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1 Introduction and background.

Quadratic forms constitute a large domain of research with roots in classical mathematics and truly
remarkable developments over the past few decades. Its origins go back to Euler and Fermat, and at
the times of Gauss there already existed a deep theory of quadratic forms with integer coefficients.
A new stimulus was provided at the beginning of the 20th century by celebrated 11th and 17th
Hilbert’s problems announced at the International Congress of Mathematicians in Paris, that were
completely resolved by Hasse, Artin and Schreier in the 1920s. Modern theory goes back to the
pioneering work of Witt [63], who introduced the notion of what is now called the Witt ring of a
field, and by Pfister [49] and Cassels [10], who identified first significant properties of Witt rings:
roughly speaking, a Witt ring encodes the theory of symmetric bilinear forms over a given field,
therefore explaining the behaviour of the orthogonal geometry build over such a field.

The main tools used to study quadratic forms in this summary are hyperfields, that is algebras
resembling fields but with addition allowed to take multiple values: the detailed definitions will be
provided below. It is difficult to point to the exact reference of who formally introduced hyperfields
to mathematics, but at least in the sense that they are used here, they appeared for the first time in
1956 in the works of Krasner [34] on approximations of valued fields. For the decades that followed,
structures with multivalued addition have been better known to computer scientists, due to their
applications to fuzzy logic, automata, cryptography, coding theory and hypergraphs (see [16], [17]
and [64]), as well as, to some extent, to mathematicians with expertise in harmonic analysis (see
[38]). Recently, the hyperstructure theory has witnessed a certain revival in connection with various
fields: in a series of papers by Connes and Consani [11], [12], [13], with applications to number
theory, incidence geometry, and geometry in characteristic one, in works by Viro [60], [59], with
applications to tropical geometry, by Izhakian and Rowen [25] and Izhakian, Knebusch and Rowen
[24], with applications to recently introduced algebraic objects such as supertropical algebras, or by
Lorscheid [39], [40] to blueprints – these are algebraic objects which aim to provide a firm algebraic
foundation to tropical geometry. Jun applied the idea of hyperstructures to generalise the definition
of valuations and developed the basic notions of algebraic geometry over hyperrings [27], [28], [29].

Very natural examples of hyperfields are also found in the algebraic theory of quadratic forms. This
was first observed by Marshall [43] – his paper, together with some open questions that it con-
tained, sparked the author’s interest in hyperalgebras and motivated much of the research discussed
here. The seven papers constituting the scientific achievement under consideration illustrate three
applications of hyperfields in quadratic forms: the papers [E1], [E2] and [E3] are concerned with
Witt equivalence of fields, the papers [O1], [O2] and [O3] with higher ordering theory and related
concepts in hyperfields and multirings, and the paper [P1] with axiomatic theories of quadratic
forms. In what follows, we shall discuss them in detail.

Let F be a field of characteristic =/2 and let V be a finitely dimensional vector space over F . A
quadratic form q on V is a function q: V → F such that the associated function bq: V × V → F
defined by

bq(u, v) =
1
2
[q(u+ v)− q(u)− q(v)]

is bilinear , i.e. linear with respect to each of the two variables, and that

q(av) = a2q(v),
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for all a ∈ F , v ∈ V . The pair (V , q) shall be then called a quadratic space and the pair (V , bq) a
bilinear space. Two vectors u, v ∈V are orthogonal if bq(u, v)= 0.

Two quadratic spaces (V1, q1) and (V2, q2) over the same field F are isometric provided there exists
an isomorphism of vector spaces φ:V1→V2 such that

q2(φ(v))= q1(v),

for all v ∈ V1, and the two quadratic forms q1 and q2 are then called equivalent , denoted q1=∼ q2.
For a quadratic form q over V elements of the set DF(q) of nonzero values of q:

DF(q)= {a∈F×| ∃v ∈V [a= q(v)]}

are said to be represented by q over F . Since q(av)=a2q(v), for a∈F , v∈V , it follows that DF(q)
consists of whole cosets of the multiplicative group F× modulo the subgroup F×2 of nonzero
squares. Therefore,DF(q) can be perceived as a subset of the group F×/F×2 of square classes of F .

For a quadratic space (V , q) the dimension of V is called the dimension of q, written dim q. If
B=(u1, ..., un) is a basis for V , the matrix B=[bq(ui, uj)]∈Fnn shall be called the matrix of q with
respect to B. If B1 and B2 are two matrices of q with respect to distinct bases B1 and B2, then B1
and B2 are necessarily congruent , i.e. B1=PB2PT , where P is a nonsingular matrix – thus, detB1
and detB2, if nonzero, lie in the same coset (detB)F×2, which is then called the determinant of q,
written det q. If detB=0 for some basis B, we take det q to be 0. A form q is nonsingular if det q=/ 0.

For every quadratic form q over a field F with charF =/ 2 there exists a basis B such that the matrix
B of q with respect to B is diagonal, that is the form q can be diagonalized . Such a B consists of
vectors that are pairwise orthogonal. One easily checks that if v = (x1, ..., xn) is a vector whose
coordinates are taken with respect to the basis B, and if a1, ..., an are the diagonal entries of the
matrix B of q with respect to B, then

q(v)= a1x1
2+ ...+ anxn

2 .

If q ′ is a quadratic form equivalent to q, q ′=∼ q, and if q ′ is diagonalized so that a1′ , ..., an′ are the
diagonal entries of the matrix B ′ of q ′ with respect to a certain basis B ′, then, as B=PB ′PT , for
some P ∈Fnn, detP =/ 0, one also readily verifies that ai and ai′ lie in the same coset modulo F×2.
For these reasons we shall identify the quadratic form q (or, for that matter, the class of quadratic
forms equivalent to q) with the formal n-tuple ⟨a1, ..., an⟩, where ai= aiF×2.

Consider a binary quadratic form q= ⟨a1, a2⟩. In view of the above,

DF(q)= {a∈F×/F×2| ∃x1, x2∈F [a= a1x1
2+ a2x2

2]},

which indicates that the multiplicative group F×/F×2 can be endowed with a certain multivalued
additive structure closely related to the theory of quadratic forms. This is, indeed, the case: if
charF =/ 2 and F =/ F3,F5, one defines

a1+ a2=DF (⟨a1, a2⟩),

for all a1, a2∈F×/F×2, and if charF =2 or F =F3 or F5, one defines

a1+ a2=

{
DF (⟨a1, a2⟩)∪ {a1, a2}, if a1=/ −a2,
F×/F×2, if a1=−a2,
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for all a1, a2 ∈ F× / F×2. Denote by Q(F ) the group F× / F×2 with the element 0 adjoined,
multivalued addition + defined as above for nonzero classes a1, a2 ∈ F× / F×2 and extended
naturally to 0 by setting 0 + a = a , and usual multiplication · extended naturally to 0 by
a ·0=0 ·a=0. It can be easily verified ([E1], Proposition 2.1) that Q(F ) with such operations has
the following properties:

(QH1). (a+ b)+ c= a+(b+ c), for all a, b, c∈Q(F );

(QH2). a+ b= b+ a, for all a, b∈Q(F );

(QH3). (a∈ b+ c)⇒ (b∈ a+(−c)), for all a, b, c∈Q(F );

(QH4). a+0= a, for all a∈Q(F );

(QH5). (Q(F ) \ {0}, ·, 1) is a commutative monoid;

(QH6). a · 0= 0, for all a∈Q(F );

(QH7). a · (b+ c)⊆ a · b+ a · b, for all a, b, c∈Q(F );

(QH8). 1=/ 0;

(QH9). every =/0 element of Q(F ) has a multiplicative inverse.

Q(F ) is then called a quadratic hyperfield of F and, as the name suggests, is a special example of
a hyperfield , that is an algebra with multivalued addition (H,+,−, ·, 0, 1), where H =/ ∅, 0, 1∈H
and +:H ×H→ 2H, −:H→H, ·:H ×H→H are functions such that

(H1). ∀a, b, c∈H [(a+ b)+ c= a+(b+ c)]; (H2). ∀a, b∈H [a+ b= b+ a];

(H3). ∀a, b, c∈H [(a∈ b+ c)⇒ (b∈ a+(−c))]; (H4). ∀a∈H [a+0= a];

(H5). (H \ {0}, ·, 1) is a commutative monoid; (H6). ∀a∈H [a · 0= 0];

(H7). ∀a, b, c∈H [a(b+ c)⊆ ab+ ac]; (H8). 0=/ 1;

(H9). ∀a∈H \ {0}∃a−1∈H [a · a−1=1].

Note that a+(b+ c)=
⋃
x∈b+ca+x. As with fields, we shall write H× to denote H \{0}. Following

[45], an algebra (H, +, −, 0) satisfying (H1) – (H4) will be called a (canonical) hypergroup, an
algebra (H, +, −, ·, 0, 1) satisfying (H1) – (H8) a multiring, and an algebra (H, +, −, ·, 0, 1)
satisfying (H1) – (H6), (H8) and

(H7’). ∀a, b, c∈H [a(b+ c)= ab+ ac]

a hyperring . Observe that, by (H7) and (H9), every hyperfield satisfies (H7’).

Hyperfields form a category with morphisms betweenH1 andH2 defined to be functions f :H1→H2

such that

(M1). ∀a, b∈H1 [f(a+ b)⊆ f(a) + f(b)],

(M2). ∀a, b∈H1 [f(ab)= f(a)f(b)],

(M3). ∀a∈H1 [f(−a)=−f(a)],

(M4). f(0)= 0,
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(M5). f(1)= 1.

Hyperfields, although at a first glance a bit exotic, are, in fact, very natural objects that surface
already in elementary school mathematics: indeed, consider the hyperfield Q2 = {−1, 0, 1} with
usual multiplication, where 0 is the neutral element of commutative addition, and

1+1= {1}, (−1)+ (−1)= {−1}, 1+ (−1)= {−1, 0,−1};

here “1” can be interpreted as positive reals, “−1” as negative reals, “0” as the number 0, and + as
an outcome of addition of two reals with possibly different signs.

With these introductory remarks and definitions out of our way, we can now proceed to discuss
the main results the papers constituting the scientific achievement indicated in this summary.

2 Hyperfields and Witt equivalence of fields.

If (V1, q1) and (V2, q2) are two quadratic spaces, then (V1⊕V2, q1⊥ q2) with

(q1⊥ q2)(v1, v2)= q1(v1)+ q2(v2)

is a quadratic space as well, called the orthogonal sum of q1 and q2. Likewise, (V1 ⊗ V2, q) is a
quadratic space called the tensor product of q1 and q2, denoted q1⊗ q2, where the associated bilinear
form bq is given by

bq(v1⊗ v2, w1⊗w2)= bq1(v1, w1) · bq2(v2, w2),

for all simple tensors v1 ⊗ v2, w1 ⊗ w2 ∈ V1 ⊗ V2. If q1 = ⟨a1, ..., an⟩ and q2 = ⟨b1, ..., bm⟩ are
diagonalized forms, then

q1⊥ q2= ⟨a1, ..., an, b1, ..., bm⟩ and q1⊗ q2= ⟨a1b1, ..., a1bm, ..., anb1, ..., anbm⟩.

Orthogonal sum and tensor product of nonsingular quadratic forms are nonsingular. A form q
is called isotropic, if, for some nonzero vector v ∈ V , q(v) = 0. A simple, yet important, example
of a nonsingular isotropic form is the hyperbolic plane, that is the 2-dimensional form whose
diagonalization is equal to ⟨1,−1⟩. If a form q is isotropic, then, for a hyperbolic form h1 and some
quadratic form q1, q=∼h1⊥ q1; proceeding by induction, we eventually arrive at a decomposition

q=∼h1⊥ ...⊥hi⊥ qa,

where h1, ..., hi are hyperbolic planes, and qa is anisotropic, i.e. not isotropic. It turns out that
the number i is uniquely defined, and the form qa is defined uniquely up to isometry – it is thus
called the anisotropic part of q. If qa=0, the form q is called hyperbolic.

