideal p of A, the residue hyperfield of A at p is defined
to be ff(A/p), the hyperfield of fractions of the multidomain A/p. For a
preordering T of level ℓ of A, we denote by Tp the extension of T to ff(A/p).
The preordering Tp is proper iff the prime ideal p is T -convex.

By an ordering of level ℓ of a multiring A we mean a pair (p, P ) where p

is a prime ideal of A and P is an ordering of level ℓ on ff(A/p). The prime
ideal p is called the support of (p, P ). We denote by Sperℓ(A) the set of all
orderings of level ℓ of A and by XT the set of all orderings (p, P ) of level ℓ
of A with P lying over Tp.
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3 Desarguesian geometries and hyperfield ex-

tensions

By a projective plane we mean a set, whose elements are called points, to-
gether with a family of subsets called lines, satisfying the following axioms:

(P1) Any two distinct points belong to exactly one line;
(P2) Any two distinct lines meet in exactly one point;
(P3) There exists a quadrilateral: a set of four points, no three on any

line.

Perhaps the most familiar example is the real projective plane P2(R),
whose points are the lines through the origin in Euclidean 3-space and whose
lines are planes in 3-space. Of course the projective plane P2(F ) over any field
F will also be a projective plane. The smallest projective plane is P2(F2). It
has 7 points and 7 lines, and is often called the Fano plane.

Figure 1: The Fano plane of 7 points and 7 lines

If there are exactly q+1 points on any (hence every) line, we say that the
plane has order q. A plane of order q has q2 + q +1 points, and also q2 + q +1
lines. Of course, P2(Fq) has order q. It is conjectured that the order q of a
finite projective plane must be a prime power; this is known only for q ≤ 11.
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A projective plane is the same as a 2−dimensional projective geometry.
By a d−dimensional projective geometry, we mean a set (of points) P, to-
gether with a family of subsets (lines) L satisfying the following axioms:

(PG1) Two distinct points x, y ∈ P lie on exactly one line; this line will
be denoted by L(x, y);

(PG2) If a line meets two sides of a triangle, not at their intersection,
then it also meets the third side;

(PG3) Every line contains at least 3 points;
(PG4) The set of all points is spanned by d + 1 points, and no fewer.

For reasons that will become apparent soon, we also introduce a stronger
version of the axiom (PG3):

(PG3’) Every line contains at least 4 points.

.
The feature that makes projective planes more complicated than higher

dimensional projective geometries is that Desargues Theorem need not hold.
We say that two triangles are perspective from a point P (resp., from a line
L) if their corresponding vertices are on lines through P (resp., edges meet
on L).

Theorem 7 (Desargues). Let F be any field (or division ring). Two triangles
in Pd(F ) are perspective from a point if and only if they are perspective from
a line.

A projective geometry is said to be Desarguesian if whenever two triangles
are perspective from a point, they are perspective from a line, and vice versa.
If this property fails, it is said to be non-Desarguesian. Any Desarguesian
projective geometry is just a projective space Pd(F ) over a field (or division
ring) F , a fact already known to Hilbert . If d ≥ 3, every d−dimensional
projective geometry is Desarguesian. The projective plane over Cayleys Oc-
tonions is non-Desarguesian. Every finite projective plane of order q ≤ 8 is
Desarguesian, and hence is isomorphic to the plane P2(Fq). There are three
distinct non-Desarguesian planes of order 9, each consisting of 91 points and,
consequently, 91 lines.

Automorphisms of a projective plane must preserve lines, so they are
called collineations. The collineations form a group, and the geometry of the
plane is reflected by the structure of this group.