Two quadratic forms q and q ′ are Witt equivalent , denoted q∼ q ′, if their anisotropic parts qa and
qa
′ are isometric, qa=∼ qa

′ . As expected, Witt equivalence is, in fact, an equivalence relation, which
turns out to be compatible with orthogonal sum and tensor product, i.e. if q∼ q ′ and r∼ r ′, then

q⊥ r∼ q ′⊥ r ′ and q⊗ r∼ q ′⊗ r ′.

If charF =/ 2, then classes of Witt equivalence of nonsingular quadratic forms over F with addition
and multiplication induced by ⊥ and ⊗ form a commutative ring with identity called Witt ring
of F and denoted by W (F ). If charF =2, a similar construction leads to the notion of Witt ring
of nonsingular symmetric bilinear forms of F , also denoted by W (F ). In this case classes of Witt
equivalence of nonsingular quadratic forms fail to form a ring, yet they form an Abelian group
denoted Wq(F ) which is a W (F )-module [6].
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A quadratic form ⟨1, a⟩, a∈F×/F×2, is called a 1-fold Pfister form, and a tensor product of n 1-
fold Pfister forms ⟨1, a1⟩ ⊗ ...⊗ ⟨1, an⟩, a1, ..., an ∈F×/F×2, is called a n-fold Pfister forms. The
Abelian group I(F ) generated by Witt equivalence classes of 1-fold Pfister forms is an ideal of the
Witt ring W (F ), called the fundamental ideal . The n-th power In(F ) of I(F ) is generated as an
Abelian group by Witt equivalence classes of n-fold Pfister forms.

We say two fields F and E are Witt equivalent , denoted F ∼E, if W (F ) and W (E) are isomorphic
as rings. We shall explain in some detail what are the implications of Witt equivalence. Firstly,
the situation where quadratic forms over two fields behave in exactly the same way is captured by
the following definition:

Definition 2.1. Two fields F and E of characteristic =/2 are said to be equivalent with respect
to quadratic forms, if there exists a pair of bijections t:F×/F×2→E×/E×2 and T :C(F )→C(E),
where C(F ) and C(E) are sets of equivalence classes of nonsingular quadratic forms over F and
E, such that the following four conditions are satisfied:

i. T (⟨a1, ..., an⟩) = ⟨t(a1), ..., t(an)⟩, for all a1, ..., an∈F×/F×2,

ii. detT (q)= t(det q), for every nonsingular quadratic form q over F,

iii. DE(T (q))= t(DF (q)), for every nonsingular quadratic form q over F,

iv. t(1)= 1 and t(−1)=−1.

The classical criterion for Witt equivalence by Harrison [23] combined together with a theorem
due to Cordes [14] gives the following result:

Theorem 2.2. For two fields F and E of characteristic =/2 the following conditions are equivalent:

1. F and E are equivalent with respect to quadratic forms,

2. there exists a group isomorphism t:F×/F×2→E×/E×2 such that t(1) = 1, and for all a,
b∈F×/F×2

1∈DF(a, b)⇔ 1∈DE(t(a), t(b)),

3. F ∼E,

4. W (F )/I3(F )=∼W (E)/I3(E).

A version of this criterion for the characteristic 2 case is due to Baeza and Moresi [6], where the
main argument relies on the observation that the Arason-Pfister Hauptsatz [2] holds in every
characteristic.

It follows that Witt equivalent fields can be understood to be fields having the same quadratic
form theory. Observe, however, that in view of what has been remarked here about quadratic
hyperfields and morphisms of hyperfields, a much simpler formulation of the Harrison-Cordes
criterion is possible ([E1], Proposition 3.2):

Theorem 2.3. Let F and E be any fields. Then F ∼E if and only if their quadratic hyperfields
Q(F ) and Q(E) are isomorphic as hyperfields.

The quadratic hyperfield Q(F ) thus encodes exactly the same information as the Witt ring W (F ).
At the same time, it appears to be a much simpler and easier object to understand.
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The problem of determining which fields are Witt equivalent turns out to be quite challenging and
manageable only when restricted to specific classes of fields and, in fact, is completely resolved only
in a few rather special cases. Trivial examples of Witt equivalence include the case of quadratically
closed fields, which are all Witt equivalent, their Witt ring being just Z/2Z, and real closed fields,
their Witt ring being Z. A slightly more involved, but still approachable by elementary methods,
is the case of finite fields, which are all either Witt equivalent to F3, if their number of elements
is ≡3mod 4, or to F5, if their number of elements is ≡1mod 4 (see, for example, [E3], Theorem
4.3). Local fields are also completely classified with respect to Witt equivalence (see [E3], Theorem
6.1, for a short proof in the non-dyadic case, and [37], Theorem VI.2.29, for the dyadic case)
with methods involved in proofs that generally do not exceed the scope of material contained in
graduate-level textbooks. The case of global fields is much more involved. Since completions of
global fields at their primes are local fields, Witt equivalence of completions of global fields is well-
understood. Witt equivalence of global fields was completely resolved by a remarkable local-global
principle, whose three different proofs were given by Perlis, Szymiczek, Conner, Litherland [48],
and Szymiczek [56], [57], which states that two global fields of characteristic =/2 are Witt equivalent
if and only if their primes can be paired so that corresponding completions are Witt equivalent.
Moreover, Baeza and Moresi [6] showed that any two global fields of characteristic 2 are Witt
equivalent, and it is not difficult to see that a global field of characteristic 2 is never Witt equivalent
to a global field of characteristic different from 2. As a consequence of the local-global principle,
it is also possible to provide a complete list of invariants of Witt equivalence for number fields, as
shown by Carpenter [8]. Finally, as global fields are either number fields or function fields over finite
fields in one variable, in recent years a considerable effort has been made in order to investigate if
methods for global fields can be applied to study Witt equivalence of general function fields. The
case of function fields in one variable over algebraically closed fields is rather easy (see, for example,
[E3], Theorem 9.1), and the case of algebraic function fields in one variable over a real closed field
has been relatively recently resolved by Koprowski [33] and Grenier-Boley with Hoffmann [22]. As
the next three pieces of puzzless, and somewhat motivated by the author reviewing the paper [22]
for Zentralblatt, he and Murray Marshall embarked on the project of investigating function fields
over local and global fields, which, so far, resulted in publishing the three papers [E1], [E2] and
[E3] (unfortunately, already after the second author passing in 2015). We shall now discuss their
content in some detail.

2.1 The paper [E1].
This is the opening paper in the whole sequence that contains most of the theory and techniques
developed, and for that reason will be discussed here most thoroughly. For a field F we adopt
the standard notation from valuation theory: if v is a valuation on F , Γv denotes the value group,
Av the valuation ring, Mv the maximal ideal, Uv the unit group, Fv the residue field, and π=πv:
Av→Fv the canonical homomorphism, i.e., π(a)= a+Mv. We say v is discrete rank one if Γv=∼Z.
Next, recall that an ordering of a field F is a subset P of F× such that F× = P ∪̇ −P (disjoint
union), P ·P ⊆P , P +P ⊆P , where −P ={−a|a∈P }. If P is an ordering of F then F×2⊆P and
P is a subgroup of F×. Orderings of a field F with charF =/ 2 are in bijective correspondence with
hyperfield morphisms Q(F )→Q2 (recall that Q2 denotes the three-element hyperfield mentioned
earlier), and hence orderings of two Witt equivalent fields are in bijective correspondence as well
(see [E3], Theorem 7.1, for an easy proof of this generally well-known fact).

Unfortunately, this is not the case for valuations: although true for particular kinds of fields,
including global fields of of characteristic =/2, simple counterexamples can be produced at hand
(see, for example, [E3], Example 7.3). The main result of [E1] is an extension of the local-global
principle by Perlis, Szymiczek, Conner and Litherland (see [E1], Theorem 7.5) stating, that if
function fields F and E over global fields are Witt equivalent, then the corresponding isomorphism
of quadratic hyperfields Q(F ) and Q(E) induces, in a canonical way, a bijection between the
Abhyankar valuations of F and E, whose residue fields are neither finite, nor of characteristic 2.
Recall that if F is a function field over k and v is a valuation on F , the Abhyankar inequality
asserts that

trdeg (F : k)≥ rkQ(Γv/Γv |k)+ trdeg (Fv: kv|k)
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where v |k denotes the restriction of v to k. For any abelian group Γ, rkQ(Γ) :=dimQ(Γ⊗ZQ). We
will say the valuation v is Abhyankar (relative to k) if ≥ in the Abhyankar inequality is replaced
with =. In this case it is well known that Γv/Γv|k=∼Z× ...×Z (with rkQ(Γv/Γv|k) factors) and Fv
is a function field over kv|k. Moreover, if v is Abhyankar (relative to k) then Γv=∼Z× ...×Z (with
rkQ(Γv) factors) and Fv is either a function field over a global field or a finite field.

The exact formulation of [E1], Theorem 7.5, and, in particular, the precise explanation of how the
abovementioned canonical correspondence is built, involves quite a number of technicalities that
are probably too meticulous to include in this summary: these are extensively discussed in [E1].
The main tool used in the proof is a combination of [E1], Propositions 4.1 – 4.3, which are suitably
built generalizations to hyperfields of a classical theorem by Springer [53], and [E1], Proposition
4.6, which, in turn, is a carefully designed generalization of a method of constructing valuations
from certain subgroups of the multiplicative group of a field that is due to Arason, Elman and
Jacob ([1], Theorem 2.16).

Although, at a first glance, [E1], Theorem 7.5 may seem rather weak, as it only provides a necessary
condition for Witt equivalence, it is a surprisingly useful result due to its applications. For any
field F , we define the nominal transcendence degree of F by

ntd(F )=
{

trdeg(F :Q), if charF =0,
trdeg(F :Fp)− 1, if charF = p.

Let F be a function field in n variables over a global field. For 0≤ i≤n denote by νF ,i the set of
Abyankar valuations v on F with ntd(Fv) = i. Observe that

νF ,i= νF ,i,0 ∪̇ νF ,i,1 ∪̇ νF ,i,2,

where

1. νF ,i,0 is the set of valuations of νF ,i such that charFv=0,

2. νF ,i,1 is the set of valuations of νF ,i such that charFv=/ 0, 2,

3. νF ,i,0 is the set of valuations of νF ,i such that charFv=2.

Of course, some of the sets νF ,i,j may be empty. Specifically, if char(F )= p for some odd prime p
then νF ,i,j= ∅ for j ∈ {0, 2}, and if char(F )= 2 then νF ,i,j= ∅ for j ∈ {0, 1}. The correspondence
of [E1], Theorem 7.5 preserves the sets νF ,i,j. To be more specific, one has the following:

Theorem 2.4. ([E1], Corollary 8.1) Suppose F, E are function fields in n variables over global
fields which are Witt equivalent via a hyperfield isomorphism α: Q(F ) → Q(E). Then for each
i∈ {0, 1, ..., n} and each j ∈ {0, 1, 2} there is a uniquely defined bijection between νF ,i,j and νE,i,j
such that, if v↔w under this bijection, then α maps (1+Mv)F×2/F×2 onto (1+Mw)E×2/E×2

and UvF×2/F×2 onto UwE×2/E×2.

In particular, considering the bijection between νF ,0,0 and νE,0,0 yields the following result:

Theorem 2.5. ([E1], Corollary 8.2) Let F ∼E be function fields over number fields, with fields
of constants k and ℓ respectively. If there exists v ∈ νF ,0,0 with Fv= k and w ∈ νE,0,0 with Ew= ℓ
then k∼ ℓ.

Combining Theorem 2.5 with some standard arguments from algebraic geometry, one can show,
in particular, that if F and E are algebraic function fields with global fields of constants k and ℓ
of characteristic =/2 such that F and E have no rational points, then F ∼E implies k∼ ℓ.
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The correspondence of [E1], Theorem 7.5 also yields some interesting quantitive results. If k is
a number field, every ordering of k is archimedean, i.e., corresponds to a real embedding k ↪→R.
Let r1 be the number of real embeddings of k, and r2 the number of conjugate pairs of complex
embeddings of k. Thus [k:Q] = r1+2 r2. Let

Vk= {r ∈ k×| (r) = a2 for some fractional ideal a of k}.

Clearly Vk is a subgroup of k× and k×2 ⊆ Vk. In this case the local-global principle for function
fields over global fields can be improved in the following sense:

Theorem 2.6. ([E1], Theorem 8.6) Suppose F = k(x1, ..., xn) and E = ℓ(x1, ..., xn) where n≥ 1
and k and ℓ are number fields, and α:Q(E)→Q(F ) is a hyperfield isomorphism. Then

(1) r∈ k×/k×2 iff α(r)∈ ℓ×/ℓ×2.

(2) The map r 6→α(r) defines a hyperfield isomorphism between Q(k) and Q(ℓ).

(3) α maps Vk/k×2 to Vℓ/ℓ×2.

(4)The 2-ranks of the ideal class groups of k and ℓ are equal.

If ℓ is a number field, [ℓ: Q] even, and ℓ =/ Q( −1
√

), then, for each integer t ≥ 1, there exists a
number field k such that k∼ ℓ and the 2-rank of the class group of k is ≥t [58]. Combining this
with Theorem 2.6 yields the following:

Corollary 2.7. ([E1], Corollary 8.8) For a fixed number n≥ 1 and a fixed number field ℓ, [ℓ:Q]
even, ℓ=/ Q( −1

√
), there are infinitely many Witt inequivalent fields of the form k(x1, ..., xn), k a

number field with k∼ ℓ.

The case when [ℓ:Q] is odd remains open. Likewise, it is not known, if, for arbitrary fields F and
E, F (x)∼E(x) implies F ∼E, or if the assumption in Theorem 2.6 that F is purely transcendental
over k is really necessary. Attempts to answer these questions are in the scope of interests of the
author.

2.2 The paper [E2].

In this work the authors extend the results of [E1] to function fields of curves defined over local
fields. The main result of this article is a local counterpart of Theorem 2.4, which states that Witt
equivalence of two function fields in one variable over local fields of characteristic =/2 induces a
canonical bijection between certain subsets of Abhyankar valuations of the corresponding fields.

More specifically, let F be any field, and let T be a subgroup of F×. Adopting the well-known
terminology from the algebraic theory of quadratic forms, we say that x∈F× is T-rigid if T +T x⊆
T ∪Tx, and denoting by

B(T )= {x∈F×| either x or−x is notT − rigid}

we will refer to the elements of B(T ) as to the T-basic elements. If ±T =B(T ), and either −1∈T
or T is additively closed, we shall say that the subgroup T is exceptional .

Let F be a function field in one variable over a local field k of characteristic =/2. Let

1. µF ,0 be the set of valuations v of F such that (F×: Uv F×2) = 2, 23 ≤ (Uv F×2: (1 +
Mv)F×2)<∞ and B ((1+Mv)F×2)=UvF×2,

2. µF ,1 be the set of valuations v on F such that (F×:Uv F×2)=2, (Uv F×2: (1+Mv) F×2)=∞
and B ((1+Mv)F×2)=UvF×2,

10



3. µF ,2 be the set of valuations v on F such that (F×:UvF×2)=4, (UvF×2: (1+Mv)F×2)=2
and B ((1+Mv)F×2)=UvF×2,

4. µF ,3 be the set of valuations v on F such that (F×:UvF×2)=4, (UvF×2: (1+Mv)F×2)=2
and B ((1+Mv)F×2)= (1+Mv)F×2.

Of course, some of the sets µF ,i may be empty. Specifically, µF ,0=/ ∅ iff k is dyadic, µF ,1=/ ∅ iff k
is p-adic, µF ,2∪ µF ,3=/ ∅ iff k is p-adic, p=/ 2. Observe that

µF ,0∪ µF ,1∪ µF ,2∪ µF ,3

is the set of all Abhyankar valuations of F over k. With these remarks and notation out of our
way, we are in position to state the following:

Theorem 2.8. ([E2], Theorem 3.5) Suppose F, E are function fields in one variable over local
fields of characteristic =/2 which are Witt equivalent via a hyperfield isomorphism α:Q(F )→Q(E).
Then for each i∈ {0, 1, 2, 3} there is a uniquely defined bijection between µF ,i and µE,i such that,
if v ↔ w under this bijection, then α maps (1 + Mv) F×2 /F×2 onto (1 + Mw) E×2 /E×2 and
Uv F×2/F×2 onto Uw E×2/E×2 for i ∈ {0, 1, 2} and such that α maps (1 +Mv) F×2/F×2 onto
(1+Mw)E×2/E×2 for i=3.

Contrary to the intuition that one might have developed based on the necessary and sufficient
conditions for Witt equivalence of local and global fields, the case of function fields of curves over
local fields is in no way easier to settle than the case of function fields of curves over global fields.

Theorem 2.8 is then applied to show that, under certain assumptions, Witt equivalence of two
function fields of curves over local fields k and ℓ implies Witt equivalence of k and ℓ. This extends
Theorem 2.5 to the local case. More specifically:

Theorem 2.9. ([E2], Theorem 3.6) Let F ∼E be function fields in one variable over local fields
of constants k and ℓ, respectively. Then k∼ ℓ except possibly when k, ℓ are both dyadic local fields.
In the latter case if there exists v ∈ µF ,0 with Fv= k and w ∈ µE,0 with Ew= ℓ then k∼ ℓ.

Note that the abovestated theorem provides a partial answer to one of the open problems of [E1].

2.3 The paper [E3].

The paper [E3], despite its title, not only surveys the results of [E1], [E2] and [21], but foremostly
provides new shorter proofs of some classical theorems of the quadratic form theory obtained using
the hyperfield approach. This, by the way, illustrates the strength of the new approach. However,
the main reason it appears as one of the publications constituting the scientific achievement of the
author is that it outlines the work of [21], which, at the time of preparing this summary, was still
under review. Therefore, mostly the results of [E3] quoting [21] will be discussed here.

Namely, we deal with Witt equivalence of function fields of conic sections over a field k, chark=/ 2.
These are of the form ka,b, where ka,b denotes the quotient field of the ring k[x, y]/(ax2+ by2−1).
A slightly more detailed version of Theorem 2.6, tailored for the specific case of function fields of
conic sections, can be proven in the following form:

Theorem 2.10. ([E3], Theorem 10.3, or [ 21], Theorem 4.4) Suppose F and E are function
fields of genus zero curves over number fields with fields of constants k and ℓ respectively, and α:
Q(F )→Q(E) is a hyperfield isomorphism. Then

1. r ∈ k∗/k∗2 iff α(r)∈ ℓ∗/ℓ∗2;
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2. α induces a bijection between orderings P of k which extend to F and orderings Q of ℓ which
extend to E via P↔Q iff α maps P ∗/k∗2 to Q∗/ℓ∗2;

3. α maps Vk/k∗2 to Vℓ/ℓ∗2;

4. [k:Q] = [ℓ:Q];

5. F is purely transcendental over k iff E is purely transcendental over ℓ. In this case, the map
r 6→ α(r) defines a hyperfield isomorphism between Q(k) and Q(ℓ), and the 2-ranks of the
ideal class groups of k and ℓ are equal.

In the spirit of Corollary 2.7, we are interested in learning if there are infinitely many Witt
inequivalent fields of the form ka,b, where k is a number field. Combining Theorem 2.10 with some
classical arguments from number theory, as well as old results that were known already to Witt,
one gets the following:

Theorem 2.11. ([E3], Theorem 10.5, or [ 21], Theorem 4.7) Let k be a number field, r the number
of orderings of k, w the number of Witt inequivalent fields of the form ka,b, a, b∈ k×. Then

w≥

⎧
⎨

⎩

2, if− 1∈Dk(⟨1, 1⟩),
3, if− 1∈/Dk(⟨1, 1⟩) and k is not formally real,
r+3, if k is formally real.

Likewise, motivated by Theorem 2.5, we would like to learn when ka,b∼ ℓc,d implies k∼ ℓ. With
this regard, we are able to establish the following:

Theorem 2.12. ([E3], Theorem 10.6, or [ 21], Proposition 4.9) Suppose α: Q(Qa,b)→ Q(Qc,d)
is a hyperfield isomorphism. Then, for each prime integer p, α(p)=±q for some prime integer q,
and p=2 ⇒ q=2.

In fact, using the results obtained for function fields over local fields, one is able to obtain slightly
more general results:

Theorem 2.13. ([E3], Theorem 10.9, or [ 21], Theorem 4.12) Suppose k, ℓ are local fields of
characteristic =/2, a, b∈ k∗, c, d∈ ℓ∗. Then ka,b∼ ℓc,d ⇒ k∼ ℓ.

Theorem 2.14. ([E3], Theorem 10.10, or [ 21], Theorem 4.13) Suppose k is a local field of
characteristic =/2, a, b, c, d∈ k∗. Then ka,b∼ kc,d ⇒ (a, b

k
)= (c, d

k
) except possibly in the case when

k is p-adic of level 1, for some odd prime p.

Questions pertaining to Witt equivalence of fields are still vastly open and are definitely in the
author’s scope of currect scientific interests. In addition to some of the problems mentioned in
the above discussion, the author is currently working on extending the results of [E3] and [21]
from function fields of genus 0 curves to function fields of elliptic curves – due to their elegant, yet
complicated, arithmetic, this is a challenging and highly motivating undertaking. It is believed
that the use of hyperfields might prove fruitful in settling these questions.

Likewise, no non-trivial examples of two fields, one of characteristic 2 and another of characteristic
=/2, that are Witt equivalent are known as of today. The generalizations of Springer theorem
obtained in [E1] seem to provide a simple way of describing information contained Witt rings of
fields of iterated power series in characteristic =/2. The author believes that similar methods might
be developed for characteristic 2 case, conciveably providing the examples in question.
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Finally, it would be desirable to find not only necessary, but also sufficient conditions for Witt
equivalence of function fields over global and local fields. This seems to be a tremendously hard
problem, but the author believes that it might be possible to be settled for weaker forms of Witt
equivalence such as symbol equivalence between fields. As the first step towards achieving this
goal, the author would like to provide a hyperfield-theoretic characterization of symbol equivalence.

3 Multirings, hyperfields and orderings of higher level.

The celebrated Hilbert’s 17th Problem asked whether a polynomial in n variables with coefficients
in R that is nonnegative on Rn is necessarily a sum of squares of rational functions in n variables
with coefficients in R. A complete solution of this question due to Artin and Schreier [3] laid
foundations for what is now called real algebra, and their groundbreaking results have been gen-
eralized in a plethora of directions. We recall some basic terminology: for a field F , charF =/ 2, a
preordering is a subset T of F satisfying

T +T ⊆T , TT ⊆T , and a2∈T for all a∈F.

Let
∑

F 2 denote the set consisting of all finite sums
∑

ai
2, ai ∈ F . It is the unique smallest

preordering of F . A preordering T is proper , if −1 ∈/ T . An ordering of F is a subset P of F
satisfying

P +P ⊆P , PP ⊆P , P ∪−P =F , andP ∩−P = {0}.

Every ordering is a preordering. A field is called formally real if −1∈/
∑
F 2. The fundamental facts

of the classical theory of ordered fields can be summarized as follows:

1. if T is a proper preordering, a∈/ T , and P is a preordering maximal subject to the conditions
that T ⊆P and a∈/ P , then P is an ordering; the set of all orderings containing a preordering
T will be denoted by XT , and the setX∑F 2 of all orderings of F will be denoted by XF ;

2. for every proper preordering T , one has T =
⋂
P ∈XTP ;

3. a field F is formally real ⇔ F admits a proper preordering ⇔ F admits an ordering.