There is a beautiful and really quite astonishing link between non-De-
sarguesian geometries and hyperfields, in particular the theory of hyperfield
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Figure 2: Desargues’ Theorem

extensions, that we shall describe now in some detail. We use the terminology
of a Q1−vector space to refer to a (commutative) hypergroup V with a
compatible action on Q1. We have the following:

Theorem 8. Let V be a Q1−vector space, let P = V \ {0}. Then there
exists a unique geometry having P as its set of points and such that the line
through two distinct points x, y ∈ P is given by

L(x, y) = x + y ∪ {x, y} (1)

This geometry, in fact, satisfies axioms (PG1), (PG2), (PG3’).
Conversely, let (P,L) be a projective geometry fulfilling the axioms (PG1),

(PG2), (PG3’). Let V = P ∪ {0} be endowed with hyperaddition having 0
as neutral element, and defined by

x + y =

{
L(x, y) \ {x, y}, if x 6= y
{0, x}, if x = y.

(2)

Then V is a Q1−vector space.

The proof is pretty straightforward and is essentially due to Prenowitz
[22] and Lyndon [12]. The theorem in the quoted form is taken from [3].
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Next result shows that hyperfield extensions of Q1 correspond precisely
to the Zweiseitiger Inzidenszgruppen (two-sided incidence groups) of [6]. In
particular, the commutative hyperfield extensions of Q1 are classified by pro-
jective geometries together with a simply transitive action by a commutative
subgroup of the collineation group. We first recall the definition of a two-
sided incidence group: let G be a group which is the set of points of a
projective geometry. Then G is called a two-sided incidence group if the left
and right translations by G are automorphisms of the geometry. We can now
state the precise relation between hyperfield extensions of Q1 and twosided
incidence groups whose projective geometry satisfies the axiom (PG3’) in
place of (PG3):

Theorem 9. Let H ⊃ Q1 be a hyperfield extension of Q1. Let (P,L) be the
associated projective geometry. Then, the multiplicative group of H endowed
with the geometry (P,L) is a two-sided incidence group fulfilling (PG3’).

Conversely, let G be a two-sided incidence group fulfil ling (PG3’). Then,
there exists a unique hyperfield extension H ⊃ Q1 such that H = G ∪ {0}.
The hyperaddition in H is defined by the rule

x + y = L(x, y) \ {x, y}, for any x 6= y ∈ P,

and the multiplication is the group law of G, extended by

0 · g = g · 0 = 0, ∀g ∈ G.

The case when underlying geometry is Desarguesian is especially impor-
tant due to the convenience in describing the structure of the hyperfield H
(see [3] and [9]):

Theorem 10. Let H ⊃ Q1 be a commutative hyperfield extension of Q1.
Assume that the geometry associated to the Q1−vector space H is Desargue-
sian and of dimension ≥ 2. Then, there exists a unique pair (K, k) of a
commutative field K and a subfield k ⊂ K such that

H = K/mk∗

4 Quantum logic and lattice theory

It is generally believed that the crucial difference between classical and quan-
tum physics can be expressed in the language of mathematical logic and lat-
tice theory. This idea was introduced in 1932 by Birkhoff and von Neumann
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and continued by Jauch and Piron. They postulated the existence of a cer-
tain non-classical logical system reflecting the nature of quantum phenomena
and called quantum logic. The physical meaning of quantum logic can be il-
lustrated on the following model. Consider a stationary beam of particles
and a class of filters which can be used to select the beam. Suppose the beam
passes through various sequences of filters and we observe the resulting sub-
beams. Assume, however, that we possess only specific detectors. They do
not yield any numerical measure of the beam intensity. They only allow the
comparison of intensities: we can observe two sub-beams and recognize the
“more intense” one. One can ask what sort of physics can be constructed on
the basis of these experiments. The answer is that we shall arrive precisely at
the “quantum logic”. First we define vacuum (absence of beam): this is the
beam of the smallest intensity possible. Next we discover the existence of the
relations of equivalence (≡), inequality (≤), and orthogonality (⊥) for some
pairs of filters. More precisely, we call two filters a and b equivalent (a ≡ b)
if the substitution of a by b (and of b by a) in any chain of filters selecting
the beam does not affect the intensity of the resulting sub-beam. For two
filters a, b we say that a is contained in b (a ≤ b) if any beam energing from
a passes through b without being partially absorbed. We call two filters a,
b orthogonal if the successive application of a and b (and b and a) produces
the vacuum. By observing the structure of the set Q of all known filters we
notice that:

(Q1) The inequality ≤ is a partial order relation in Q.
(Q2) For any a, b ∈ Q the subclass of all filters containing both a and

b contains the smallest element. We call this element the union of a and
b and we denote it by a ∨ b. Similarly, for any a, b ∈ Q the subclass of
filters contained in both a and b contains the greatest element. We call it
the intersection of a and b and we denote it by a ∧ b.

(Q3) For any a ∈ Q the subclass of all filters orthogonal to a contains the
greatest element a′. The correspondence a → a′ obeys the rules:

(a) I ′ ≡ ∅,
(b) (a′)′ ≡ a,
(c) (a ∨ b)′ ≡ a′ ∧ b′.

Points (Q1), (Q2), and (Q3) imply that the set Q with the relation ≤
and with the mapping a → a′ is an orthocomplemented lattice. Recall that an
orthocomplemented lattice is a partially ordered set (Q,≤) such that every
pair of elements a, b has a join a∨b and a meet a∧b, has the greatest element
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I and the smallest element ∅, in which every element has a distinguished com-
plement, called an orthocomplement, that behaves like the complementary
subspace of a subspace in a vector space. More precisely, a complement of a
is an element b such that a ∧ b = ∅ and a ∨ b = I. Now denote by M the
set of complements of elements of Q. M is clearly a partially ordered subset
of Q, with ≤ inherited from Q. For each a ∈ Q, let Ma ⊂ M be the set of
complements of a. Q is said to be orthocomplemented if there is a function
⊥: L → M , called an orthocomplementation, whose image is written a⊥ for
any a ∈ Q, such that:

(1) a⊥ ∈ Ma,
(2) (a⊥)⊥ = a , and
(3) ⊥ is order-reversing; that is, for any a, b ∈ Q, a ≤ b implies b⊥ ≤ a⊥.

The element a⊥ is called an orthocomplement of a (via ⊥).
Provided that the properties (Q1), (Q2), and (Q3) hold, we can introduce

the analogy between the set of filters and a logical system as follows. We call
the set Q the logic of the beam of particles. Any filter is called a proposition.
The inequality a ≤ b means “a implies b”. The operations a ∨ b, a ∧ b
and a → a are interpreted as the alternative, conjunction and negation of
the logic respectively. If the beam in question is a beam of microparticles
(such as photons) the resulting logical system is non-distributive, i. e., the
following distributive law does not hold:

a ∧ (b ∨ c) ≡ (a ∧ b) ∨ (a ∧ c) (3)

The absence of (3) implies the existence of incompatible propositions in
Q. Two propositions are called compatible if the smallest orthocomplemented
sub-lattice of Q containing both a and b is distributive, otherwise they are
called incompatible. Many authors consider the non-distributive character
of quantum logic and the existence of incompatible propositions as the most
important manifestation of the quantum nature of microphenomena. See [17]
for more details.

A lattice is called modular if the following axiom holds:

a ∨ (b ∧ c) = (a ∨ b) ∧ c

The length of a partially ordered set is defined as the least upper bound of
the lengths of the chains in Q, and denoted by l(Q). In a partially ordered
set of finite length we define the height of an element a as the least upper
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bound of lengths of the chains ∅ = a0 ≤ a1 ≤ . . . ≤ ah = a between ∅ and
a. Elements of height 1 are called points or atoms, while elements of height
2 are called lines. The following theorem establishes a link between modular
lattices and projective geometries, and is due to Birkhoff [2]

Theorem 11. There is a one-to-one correspondence between d−dimensional
projective geometries and simple complemented modular lattices of dimension
d + 1, d 6= 0. Under this correspondence, the projective geometry is the set
of points and lines of the lattice.