Corresponding notions to preorderings and orderings exist also for commutative rings with 1 such
that 2 is a unit (that, from now on, will be just called rings). Let A be such a ring. Preorderings
in A are defined exactly in the same way as for fields, i.e. as subsets T of A such that

T +T ⊆T , TT ⊆T , and a2∈T for all a∈A,

and orderings are subsets P of A such that

P +P ⊆P , PP ⊆P , P ∪−P =F , andP ∩−P is a prime ideal inA called the support of P .

Formally real rings are defined just like formally real fields, and the properties 1. – 3. of preorderings
and orderings of fields carry over to rings. The set of all orderings of a ring A is called the real
spectrum of A and denoted by Sper(A), and the set of all orderings of A containing a preordering
T is denoted by SperT(A). For an element a ∈A, the sign function sgna: Sper(A)→ {−1, 0, 1} is
defined by

sgna(P )=

⎧
⎨

⎩

1, if a∈/ −P ,
0, if a∈P ∩−P ,
−1, if a∈/ P .
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An abstract generalization of Hilbert’s 17th Problem, commonly known as Positivstellensatz , can
be now formulated as follows (see, for example, [44], Theorem 2.5.2):

Theorem 3.1. Let A be a commutative ring with 1 and invertible 2, let T be a preordering of A,
and let a∈A. Then

sgna(P )≥ 0, for all P ∈ SperT(A)⇔ pa= a2m+ q, for some p, q ∈A,m∈N.

As previously remarked, preorderings and orderings have been generalized in numerous direc-
tions. We shall focus on one of them, namely preorderings and orderings of higher level, that are
essentially due to Becker [7]. Here, sums of squares are replaced by sums of 2n-th powers: more
specifically, a preordering of level n is a subset T of F such that:

T +T ⊆T , TT ⊆T , and a2n∈T for all a∈F ,

and an ordering of level n is a subset P of F such that

P +P ⊆P , P× is a subgroup of F×, P ∪−P =F , and F×/P× is cyclic with |F×/P×| | 2n.

If |F×/P×|=2n, we say that P is of exact level n. Likewise, an n-formally real field is one where
−1 is not a sum of 2n-th powers. The fundamental properties 1. – 3. of preorderings and orderings
carry to preorderings and orderings of level n, and, readily, the theory of orderings of level n with
n=1 yields the usual theory of orderings.

Preorderings and orderings of level n can be also defined for rings. The definitions of a preordering
of level n for rings and n-formally real rings coincide with the ones for fields, whereas an ordering
of level n in a ring A is a subset P ⊆A such that

i. P +P ⊆P , PP ⊆P , and a2n∈P for all a∈A,

ii. P ∩−P = p is a prime ideal of A,

iii. if ab2n∈P , then a∈P or b∈P ,

iv. the set

P =

{
∑

i=1

k

ai
2npi| a1, ..., ak∈ k(p), p1, ..., pk∈P , k ∈N

}

is an ordering of level n in the field of fractions k(p) of the ring A/p. Here pi= pi+p∈A/p,
i∈ {1, ..., k}.

The corresponding properties 1. – 3. for preorderings and orderings of level n, as well as a Posi-
tivstellensatz, can be established in this setting.

The theory of orderings is strongly related to the theory of quadratic forms due to the role played
by sums of squares in both theories. The latter one, as we have already seen, is closely tied
with hyperfields. It is thus natural to ask, if preorderings and orderings can be introduced to
hyperfields, multirings and hyperrings, and, in particular, if the properties 1. – 3., as well as the
Positivstellensatz, have their counterparts in such a conceivable theory. This is, indeed, the case,
and has been done by Marshall in [43]. In the concluding remarks of his paper it is suggested that
it would be desirable to construct a theory of orderings of level n parallel to the one by Becker [7]
for algebras with multivalued addition. This suggestion motivated a project that resulted in papers
[O1]–[O3]. We shall now discuss them in some detail.
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3.1 The paper [O1].

This is the opening paper for the whole sequence, where key definitions are introduced along with
basic theorems that correspond to the properties 1. – 3. and the Positivstellensatz discussed above.
The terminology used in the paper has slightly changed since the time of its publication, and here
we shall stick to the one used nowadays: in particular, what is called a multifield in [O1], is now a
hyperfield. The definitions of preorderings and orderings of level n for hyperfields and multirings
follow closely the ones for fields and rings: if H is a hyperfield, a preordering of level n is a subset
T of H such that

T +T ⊆T , TT ⊆T , and a2n∈T for all a∈H,

which is proper if −1∈/ T , an ordering of level n is a subset P of H such that

P +P ⊆P , P× is a subgroup of H×, P ∪−P =H, and H×/P× is cyclic with |H×/P×| | 2n,

which is of exact level n if |F×/P×|=2n, and a hyperfield is n-formally real when −1 is not in a
sum of 2n-th powers. The following two results corresponding to the properties 1. – 3. are given:

Theorem 3.2. ([O1], Theorem 1) Let H be a hyperfield. The following conditions are equivalent:

1. H is formally n− real,

2. H admits an ordering of level n,

3. H admits a proper preordering of level n.

Theorem 3.3. ([O1], Theorem 2) Let H be a hyperfield, T ⊂H a preordering of level n. If T is
proper, then T =

⋂
P∈XTP.

The proofs of the abovestated theorems are modifications of the proofs available in the field case.
The main obstacle in “translating” these results was that in the field case always 1−1=0, whereas
for hyperfields all that we know is 0 ∈ 1− 1: however, at least in the above two theorems, it was
always possible to find a path circumventing this inconvenience.

It begins, however, to be a more serious problem when it comes to considering multirings: the
comonly used in the ring case assumption that 2=1+1 is invertible does not make sense here, as
now 1+1 is a set. Nevertheless, the definitions of preorderings and orderings of level n for multirings
can be stated in, more or less, the same form as for rings: a multiring is n-formally real when −1
is not in a sum of 2n-th powers, a preordering of level n of a multiring A is a subset T of A such that

T +T ⊆T , TT ⊆T , and a2n∈T for all a∈A,

which is proper if −1∈/ T , an ordering of level n of a multiring A is a subset P of A such that

i. P +P ⊆P , PP ⊆P , and a2n∈P for all a∈A,

ii. P ∩−P = p is a prime ideal of A,

iii. if ab2n∈P , then a∈P or b∈P ,

iv. the set

P =
⋃
{a12

n
p1+ ...+ ak

2npk| a1, ..., ak∈ k(p), p1, ..., pk∈P , k ∈N}
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is an ordering of level n in the hyperfield of fractions k(p) of the multiring A/p.

Here pi = pi + p ∈ A / p, i ∈ {1, ..., k}, and the notions of ideals, prime ideals, quotients and
hyperfields of fractions are defined just like for usual rings, but not without certain setbacks: for
example, the canonical morphism from a multiring to its hyperfield of fractions a 6→ a

1
need not be

injective.

As notions corresponding to the properties 1. – 3. and the Positivstellensatz above, we have the
following two results:

Theorem 3.4. ([O1], Theorem 4) Let A be a multiring. The following conditions are equivalent:

1. A is formally n− real with A=ΣA2
n−ΣA2n,

2. A admits an ordering P of level n such that A=P −P,

3. A admits a proper preordering T of level n such that A=T −T.

Theorem 3.5. ([O1], Theorem 5) Let A be a multiring, T ⊂A a preordering of level n. If T is
proper and such that A=T −T, then the following conditions are equivalent:

1. a∈
⋂
P∈XTP,

2. a t∈ a2nk+ t′, for some t, t′∈T, k ∈N.

Unfortunately, the author was only able to prove the abovestated theorems under the additional
assumption that the proper preorderings T under consideration also satisfied the condition A =
T − T . In the ring case, A= T − T can be easily shown to be equivalent to T being proper, and
the proof uses the following arithmetical identity (see [26], Théoréme 8.2.2):

k!x=
∑

h=0

k−1

(−1)k−1−h
(
k− 1
h

)
[(x+h)k−hk],

which, clearly, does not hold for multirings, thus disables us from transfering the argument from
the ring case to the multiring one.

3.2 The paper [O2].

Unsatisfactory results of the second half of [O1] motivated the author to seek for possible ways
of eliminating the additional assumption T − T = A in Theorems 3.4 and 3.5. This issue was
successfully resolved jointly with Marshall in the paper [O2]. For a multiring (or a hyperfield) the
characteristic is the least n such that 0∈ 1+ ...+1︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

n

, or 0 if no such n exists. The authors managed

to establish the following:

Theorem 3.6. ([O2], Theorems 3.2 and 3.5)

1. Let H be a hyperfield, charH =0, let n≥ 0. Then H =
∑
H2n−

∑
H2n.

2. Let A be a multiring such that for each maximal ideal m of A and each s∈A \m

( ⋃

k≥2
s+ ...+ s︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

k

)
∩m= ∅,
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let n≥ 0. Then A=
∑
A2

n−
∑
A2

n.

The proof is complicated and entirely independent of the field/ring case, but follows a usual routine
commonly found in number-theoretical considerations of first establishing the result for hyperfields,
then for local multirings, and eventually proceeding to the general case. It is expected that the
assumption that charH =0 can be weakened.

For a preordering T of level n a T −module is a subset M ⊂A such that

M +M ⊆M,TM ⊆M, 1∈M.

If, in addition, −1∈/ M , we call M a proper T −module. As an intermediate step in proving the
Positivstellensatz one first shows that a T -moduleM maximal subject to the condition that −1∈/M
satisfies M ∪−M =A. This was done in [O1] under the assumption that A=T −T , and in [O2]
the authors manages to prove the following:

Theorem 3.7. ([O2], Theorem 5.2) Suppose A is a multiring, T is a proper preordering of A of
level n, and M is a T-module of A which is maximal subject to −1∈/M. Then M ∩−M is a prime
ideal of A and M ∪−M =A.

Using this result, it is possible to provide a Positivstellensatz without the extra assumption of
Theorem 3.5 in the following form: for a preordering T of level n of A, we define an equivalence
relation ∼ on A, called T-equivalence, by

a∼ b⇔ for every P ∈XT with p=P ∩−P either a, b∈P or a, b∈/ P and a+ p
b+ p

∈P ,

where P is the induced ordering of the hyperfield k(p). We denote the equivalence class of a by ā,
so ā= b̄ iff a∼ b. We refer to ā as the sign of a on XT . Write ā= 0 (resp., ā≥ 0, resp., ā > 0) at
(p,P) to mean that the image of a in ff(A/p) is zero, resp., in P , resp., in P but not zero.

Theorem 3.8. ([O2], Corollary 7.3)

1. ā=0 on XT iff −a2ℓk∈T for some k ≥ 0.

2. ā > 0 on XT iff −1∈T −
∑
A2

ℓ
a.

3. ā≥ 0 on XT iff −a2ℓk∈T −
∑
A2

ℓ
a for some k≥ 0.

4. Fix a∈ b2ℓ+ c2
ℓ. Then b̄= c̄ on XT iff −a2ℓk∈T −

∑
A2

ℓ
b c2

ℓ−1 for some k ≥ 0.

In addition to the above, more properties for orderings of higher level are settled in [O2]. Firstly,
the authors explain how results concerning real ideals extend to real ideals of higher level in
multirings ([O2], Propositions 8.1 – 8.5). Secondly, the authors construct a functor (a reflection)

A!Qn−red(A)

from the category of multirings A satisfying −1∈/
∑

A2
n onto a certain (full) subcategory, called

the category of n-real reduced multirings, and characterize n-real reduced multirings as non-zero
multirings satisfying the following simple axioms:

1. a2n+1= a,

2. a+ a b2
n
= {a},
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3. a2n+ b2
n contains a unique element.

In fact, a little bit more is achieved and the authors construct an n-real reduced multiring QT(A)
for each proper preordering T of level n of A, and Qn−red(A) is the multiring obtained from this
construction when T =

∑
A2

n ([O2], Theorem 9.7). Again, the argument is quite involved and
relies heavily on Theorem 3.7. For a hyperfield satisfying axiom 1., it may me proven that axioms
2. and 3. reduce to the single axiom

4. 1+1= {1}

([O2], Proposition 9.2). As is explained in [43], 1-real reduced hyperfields correspond to spaces
of orderings (which will be discussed later in this summary), so it is natural to wonder if n-real
reduced hyperfields correspond to the spaces of signatures introduced in [46], [50], [51]. The authors
produce an example showing that, in fact, this is not the case, and mention one additional axiom,
a certain symmetry property:

for all odd integers 1≤ k ≤ 2n, a∈ b+ c⇒ ak∈ bk+ ck,

which is satisfied by spaces of signatures but is not true for general n-real reduced hyperfields
([O2], Example 10.3 and Proposition 10.4).

3.3 The paper [O3].

The last paper in the sequence deals with the notion of root selections, that is somewhat tangential
to preorderings and orderings. Taking into consideration the multiplicative group F×2 of squares of
F , it is somewhat natural to ask when it is possible to define a square root function that behaves
reasonably well, that is which is a homomorphism φ: F×2 → F× which maps a square c2 to c
multiplied by a “sign”, that is such that φ(c2)=ω c, where ω2=1. This question was first addressed
by Waterhouse in [62] and it turns out that the existence of such a homomorphism is closely related
to the existence of orderings. Firstly, a homomorphism φ:F×2→F× such that φ(c2)=ω c, where
ω2=1, exists if and only if there is a subgroup R of F× called root selection such that every element
of F× can be uniquely represented as ω r with ω2=1 and r ∈R ([62], Lemma, p. 235). Secondly,
a root selection exists if and only if −1 is not a square in F ([62], Theorem 1); since, by classical
theorems due to Artin and Schreier [3], an ordering in F exists if and only if −1 is not a sum of
squares in F , it follows that root selections exist in every ordered field (but, of course, also outside
of them, the simplest example being Fq with q≡ 3mod 4, so that −1= q − 1∈/ Fq

∗2). Therefore a
root selection can be perceived as a generalizations of an ordering. Hence a small but neat theory
of fields with root selections can be built somewhat parallel to the theory of ordered fields, where
issues such as existence of root selections (that we have just briefly outlined), extensions of fields
with root selections, and structure of maximal root selection fields (somewhat corresponding to
real closed fields) are discussed.

All of this was essentially done by Waterhouse in [62], and the results of his paper were presented by
an author’s colleague, Prof. Andrzej Sładek, during the last meeting of the Algebra Seminar at the
University of Silesia prior to his retirement. Towards the end of his talk, Prof. Sładek encouraged
audience to develop a theory of root selections of higher level, and the author embarked on such
a project. Indeed, most of the results of [62] generalize in an elegant way to the multiplicative
group F×2

p of 2p-th powers of F and lead to the consideration of the existence of a reasonably
well behaved 2p-th root function. In a miniature note [20] by the author, that at the moment of
completing this summary is still under review, it has been shown that, for a field F containing the
2p-th primitive root of unity ω2p, a homomorphism φ:F×2

p→F× such that φ(c2p)=ω2pk c, for some
k ∈ {1, ..., 2p} exists if and only if there is a multiplicative subgroup R of F×, called 2p-th root
selection, such that every element of F× can be uniquely represented as ω2pk r with k ∈ {1, ..., 2p}
and r ∈R ([20], Lemma 2.1), and that 2p-th root selections exist if and only if −1 is not a 2p-th
power in F ([20], Theorem 2.4). Therefore a tiny theory parallel to the one of orderings of higher
level can be built, and, in particular, questions relevant to the existence of 2p-th root selections, or
to extensions of fields with 2p-th root selections, or to the structure of maximal 2p-th root selection
fields can be addressed.
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In the paper [O3] the author adds one more piece to the abovedescribed puzzle and defines root
selections and 2p-th root selections over hyperfields and continues to investigate what parts of
the theory for fields can be carried to the hyperfield case. In order to make our presentation
more compact, we state all of the results already for 2p-th root selections, and obtain respective
definitions and theorems for “ordinary” root selections as special cases. The result opening the
discussion in [O3] is the following one:

Theorem 3.9. ([O3], Lemma 2.1) Let H be a hyperfield and assume that H contains the 2p-th
primitive root of unity ω2p. A multiplicative homomorphism φ from the group H×2p of nonzero 2p-
th powers of H to H× such that φ(c2p) =ω2pk c, for some k ∈ {1, ..., 2p}, exists if and only if there
exists a multiplicative subgroup R of H such that for every element a ∈ H× there exist a unique
element r∈R and a unique integer k ∈ {1, ..., 2p} such that a=ω2pk r.

A multiplicative subgroup R of H× (where H is assumed to contain a 2p-th primitive root of unity
ω2p) such that for every element a ∈H× there exist a unique element r ∈R and a unique integer
k ∈ {1, ..., 2p} such that a= ω2p

k r shall be called a 2p-th root selection for H. In case when p= 1
we shall simply call it a root selection. The existence of 2p-th root selections is granted by the
following, slightly more general result:

Theorem 3.10. ([O3], Theorem 2.1) Let H be a hyperfield and assume that H contains the 2p-
th primitive root of unity ω2p. Let T ⊂H× be a set of nonzero elements of H. Then there exists a
2p-th root selection for H containing T if and only if the subgroup H×2p[T ]<H× generated by T
and the group of all 2p-th powers does not contain −1.

A necessary and sufficient condition for a 2p-th root selection to exist now easily follows:

Theorem 3.11. ([O3], Theorem 2.2) Let H be a hyperfield and assume that H contains the 2p-
th primitive root of unity ω2p. A 2p-th root selection for H exists if and only if H does not contain
a 2p-th root of −1.

For the remaining part of the paper [O3], the author attempts to draw more analogies between
the theory of root selections of higher level and the higher level Artin-Schreier theory. First of all,
the following observation can be made:

Theorem 3.12. ([O3], Proposition 3.1) Let H be a formally p-real hyperfield, let P be a proper
ordering of exact level p. Then H contains the 2p-th primitive root of unity ω2p and P× is a 2p-
th root selection.

As a rather direct corollary from Theorem 3.10 one get the following:

Theorem 3.13. ([O3], Theorem 3.3) Let H be a hyperfield and assume that H contains the 2p-
th primitive root of unity ω2p. Let a ∈ H× and assume that H does not contain a 2p-th root of
−1. Then there exists a 2p-th root selection R such that a ∈R if and only if −ak ∈/ H×2p, for all
k ∈ {1, ..., 2p− 1}.

In particular:

Theorem 3.14. ([O3], Theorem 3.4) Let H be a hyperfield and assume that H contains the 2p-
th primitive root of unity ω2p. Let a∈H× and assume that H does not contain a 2p-th root of −1.
Then a belongs to all 2p-th root selections in H if and only if a∈H×2p.
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The papers [O1] – [O3] contain a number of open problems suggesting directions of further
research. Of particular interest is the paper [O3] and the notion of root selections. In the field case,
root selections are examples of subgroups R of index 2 of the multiplicative group F× of a field F
with −1∈/ R. The importance of arbitrary subgroups of index 2 for geometry was observed already
a long time ago by Sperner [52], and since then they run under the name half-orderings. The author
believes that root selections in hyperfields might play a similar role in the recently developed by Jun
[28] algebraic geometry over hyperfields. This circle of ideas will be discussed in an upcoming paper.

4 Presentable fields and axiomatizations of quadratic forms.

Already in the mid-1970s algebraists working in the field of quadratic forms made first attempts
to approach the Witt theory from axiomatic point of view – as a result, a new branch of the
algebraic theory of quadratic forms was born, namely the axiomatic theory of quadratic forms.
Objects such as quadratic form schemes by Cordes [14], [15], later investigated also by Carson and
Marshall [9], Szczepanik [55], [54], and others, became of interest to mathematicians working in the
field. Over the years numerous other axiomatizations of the algebraic theory of quadratic forms
were also considered: without going into too many technical details, we remark on the notion of
quaternionic maps due to Carson and Marshall [9], abstract Witt rings due to Knebusch, Rosenberg
and Ware [31], [32], as well as Marshall [41], strongly represational Witt rings due to Kleinstein and
Rosenberg [30], and the theory of special groups by Dickmann and Miraglia [18]. Quadratic form
schemes, quaternionic maps, strongly representational Witt rings, and special groups are equivalent
descriptions of the same thing. Several equivalent definitions of quadratic form schemes are known,
and provided in the paper [36], where the relationships between axioms used in these definitions are
also discussed, but essentially a quadratic form scheme is a hyperfield H satisfying the conditions

i. a2=1, for all a∈H×, and

ii. if a=/ −1, then 1+ a is a subgroup of H×.

In particular, by [E3], Proposition 3.2, a quadratic hyperfield Q(F ) of a field F is an example of a
quadratic form scheme. Since the discovery of all the abovementioned axiomatic theories, it remains
an open question if they are not too general – in the language used in this summary, this means
if it is possible to find an example of a hyperfield H satisfying conditions i. and ii. above which is
not isomorphic to a quadratic hyperfield Q(F ), for any field F . It is generally believed that such
examples do exist, and some attempts to find them will be discussed later. On the other hand, it is
interesting to learn how much of the algebraic theory of quadratic forms over fields can be carried
to the abstract case. In particular, the spectacular advances in quadratic forms such as resolving
the Milnor conjecture by Voevodsky and his collaborators, have no analogue in the abstract setting.
In fact, all the abovementioned theories are lacking basic tools required to approach such problems:
there is, for instance, no developed theory of cohomological invariants of abstract quadratic forms.

In author’s opinion, it is vastly due to the complicated language used in exitsing axiomatizations, as
well as to inability to transfer notions typical for fields to the abstract case: for example, Milnor’s
K-theory relies heavily on a field arithmetic, which is largely lost when advancing to the abstract
setting. For this reason it seems worthwhile to seek for new axiomatizations of quadratic forms, and
the paper [P1] is the first one in an upcoming sequence on that theme. Here, the authors propose
a new way of axiomatizing the theory of quadratic forms, essentially taking as a starting point
partial orders that satisfy some additional properties. For that reason the notion of what is called
presentable posets is introduced. Roughly speaking, the axioms of presentable posets are intended
to reflect the behaviour of a pointed powerset ordered by inclusion, where every non-empty set is
reached as a supremum of underlying singletons, and idea here is to build an axiomatic theory of
quadratic forms by describing the behaviour of value sets of quadratic forms. We shall now describe
it in some detail.
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4.1 The paper [P1].

Let A be a poset. We shall write
⊔
X for the supremum of X ⊆ A and x ; y for

⊔
{x, y}. Let

SA be the set of A’s minimal elements. We shall write Sa =
def.↓ a ∩ SA for the set of all minimal

elements below a∈A, and SX =
def.⋃

x∈XSx for the set of minimal elements below X ⊆A. A poset
(A,") is presentable if

i. every non-empty subset X ⊆A admits a supremum;

ii. Sa is non-empty and a=
⊔
Sa for all a∈A;

iii. every minimal element s ∈ SA is compact in the following sense: if Y ⊆ A is a nonempty
subset and s"⊔ Y , then there is an element y ∈Y such that s≤ y.

The minimal elements of a presentable poset are called supercompacts. The authors introduce
presentable monoids, groups, rings and fields: a presentable monoid (M, ≤, 0, +) is a pointed
presentable poset (M,≤,0) with a distinguished supercompact 0 and a suprema-preserving binary
addition +:M ×M→M such that

i. a+(b+ c)= (a+ b) + c for all a, b, c∈M ;

ii. a+0=0+ a= a for all a∈M ;

iii. a+ b= b+ a for all a, b∈M .

A presentable group G is a presentable monoid equipped with a suprema preserving involutive
homomorphism −:G→G called inversion, verifying

(s≤ t+u)⇒ (t≤ s+(−u))

for all s, t, u ∈ SG. A presentable ring R is a presentable group (R, ≤, 0, +, −) consisting of at
least two elements as well as a commutative monoid (R, ·, 1), such that the element 1 ∈ R is a
supercompact, · is compatible with ≤ (i.e. a ≤ b implies a · c ≤ b · c, for all a, b, c ∈R) and −(i.e.
a · (−b)=−(a · b), for all a, b∈R), distributative with respect to +, that 0 ·a=0, for all a∈R, and
that · verifies

Sa·b = {s·t|s∈Sa, t∈Sb}

for all a, b ∈ R. A presentable ring R such that SR∗ = SR \ {0} is a multiplicative group will be
called a presentable field.