Here by simple lattice we understand a lattice without quotients; for
precise definitions of quotient lattices and dimensions of lattices, we refer to
Birkhoff’s book [2]. This establishes the link between quantum theory and
hyperfields via projective geometries.

5 Tropical geometry

In this section we provide a list of examples of hyperfields recently studied by
Viro in [24] that are to be applied in tropical geometry in subsequent works
by their inventor.

In the set R+ of non-negative real numbers, dene a multivalued addition
▽ by formula

a▽b = {c ∈ R+ : |ab| ≤ c ≤ a + b}.

In other words, a▽b is the set of all real numbers c such that there exists an
Euclidean triangle with sides of lengths a, b, c. The set R+ with the multi-
valued addition ▽ and usual multiplication is a hypereld. This hyperfield is
called the triangle hyperfield and denoted by △. Addition in △ is obviously
commutative. It is also associative. In order to prove this, just observe that
both (a▽b)▽c and a▽(b▽c) coincide with the set of real numbers x such that
there exists an Euclidean quadrilateral with sides of lengths a, b, c, x. The
usual multiplication is distributive over ▽. The role of zero is played by 0.
The negation a 7→ −a for ▽ is identity, as for any a ∈ R+ the only real
number x such that 0 ∈ a▽x is a. We note, however, that ▽ is not double-
distributive, that is

(a▽b)(x▽y) 6= ax▽ay▽bx▽by.
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Figure 3: Associativity of ▽

Indeed, 2▽1 = [1, 3]. Therefore (2▽1)(2▽1) = [1, 3][1, 3] = [1, 9]. On the
other hand, 2 ·2▽2 ·1▽1 ·2▽1 ·1 = 4▽2▽2▽1 contains 0, because there exists
an isosceles trapezoid with sides 4, 2, 1, and 2. In fact, 4▽2▽2▽1 = [0, 9].

Another way of defining a hyperfield in the set R+ that finds applications
in tropical geometry is the following one. Define addition by the formula

(a, b) 7→ a g b =

{
max(a, b), if a 6= b
{x ∈ R+ : x ≤ a}, if a = b

The multiplication is the usual multiplication of real numbers. As one can
easily check, this hyperfield is doubly distributive, see Section. There is also
another way to construct the same hyperfield. It is completely similar to the
construction of the triangle hyperfield △, but with the triangle inequality
in the definition of the addition replaced by the non-archimedian (or ultra-)
triangle inequality

|c| ≤ max(|a|, |b|).

This hyperfield is called the ultratriangle hyperfield and denoted by Y×
The map log : R>0 → R is naturally extended by mapping 0 to −∞. The

resulting map R+ → R ∪ {−∞} is denoted also by log. This is a bijection,
and the hyperfield structure of Y× can be transferred via log to R ∪ {−∞}.
Denote the resulting hypereld by Y, and call it the tropical hyperfield. We can
describe addition explicitly as follows: the underlying set of Y is R∪ {−∞},
the addition is

(a, b) 7→ a g b =

{
max(a, b), if a 6= b
{x ∈ Y : x ≤ a}, if a = b

the multiplication is the usual addition of real numbers extended in the ob-
vious way to −∞, the hyperfield zero is −∞, the hyperfield unity is 0 ∈ R.
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One can also transfer via the same bijection log : R+ → R ∪ {−∞} the
structure of the triangle hyperfield △ defined above to R ∪ {−∞}. The
resulting hyperfield is called the amoeba hyperfield and denoted by △log. The
addition in △log is defined by the formula

a f b = {c ∈ R : log(|ea − eb|) ≤ c ≤ log(ea + eb)},

while the multiplication in △log is the usual addition.
As the last example in this section, we shall define the complex tropical

hyperfield. The tropical sum a ⌣ b of arbitrary complex numbers a and b is
dened as follows.