Powersets (without the empty subset) of abelian groups, commutative rings with identity and fields
ordered by inclusion provide examples of presentable groups, rings and fields ([P1], Examples 4,
14, and 18). Likewise, powersets of hypergroups, multirings and hyperfields also provide examples
of presentable groups, rings, and fields ([P1], Examples 16 and 21).

The main objective of the paper is a construction of the Witt rings of a suitably choosen presentable
field. For this reason, the authors call a presentable field R pre-quadratically presentable, if the
following conditions hold

i. a≤ a+ b for all a∈SR∗ , b∈SR;

ii. (a≤ 1− b)∧ (a≤ 1− c)⇒ (a≤ 1− b c) for all a, b, c∈SR;

iii. a2=1 for all a∈SR \ {0}.

21



An example of a pre-quadratically presentable field is the powerset of a quadratic hyperfield of a
field ([P1], Proposition 28). Next, a form over a pre-quadratically presentable field R is an n-tuple
⟨a1, ..., an⟩ of elements of SR∗ . The relation =∼ of isometry of forms of the same dimension is given
by induction:

− ⟨a⟩=∼⟨b⟩ if and only if a= b;

− ⟨a1, a2⟩=∼⟨b1, b2⟩ if and only if a1 a2= b1 b2 and b1≤ a1+ a2;

− ⟨a1, ..., an⟩=∼⟨b1, ..., bn⟩ if and only if there exist x, y, c3, ..., cn∈SR∗ such that

i. ⟨a1, x⟩=∼⟨b1, y⟩;

ii. ⟨a2, ..., an⟩=∼⟨x, c3, ..., cn⟩;

iii. ⟨b2, ..., bn⟩=∼⟨y, c3 ..., cn⟩.

The relation =∼ is an equivalence on the sets of all unary and binary forms of a pre-quadratically
presentable field R ([P1], Proposition 31), and if it happens to be an equivalence relation for forms
of arbitrary dimension, then R is called a quadratically presentable field . Again, the powerset of a
quadratic hyperfield of a field is an example of a quadraticaly presentable field ([P1], Example 33).

Finally, let φ= ⟨a1, ..., an⟩, ψ= ⟨b1, ..., bm⟩ be two forms. The orthogonal sum φ⊕ ψ is defined as
the form

⟨a1, ..., an, b1, ..., bm⟩

and the tensor product φ⊗ ψ as

⟨a1 b1, ..., a1 bm, a2 b1, ..., a2 bm, ..., an b1, ..., an bm⟩

We will write k× φ for the form φ⊕ ...⊕ φ︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
k times

.

Theorem 4.1. ([P1], Proposition 35)

1. Let R be a pre-quadratically presentable field. The orthogonal sum and the tensor product
of isometric forms are isometric.

2. (Witt cancellation) Let R be a quadratically presentable field. If φ1⊕ψ=∼ φ2⊕ψ, then φ=∼ψ.

Two forms φ and ψ will be called Witt equivalent , denoted φ∼ ψ, if, for some integers m,n≥ 0:

φ⊕m×⟨1,−1⟩=∼ ψ⊕n×⟨1,−1⟩

It is easily verified that ∼ is an equivalence relation on forms over R, compatible with the isometry.
One also easily checks that Witt equivalence is a congruence with respect to orthogonal sum and
tensor product of forms. Denote by W (R) the set of equivalence classes of forms over R under
Witt equivalence, and by φ̄ the equivalence class of φ. With the operations

φ̄+ ψ̄= φ⊕ ψ φ̄ · ψ̄= φ⊗ ψ

W (R) is a commutative ring, having as zero the class ⟨1,−1⟩, and ⟨1⟩ as multiplicative identity.
Not surprisingly, W (R) is called the Witt ring of R, and, as one might expect, Witt ring of a
powerset of a quadratic hyperfield of F is isomorphic to the Witt ring of F :
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Theorem 4.2. ([P1], Theorem 39) For a field F, W (P∗(Q(F ))) is just the usual Witt ring W (F )
of non-degenerate symmetric bilinear forms of F.

As remarked above, the paper [P1] is only the first one in an upcoming sequence devoted to the
axiomatization of quadratic forms by means of presentable posets. Currently the authors work on
establishing basic category-theoretical properties of presentable algebras, in particular on building
tools necessary to develop a version of homological algebra for presentable structures. This is a
rather delicate task, as major obstacles occur already at the stage of defining exact sequences of
presentable monoids: for instance, there is no apparent characterization of monomorphisms in
terms of kernels.

At the same time, the author continues to explore new examples of structures that can be expressed
in terms of presentable posets. In particular, hyperfields provide a convenient tool in studying
fuzzy structures, and the author believes, that hyperfields can be replaced with presentable fields,
presumably leading to simplifying already existing results and obtaining new ones.

Below we list and briefly discuss other papers by the paper that were not included in the list of
publications constituting the achievement indicated in this summary. These are divided into four
groups. The papers [PP1] – [PP4] are concerned with the pp conjecture in the theory of spaces
of orderings, and constituted the core of the author’s PhD dissertation. The papers [SO1] – [SO3]
is a sequence of works devoted to the study of structure of spaces of orderings. The paper [SL1]
is a joint project with Karim Becher dealing with connections between symbol length and stability
index, and, finally, the paper [FP1] provides some insights into the recently discovered type of
fixed point theorems.
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5 The pp conjecture in the theory of spaces of orderings.

Spaces of orderings have already appeared in this summary in discussion between the lines: for
a formally real field F consider a proper preordering T . Observe that T× is a subgroup of the
multiplicatie group F×, since if t ∈ T×, then 1

t
=
( 1
t

)
2t ∈ T×. Denote GT = F×/T×. The pair

(XT , GT) is an example of a space of orderings.

GT is naturally identified with a subgroup of the group {−1,1}XT of all functions from XT to {−1,
1}, with the multiplication defined pointwise: a∈F× gives a rise to the function XT ∋P 6→ a(P )∈
{−1, 1}, where

a(P )=

{
1, if a∈P
−1, if a∈−P .

This correspondence is a homomorphism with kernel equal to T×.

A space of orderings is a pair (X, G), where X is a non-empty set, G is a subgroup of {−1, 1}X
containing the constant function −1, and satisfying the following three axioms. First of all:

i. ∀x, y ∈X [(x=/ y)⇒∃a∈G (a(x) =/ a(y))].

We can view elements of X as characters on G: a natural embedding of X into the character group
χ(G) is obtained by identifying x∈X with the character a 6→a(x). Forms in the context of spaces
of orderings will be just formal n-tuples of elements of G, and if a, b∈G, we define the value set
D(a, b) as follows:

D(a, b)= {c∈G: ∀x∈X (c(x)= a(x)∨ c(x)= b(x))}.

With those remarks we can state the remaining two axioms:

ii. If x∈ χ(G) satisfies x(−1)=−1, and if

∀a, b∈ kerx (D(a, b)⊂ ker x),

then x is in the image of the natural embedding X ↪→ χ(G).

iii. For a1, a2,a3∈G, if b∈D(a1, c) for some c∈D(a2, a3), then b∈D(d,a3) for some d∈D(a1,
a2).

In X we introduce a natural topology, called the Harrison topology, as the weakest topology
such that the functions a:X→ {−1, 1}, a∈G, are continuous, given that {−1, 1} has the discrete
topology. In other words, the sets

U(a) = {x∈X: a(x) =1}, a∈G,

are clopen and form a subbasis for the topology on X , and the sets

U(a1, ..., an) =
⋂

i=1

n

U(ai)

form a basis for the topology on X. A subset Y ⊂X will be called a subspace of (X, G), if Y is
expressible in the form

⋂
a∈SU(a) for some, not necessarily finite, subset S⊂G. For any subspace

Y we will denote by G|Y the group of all restrictions a|Y , a ∈ G. Not surprisingly, the pair (Y ,
G|Y ) is a space of orderings itself. The stability index of (X,G), denoted stab(X,G), is the least
integer k such that every basic set V ⊂X (in the Harrison topology) is expressible as V =U(a1, ...,
ak) for some a1, ..., ak∈G.
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Recall that a first-order formula in the language L with parameters a
¯
= (a1, ..., ak) is said to be

positive primitive (pp for short), if it is of the form ∃t
¯
Ψ(t
¯
, a
¯
), where t

¯
= (t1, ..., tn), and Ψ(t¯

, a
¯
) is

a finite conjunction of atomic formulae. For a space of orderings (X,G), a pp formula P (a
¯
) with

n quantifiers and k parameters in G is expressible as

∃t
¯

∧

j=1

m

pj(t¯
, a
¯
)∈D(1, qj(t¯, a¯)),

where t
¯
= (t1, ..., tn), a¯

= (a1, ..., ak), for al∈G, l∈ {1, ..., k}, and pj(t¯
, a
¯
), qj(t¯

, a
¯
) are ± products

of some of the ti’s and al’s, i∈ {1, ..., n}, l∈ {1, ..., k}. Numerous important notions in the theory
of spaces of orderings are expressible in terms of pp formulae, including the formula “two forms
are isometric”, or “an element is represented by a form”. Suppose that P (a

¯
) is one of these two pp

formulae. In both cases the following “local-global principle” is true: if P (a
¯
) holds true in every

finite subspace of (X,G), then P (a
¯
) holds true in the whole space (X,G) (while speaking of the

formula P (a
¯
) in a subspace Y , we mean the formula obtained from P (a

¯
) by replacing each atom

p∈D(1, q) by p|Y∈DY (1, q |Y )). In view of the above observations, it is natural to ask the following
question, now known as the pp conjecture:

For a space of orderings (X,G), is it true that a pp formula P (a
¯
) with parameters a

¯
in G, which

holds in every finite subspace of (X,G), necessarily holds in (X,G)?

The series of papers [PP1], [PP2], [PP3] and [PP4] is concerned with the pp conjecture for
various examples of spaces of orderings. We shall discuss them in some detail.

5.1 The paper [PP1].

The papers [PP1], [PP2], [PP3] constituted the core of author’s doctoral dissertation. The first
paper in the sequence, [PP1], is perhaps the most interesting and provides a negative solution to
the pp conjecture by giving an example of a space of orderings and a pp formula which is satisfied
in every subspace, but fails in general. More specifically, the following theorem is proven:

Theorem 5.1. ([PP1], Theorem 6) Let (X∑F 2, G∑F 2) be the space of orderings of the function
field F of a conic section C: ax2+ by2+ c=0, a, b, c∈Q, with a> 0, b > 0, c < 0, which contains
no points with rational coordinates. There exists a pp formula that holds in every finite subspace
of (X∑F 2, G∑F 2), but fails in (X∑F 2, G∑F 2).

The pp formula under consideration is given explicitely. Let C:ax2+by2+c=0 be the conic section
of Theorem 5.1 (for example, take x2+ y2− 3 = 0) and consider the six linear irreducibles p1, ...,
p6 of the coordinate ring of C that intersect with C as follows:

p1

ξ 21

ξ 11
p2

ξ 22

ξ 12

p6

ξ 26

ξ 16

p5

ξ 25

ξ 15p4

ξ 24

ξ 14

p3

ξ 23

ξ 13

Fig. 1
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Here ξ1i, ξ2i denote the two real points of intersection of pi with C, i∈ {1, ..., 6}, and are arranged
in the above order. Replacing pi by −pi we may assume that every pi is positive at the origin. Let
a1= p1 p6, a2= p1 p4, d=−p1 p2 p3 p5. The formula that disproves the pp conjecture is then:

P (a
¯
)= ∃t1∃t2 (t1∈D(1, a1)∧ t2∈D(1, a2)∧ d t1 t2∈D (1, a1 a2)).

The proof is very technical and quite involved. Moreover, by suitably modifying the above example,
it is also possible to show that the pp conjecture fails to hold for the space of orderings of the
function field of two parallel lines over Q with no rational points:

Theorem 5.2. ([PP1], Theorem 9) Let (X∑F 2, G∑F 2) be the space of orderings of the function
field F of a conic section C: x2+ c= 0, c ∈Q, with c < 0, which contains no points with rational
coordinates. There exists a pp formula that holds in every finite subspace of (X∑F 2, G∑F 2), but
fails in (X∑F 2, G∑F 2).

For every space of orderings of a conic section other than the ones mentioned in Theorems 5.2
and 5.2 the pp conjecture holds. Thus, the paper [PP1] provides a complete classification of conic
sections with respect to the pp conjecture.

5.2 The paper [PP2].

This is a continuation of the work of [PP1]. The main theorem is:

Theorem 5.3. ([PP2], Theorem 1) The pp conjecture fails for some formula in the space of
orderings (X∑F 2, G∑F 2), where F =R(x, y).

Again, the pp formula is given explicitely, and the technique of the proof mimics the one of Theorem
5.2. For ϵ> 0 consider the subspaces

Xϵ=U (x2+ y2− 1)∩U (1+ ϵ−x2− y2)

and let Gϵ=G∑R(x,y)2|Xϵ. Define the subspace

X =
⋂

ϵ>0

Xϵ

and let G =G∑R(x,y)2|X. One shows that it is sufficient to show that the conjecture fails in the
space (X,G). For ϵ> 0 denote

Aϵ= {(a, b)∈R2: 1<a2+ b2< 1+ ϵ}

and let π1, ...,π6∈R(x, y) be linear irreducibles which, for ϵ small enough, intersect with rings Aϵ
as in the following diagram:

π1

p21
ϵ

p11
ϵ

π2

p22
ϵ

p12
ϵ

π6

p26
ϵ

p16
ϵ

π5

p25
ϵ

p15
ϵπ4

p24
ϵ

p14
ϵ

π3

p23
ϵ

p13
ϵ

Aϵ
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Here p1iϵ , p2iϵ denote the two connected components of Z(πi) ∩ Aϵ, i ∈ {1, ..., 6}, ϵ > 0, and are
arranged in the above order, where Z(πi) is the set of real zeros of πi. Replacing πi by −πi we
may assume that every πi is positive at the origin. For two adjacent line segments pi1j1

ϵ and pi2j2
ϵ ,

i1, i2∈ {1, 2}, j1, j2∈ {1, ..., 6}, denote also by An
i1j1,i2j2 the ring sector starting at pi1j1

ϵ and, when
moving clockwise along Aϵ, ending at pi2j2

ϵ .

Let a1=π1π6, a2=π1π4 and d=−π1π2π3π5. Consider the following pp formula:

P (a1, a2, d) =∃t1∃t2 (t1∈D(1, a1)∧ t2∈D(1, a2)∧ d t1 t2∈D (1, a1 a2)).

One then shows that P (a1, a2, d) fails to hold in the space (X,G).

5.3 The paper [PP3].

In this paper, for a pp formula P (y
¯
), a special family of formulae FP is defined and it is shown

how this family can be used to test whether the pp formula fails on a finite subspace of every space
of orderings. We work with a fixed pp formula

P (y
¯
)=∃t

¯

∧

j=1

m

θj(t¯
, y
¯
),

where θj are atomic formulae and y
¯
= (y1, ..., yk), t¯

= (t1, ..., tn) are tuples of individual variables.
Denote

KP ={(Y ,H, b)| (Y ,H) is a finite subspace , b∈Hk, P (b) fails in (Y ,H) and holds in every proper

subspace of (Y ,H)}.

Let x
¯
= (x1, ..., xl) be a tuple of free variables. We build a new formula Pl(y

¯
, x
¯
) by induction on

l. If l=1, we define P1(y
¯
, x1) by replacing each atomic formula z1∈D(z2, z3) in P (y

¯
) with

∃s1∃s2 [(s1∈D(1, x1))∧ (s2∈D(1, x1))∧ (z1∈D (s1 z2, s2 z3))].

If l≥ 2, we define Pl(y
¯
, (x1, ..., xl)) by performing the above action on Pl−1(y

¯
, (x1, ..., xl−1)).

One sees that for each space of orderings (X,G) and for each subspace of the form U(b1, ..., bl), b1, ...,
bl∈G, if a

¯
∈Gk then Pl(a¯

, b
¯
) holds in (X,G) if and only if P (a

¯
) holds in the subspace U(b1, ..., bl).

Let λ≥1 be an integer. We shall construct a sequence of formulae Pλ
(i)(y

¯
), i≥0, by induction. For

i=0 we define Pλ
(0)(y

¯
)=P (y

¯
). For i=1, we define

Pλ
(1)= ∃z0 ...∃zλ

∧

j=1

λ

[(zj−1∈D(1, zj))∧P1 (y
¯
, zj−1 zj)],

and for i≥ 2 we define Pλ
(i)(y

¯
) by performing the above action on Pλ

(i−1)(y
¯
) instead of P (y

¯
). Note

that this construction depends on λ.

Trivially, for every space of orderings (X, G) and every a
¯
∈ Gk, P (a

¯
) ⇒ Pλ

(1)(a
¯
) (by taking

z0= z1= ...= zλ=1) and, consequently, P (a
¯
)⇒Pλ

(1)(a
¯
)⇒ ...⇒Pλ

(i)(a
¯
).

Define the number

cP =max {cl(X,G): (X,G, a
¯
)∈KP },

where cl(X,G) denoted the chain length of the space (X,G), that is the biggest integer d such that
there exists a chain U(a0)!U(a1)! ...!U(ad), a0,a1, ...,ad∈G, or∞ if no such finite integer exists.
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One shows that it is well-defined. The main result of [PP3] is then:

Theorem 5.4. ([PP3], Theorem 2) Let λ>cP, let (X,G) be a space of orderings, let a
¯
∈Gk. The

following two conditions are equivalent:

1. P (a
¯
) fails in some finite subspace of (X,G);

2. for every i≥ 0 the formula ¬Pλ
(i)(a

¯
) holds in (X,G).

The paper also contains a concrete example of how these formulae are being built, starting with
the pp formula that was used to disprove the pp conjecture ([PP3], Example 1).

5.4 The paper [PP4].

As the last paper dealing with questions pertinent to the pp conjecture, the author published
the miniature note [PP4] that contains one neat result. Eventhough the pp conjecture has been
disproven, it is still interesting to investigate numerous examples where it is valid. One of such
examples is a sheaf of spaces of orderings: assume (Xi, Gi) are spaces of orderings for each i ∈ I,
where I is a Boolean space. Assume further thatX= ∪̇i∈IXi, the disjoint union of Xi’s, is equipped
with a topology such that

i. X is a Boolean space,

ii. the inclusion map ιi:Xi ↪→X is continuous, for each i∈ I,

iii. the projection map π:X→ I is continuous, and

iv. if (iλ)λ∈D is any net in I converging to i∈ I and if σ1λ,σ2λ, σ3λ,σ4λ is a 4-element fan in Xiλ

such that σjλ converges to σj ∈Xi for each j=1, 2, 3, 4, then σ1σ2σ3σ4=1.

Here a fan is a pair (X,G), where G is a group of exponent 2 containing the distinguished element
−1, and X is the set of all characters x of the group G such that x(−1)=−1.

Furthermore, let

G := {φ∈Cont(X, {± 1}): φ|Xi∈Gi ∀ i∈ I}

where Gi is identified with its image in Cont(Xi,{±1}), i∈ I, under the natural embedding. Then
(X, G) is a space of orderings called the sheaf of spaces (Xi, Gi) over the Boolean space I. The
main result of [PP4] is the following:

Theorem 5.5. ([PP4], Theorem 1) If the pp conjecture holds in (Xi, Gi), for all i ∈ I, then it
also holds in the sheaf (X,G) of (Xi, Gi) over the Boolean space I.

This theorem has been already proven by Astier [5] who used some rather advances tools from
model theory, whereas the proof given in [PP4] is strictly elementary.

6 The structure of spaces of orderings.

The sequence of papers [SO1], [SO2] and [SO3] deals with inverse limits and quotients of spaces
of orderings. We shall start with explaining these concepts. By a morphism F from a space of
orderings (X1,G1) to a space of orderings (X2,G2) we understand a function F :X1→X2 such that

∀b∈G2 (b◦F ∈G1).
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A morphism F : (X1, G1) → (X2, G2) defines a group homomorphism F ∗: G2 → G1 given by
F ∗(b)= b ◦F which also satisfies the condition

∀b1, b2, b3∈G2 [(b1∈DX2(b2, b3))⇒ (F ∗(b1)∈DX1(F
∗(b2), F ∗(b3)))].

Clearly, a bijective morphism will be called an isomorphism, and we shall write (X1, G1) =∼ (X2,
G2) to indicate that the two spaces of orderings are isomorphic.

An inverse system of spaces of orderings is a triple consisting of:

i. a directed set (I ,≽),

ii. spaces of orderings (Xi, Gi), i∈ I, and

iii. morphisms Fij: (Xi, Gi)→ (Xj , Gj) defined for i≽ j, i, j ∈ I, such that

(a) Fij(Xi)=Xj, which implies that Fij∗ :Gj→Gi is injective, and

(b) Fik=Fjk ◦Fij, for i≽ j ≽ k, i, j , k ∈ I.

Clearly, an inverse system (I , (Xi,Gi),Fij) of spaces of orderings automatically defines both a direct
system of groups (I , Gi, Fij

∗ ), and an inverse system of character sets (I , Xi, Fij). Further, if we
let G= lim!!!!!!!!!!!!!!!!!!Gi, and X = lim������������������Xi, then (X,G) is a space of orderings that is called the inverse limit
of the given inverse system and denoted by lim������������������(Xi, Gi). For a fixed j ∈ I we will denote by πj the
projection πj:X→Xj such that πj = Fij ◦ πi, for i≽ j, i ∈ I, and by γj the injection γj:Gj→G
such that γj= γi ◦Fij∗ , for i≽ j, i∈ I. Since, in fact, G=

⋃
i∈IGi, we will use the same symbol a

for an element a∈Gi and its image a∈ γi(Gi)⊂G. A space of orderings which is an inverse limit
of finite spaces of orderings will be called profinite.

If (X, G) is a space of orderings, and G0 is a subgroup of G, we denote by X0 the set of all
characters from X restricted to G0. In the case when (X0, G0) is a space of orderings, we call it a
quotient space of (X,G) – otherwise, in general, we call it a quotient structure. Determining when
a quotient structure is a quotient space is, in general, hard.

We have already remarked before about the stability index and fans. The stability index of (X,G)
can be equivalently defined as the maximal integer n such that is (X,G) exists a subspace that is
a fan with 2n elements (or ∞ if no such number exists).

We have also mentioned the realization problem for axiomatic theories of quadratic forms. It is
also pertinent to the case of spaces of orderings, and up to this day it is not known if there are
examples of spaces of orderings that are not isomorphic to spaces (X∑F 2, G∑F 2), where F is a
field (although it is generally believed that such examples do exist). The constructions of quotient
spaces and inverse limits provide a conceivable tool in building such examples. Namely, in author’s
opinion, it seems that the tool that might be used in determining whether a space of orderings is
realizable or not is the following question: is it true that for a space of orderings (X,G) the equality

W (X,G)∩ C(X, 2nZ)= In(X,G)

holds true? Here C(X, 2nZ) denotes all continuous functions X→ 2nZ, and In(X,G) is the n− th
power of the fundamental ideal I(X, G) of the Witt ring of the space (X, G) (which, in turn,
resembles the usual Witt ring, we will, however, omit the technical details of its construction).
This question is usually referred to as Lam’s Open Problem B. It can be easily verified when
n=1 or n=2, and for all spaces of orderings (X,G) such that sta(X,G)≤ 3 [42, Proposition 3.1].
Furthermore, the question has an affirmative answer for realizable spaces of orderings, which has
been recently proven by Dickmann and Miraglia in [19] using the celebrated results by Orlov, Vishik
and Voevodsky [47], [61].