(1) If |a| > |b|, then a ⌣ b = {a}.
(2) If |a| < |b|, then a ⌣ b = {b}.
(3) If |a| = |b| and a+b 6= 0, then a ⌣ b is the set of all complex numbers

which belong to the shortest arc connecting a with b on the circle of complex
numbers with the same absolute value.

(4) If a + b = 0, then a ⌣ b is the whole closed disk {c ∈ C|c| ≤ |a|}.

The tropical addition is commutative, a ⌣ b = b ⌣ a for any a, b ∈
C. This follows immediately from the denition. The zero plays the same
role of the neutral element as it plays for the usual addition: a ⌣ 0 = a
for any a ∈ C. Furthermore, for any complex number a there is a unique
b such that 0 ∈ a ⌣ b. This b is a. A straightforward proof that the
tropical addition of complex numbers is associative is elementary, but quite
cumbersome. The usual multiplication of complex numbers is distributive
over the tropical addition:

a(b ⌣ c) = ab ⌣ ac

for any complex numbers a, b and c. Indeed, all the constructions and charac-
teristics of summands involved in the denition of tropical addition are invari-
ant under multiplication by a complex number: the ratio of absolute values of
two complex numbers is preserved, an arc of a circle centered at 0 is mapped
to an arc of a circle centered at 0, a disk centered at 0 is mapped to a disk
centered at 0. Note, however, that the multiplication of complex numbers is
not doubly distributive over the tropical addition: compare (1 ⌣ i)(1 ⌣ −i)
with 1 · 1 ⌣ 1 · −i ⌣ i · 1 ⌣ i · (−i) = 1 ⌣ i ⌣ i ⌣ 1
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Figure 4: Tropical addition of complex numbers

6 Hyperring of ádele classes

Following [3] we give an example of the hyperring of adele classes used in

number theory. Let Ẑ = lim← Z/nZ be the inverse limit of the system of
rings Z/nZ, which, by the Chinese remainder theorem, is isomorphic to the
product

∏
p Z(p) of all the rings of p-adic integers:, where p ranges over the

set of prime numbers. The ring of integral ádeles AZ is then defined as the
product R× Ẑ. Now, for any algebraic number field F , the ring of ádeles AF

is defined as the tensor product

AF = F ⊗Z AZ.

The standard quotient construction can be now applied to the ring of ádeles
AF and its multiplicative subset F ∗ to obtain a hyperring HAF = AF/mF ∗

called the hyperring of ádele classes. This ring has a very good algebraic
structure, as shown in [3, Theorem 7.1]:

Theorem 12. The hyperring of ádele classes is a hyperring extension of the
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hyperfield Q1.

7 Real reduced multirings and hyperfields.

Spaces of orderings and abstract real spec-

tra

Suppose F is a real hyperfield, that is a hyperfield that admits as ordering.
For any proper preordering T of F , we can build the multield QT (F ) =
F/mT . In particular, we can build QΣF 2(F ), which we denote simply by
Qred(F ). If T1, T2 are preorderings with T1 ⊂ T2, then the multiring homo-
morphism F → QT2

(F ) factors through QT1
(F ). Consider the multield Q2

dened earlier. {0, 1} is an ordering of Q2. For any ordering P of a multield
F , QP (F ) ∼= Q2 by a unique multiring isomorphism. Orderings of a hy-
perfield F correspond bijectively to multiring homomorphisms σ : F → Q2

via P = σ−1({0, 1}). Sper(Qred(F )), the set of all orderings of the multir-
ing Qred(F ), is naturally identified with Sper(F ), the set of all orderings of
the hyperfield F . Sper(QT (F )) is naturally identied with XT , the set of all
orderings of F extending T . The following is [15, Proposition 4.1]:

Theorem 13. For a real hyperfield F the following are equivalent:

(1) The multiring homomorphism F → Qred(F ) is an isomorphism.
(2) ΣF 2 = {0, 1}.
(3) For all a ∈ F , a3 = a and, for all a ∈ F , a ∈ 1 + 1 ⇒ a = 1.

A real reduced hyperfield is dened to be a real hyperfield satisfying the
equivalent conditions of the above theorem. For any proper preordering T of a
real hyperfield F , QT (F ) is a real reduced hyperfield. In particular, Qred(F ) is
a real reduced hyperfield. If p : F1 → F2 is a multiring homomorphism of real
hyperfields, then p(ΣF 2

1 ) ⊂ ΣF 2
2 , so p induces a hyperfield homomorphism

Qred(F1) → Qred(F2). In this way, Qred denes a functor (a reection) from the
category of real hyperfields onto the subcategory of real reduced hyperfields.

Real reduced hyperfields and spaces of orderings are essentially the same
thing. If F is a real reduced multield, then the pair (Sper(F ), F ) is a space of
orderings in the terminology of [13, Section 2.1], and every space of orderings
is of this form, for some unique hyperfield F . This is clear. It follows from
the theory of spaces of orderings that nite real reduced hyperfields (more
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generally, real reduced hyperfields having finite chain length) are completely
classied recursively [13, Theorem 4.22].

We can carry over a similar construction to the case of multirings. We
assume that A is a multiring with −1 /∈ ΣA2 and T is a proper preordering
of A. Denote the image of A in QXT

2 by QT (A). One shows that QT (A)
is a multiring strongly embedded in QXT

2 . The real spectrum of QT (A) is
naturally identified with XT . We restrict our attention now to the case
where T = ΣA2 and consider the multiring homomorphism a 7→ a from A
into Q

Sper(A)
2 . We denote QΣA2(A) by Qred(A) which we refer to as the real

reduced multiring associated to A. The multirings A such that the multiring
homomorphism a 7→ a from A onto Qred(A) is an isomorphism are obviously
of special interest. One shows (compare [15, Proposition 7.5]):

Theorem 14. For a multiring A with −1 /∈ ΣA2, the map a 7→ a from A
onto Qred(A) is an isomorphism iff A satises the following three properties
(for all a, b ∈ A):

(1) a3 = a,
(2) a + ab2 = {a},
(3) a2 + b2 contains a unique element.

A multiring satisfying −1 /∈ ΣA2 and the equivalent conditions of the
above theorem will be called a real reduced multiring. Real reduced multirings
and abstract real spectra are the same thing: If A is a real reduced multiring,
then the pair (Sper(A), A) is an abstract real spectrum in the terminology
of [13, Sectio 6.1], and every space of signs is of this form.

8 Orderings of higher level in multirings and

hyperfields

One can generalize the concept of real reduced multirings and hyperfields to
ℓ−real reduced hyperfields, that is fields admitting orderings of level ℓ. As is
explained above, real reduced hyperfields correspond to spaces of orderings,
so it is natural to wonder if ℓ-real reduced hyperfields correspond to the
spaces of signatures introduced in [19], [20], [21]. This question is considered
in [7] and [8], and, so far, only partial answers to the question concerned are
known. An example can be prodeced showing that, in fact, this is not the
case, and one additional axiom, a certain symmetry property
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(∗) For all odd integers 1 ≤ k ≤ 2ℓ, a ∈ b + c ⇒ ak ∈ bk + ck,

can be considered, which is satisfied by spaces of signatures but not by general
ℓ-real reduced hyperfields. The example we mention is the following one:

Example 15. Let F = {0} ∪ {±1,±a,±a2,±a3}, where a4 = −1, with
addition defined by 1 + 1 = {1}, 1 − 1 = F , 1 + a = {1, a,−a2, a3}, 1 − a =
{1,−a}, 1 + a2 = {1,−a, a2}, 1 − a2 = {1,−a2, a3}, 1 + a3 = {1, a3},
1−a3 = {1,−a, a2,−a3}. This addition is extended to all of F in the obvious
way, i.e., r + s := r(1 + s

r
) if r, s 6= 0. Then F is a 3−real reduced hyperfield

whose ordering {0, 1} does not come from a signature.
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