Therefore, in order to prove that there is a space of orderings, that is not realizable, one would
like to construct a space of orderings (X,G) which has at least 16− element fans, and a quadratic
form φ=((a1, b1))⊕ ...⊕ ((as, bs)), s∈N, such that φ(x)≡ 0mod 8, for all x∈X , although

φ=/ c1((d1, e1, f1))⊕ ...⊕ ct((dt, et, ft)),
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for all possible choices of t∈N, and di, ei, fi∈G, i∈ {1, ..., t}.

This observation sparked the author’s interest in methods of “blowing up” existing fans in well
understood spaces of orderings, and thus obtaining examples of new spaces of higher stability index,
where Lam’s problem needs to be verified. This resulted in the series of papers [SO1], [SO2] and
[SO3]. We shall discuss them in some detail now.

6.1 The paper [SO1].

The opening paper of the whole sequence contains two results that are worth mentioning here.
Firstly, the following is established:

Theorem 6.1. ([SO1], Theorem 1) The space of orderings (X∑Q(x)2, G∑Q(x)2) is profinite.

It was somewhat of an open problem, and settling it was quite rewarding, however full strength
of this result is revealed in its proof, which is purely geometric and gives a deep insight into the
structure of the space of orderings of the field Q(x).

Secondly, the following theorem is proven:

Theorem 6.2. ([SO1], Theorem 2) If (X, G) = lim������������������(Xi, Gi), for some inverse system of spaces
of orderings (I , (Xi, Gi), Fij), and if, for all i∈ I, the pp conjecture holds in (Xi, Gi), then it also
holds in (X,G).

This theorem had been previously proven by Astier and Tressl [4], who used rather complicated
methods from model theory, whereas the proof given here is elementary.

6.2 The paper [SO2].

The entire paper is devoted to the proof of one single theorem:

Theorem 6.3. ([SO2], Theorem 9) Let G0⊂G∑Q(x)2 be a subgroup of G∑Q(x)2 with −1 ∈G0,
and let (G∑Q(x)2:G0)= 2. If (X0, G0) is a space of orderings, where X0=X |G0, then (X0,G0) is
profinite.

The proof is a modified version of the method used for the proof of Theorem 6.1. It is extremely
complicated and takes the reader through 20 pages of tedious geometric considerations, although
fairly elementary in their nature. This ordeal convinced the authors that the methods developed
for the proof of Theorem 6.1 are too complicated to apply to more advanced examples.

6.3 The paper [SO3].

The search for new methods in establishing which quotient structures are quotient spaces resulted
in the paper [SO3]. A few interesting observations have been made that, in principle, generalize
the results of [SO1] and [SO2]. Let (X,G) be a space of orderings. For S ⊆G, ⟨S ⟩ denotes the
subgroup of G generated by S. For S ⊆ χ(G),

S⊥ := {g ∈G:σ(g)= 1∀σ ∈S} and ⟨S ⟩ := χ (G/S⊥),

the closed subgroup of χ(G) generated by S. We say that (X,G) is the direct sum of the spaces
of orderings (Xi,Gi), i∈ {1, ..., n}, denoted (X,G)=

∐
i=1
n (Xi,Gi)= (X1,G1); ...; (Xn,Gn), if X

is the disjoint union of the sets X1, ...,Xn, and G consists of all functions a:X→ {−1,1} such that
a|Xi∈Gi, i∈{1, ..., n}. In this case G=G1⊕ ...⊕Gn, with the role of the distinguished element −1
played by (−1,−1, ...,−1). Further, we say that (X,G) is a group extension of the space of orderings
(X̄ , Ḡ), if G is a group of exponent 2, Ḡ is a subgroup of G, and X = {x∈ χ(G):x|Ḡ∈ X̄}. Since
G decomposes as G= Ḡ×H, we shall also write (X,G)= (X̄ , Ḡ)×H to denote group extensions.
Both direct sums and group extensions are spaces of orderings.
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Let (X, G) be a space of orderings and (X0, G0) a quotient structure of (X, G). We search for
necessary and sufficient conditions on G0 for (X0, G0) to be a quotient space of (X, G). Assume
now that G0 is a subgroup of index 2 in G, −1 ∈ G0. Since G0 has index 2 and −1 ∈ G0, G0 is
determined by a character on G/{±1}, i.e., there exists a unique γ ∈ χ(G), γ(−1) = 1 such that
G0= ker (γ). The result opening the discussion in [SO3] is the following one:

Theorem 6.4. ([SO3], Theorem 2.2)

(i) Suppose (X0, G0) is a quotient space of (X,G), (Y ,G/Y ⊥) is a subspace of (X,G), γ ∈ ⟨Y ⟩
and Y0=Y |G0. Then (Y0, G0/Y ⊥) is a quotient space of (Y ,G/Y ⊥).

(ii) Suppose (X,G) is a group extension of (X ′, G′) and γ ′= γ |G′.

If γ ′=1, then (X0, G0) is a quotient space of (X,G).

If γ ′=/ 1, (X0,G0) is a quotient space of (X,G) iff (X0
′,G0

′ ) is a quotient space of (X ′,G′). Here,
G0
′ := ker (γ ′), X0

′ :=X ′|G0′.

With this result, one is able to show the following:

Theorem 6.5. ([SO3], Theorem 2.4) A necessary condition for (X0,G0) to be a quotient of (X,
G) is that γ ∈X4.

HereXk :={
∏

i=1
k σi:σi∈X,i=1, ...,k}. Since the σi are not required to be distinct, {1}⊆X2⊆X4.

If (X,G) is a fan then X4=X2= {γ ∈ χ(G): γ(− 1)= 1}. It turns out, that there are cases when
the above criterion is sufficient:

Theorem 6.6. ([SO3], Theorem 2.5) If stab(X,G)=1, then the necessary condition in Theorem
6.5 is also sufficient.

For a space of orderings (X,G) we define the connectivity relation ∼ as follows: if x1, x2∈X, then
x1∼ x2 if and only if either x1= x2 or there exists a four element fan V in (X, G) such that x1,
x2∈V . The equivalence classes with respect to ∼ are called the connected components of (X,G).
It is known that if (X,G) is a finite space of orders and X1, ..., Xn are its connected components,
then (X,G)=(X1,G|X1); ...; (Xn,G|Xn). Moreover, the spaces (Xi,G|Xi), are either one element
spaces or proper group extensions.

To simplify things we assume from now on that the space of orderings (X,G) contains no infinite
fans. This is the case, for example, if the stability index of (X,G) is finite. For δ∈χ(G) we denote
Xδ :={σ∈X :σ δ∈X}=X ∩δX . It is possible to show that since (X,G) has no infinite fans, every
connected component of (X, G) is either singleton or has the form Xδ for some δ ∈ χ(G), δ =/ 1,
|Xδ|≥ 4.

The requirement of Theorem 6.5 that γ ∈X4 can be substantially refined as follows:

Theorem 6.7. ([SO3], Theorem 2.8) A necessary condition for (X0,G0) to be a quotient of (X,

G) is that γ=
∏

i=1
k σi, σi∈X, k=2 or k=4 and γ ∈/X2, and, in the case where not all σi are in

the same connected component of (X,G) and the connected components of the σi in (X,G) are not
all singleton, either k= 2 and exactly one of the connected components of the σi is not singleton,
or k=4, γ ∈/X2 and, after reindexing suitably, the connected component of σ3 and σ4 is Xσ3σ4 and
either the connected component of σ1 and σ2 is Xσ1σ2 or the connected component of σi is singleton
for i=1, 2.

It is natural to wonder if the necessary conditions of Theorem 6.7 are sufficient when (X,G) has
stability index two. We are unable to prove this in general. We are however able to prove the
following:
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Theorem 6.8. ([SO3], Theorem 2.9) If (X, G) has stability index two and just finitely many
non-singleton connected components, then the necessary conditions of Theorem 6.7 are sufficient.

In fact, a much more surprising result can be established:

Theorem 6.9. ([SO3], Theorem 3.3) The following are equivalent:

1. (X0, G0) is a quotient space of (X,G).

2. γ satisfies the necessary conditions of Theorem 6.7.

3. (X0, G0) is a profinite space of orderings.

For the remaining part of the paper, general quotients are considered. The first obtained result is
the following one:

Theorem 6.10. ([SO3], Theorem 5.1) A necessary condition for the quotient structure (X0,
G0) of (X,G) to be a space of orderings is that S generates χ (G/G0) as a topological group, i.e.,
χ (G/G0) is the closure of the subgroup of χ (G/G0) generated by S, i.e., S⊥=G0.

For each γ ∈S, γ=/ 1, γ has some (not necessarily unique) minimal expression γ=
∏

i=1
k σi, σi∈X,

k=2 or 4. Denote by (Y ,G/∆)= (Y ,G/Y ⊥) the subspace of (X,G) generated by the connected
components of the various σi, i= 1, ..., k, γ running through S \ {1}, and let Y0 denote the set of
restrictions of elements of Y to G0.

Theorem 6.11. ([SO3], Theorem 5.2) A necessary condition for the quotient structure (X0,G0)
of (X, G) to be a space of orderings is that S generates χ (G/G0) as a topological group and the
quotient structure (Y0, G0/∆) of (Y ,G/∆) is a space of orderings.

The subspace (Y , G/∆) of (X, G) defined above will be referred to as the core of the space of
orderings (X,G) with respect to the quotient structure (X0, G0). Again it is natural to wonder if
the necessary conditions for a quotient structure to be a quotient space given by Theorem 6.10 are
sufficient. Although we are unable to prove this, we are able to show it is true in certain cases.

Theorem 6.12. ([SO3], Theorem 5.4) For a space of orderings (X,G) with finitely many non-
singleton connected components and no infinite fans and a quotient structure (X0, G0) of (X,G)
of finite index, the following are equivalent:

1. (X0, G0) is a space of orderings.

2. X4∩ χ (G/G0) generates χ (G/G0) and the quotient structure (Y0, G0/∆) of the core (Y ,
G/∆) is a space of orderings.

Finally, in the special case of the space of orderings of the field Q(x), the above theorem can be
substantially strengthened:

Theorem 6.13. ([SO3], Theorem 5.5) For the space of orderings (X, G) = (X∑Q(x)2, G∑Q(x)2)
and a quotient structure (X0, G0) of (X,G) of finite index, the following are equivalent:

1. (X0, G0) is a space of orderings.

2. X4 ∩ χ (G/G0) generates χ (G/G0) and the quotient structure (Y0, G/∆) of the core (Y ,
G/∆) is a space of orderings.
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3. (X0, G0) is a profinite space of orderings.

We thus obtain a surprisingly spectacular refinement of the main result of [SO2] by a completely
different technique.

7 Symbol length.

7.1 The paper [SL1].

Let F be a field of characteristic =/2, let n∈N, and let kn(F ) denote the Milnor K-group Kn(F )
modulo 2. kn(F ) is additivel generated by “symbols” {a1, ..., an}, ai ∈ F×, and by the Milnor
conjecture it is known that kn(F ) is isomorphic via cannonical homomorphism to In(F )/In+1(F )
and to the n-th Galois cohomology group of F with coefficients in Z/2Z, Hn(F ,Z/2Z).

The n-symbol length λn(F ) is the smallest nonnegative integer m such that each element of kn(F )
can be written as a sum of m symbols, or ∞ if no such integer exists. The purpose of this paper
was relating stab(X∑F 2, G∑F 2) with λn(F ). The main result is the following:

Theorem 7.1. ([SL1], Theorem 3.6) Let F be a Pythagorean field and s=stab(X∑F 2,G∑F 2)<∞.

1. If s≤ 2, then either λ2(F )= s, or F is uniquely ordered, s=0, and λ2(F )= 1.

2. If s≥ 3, then s+1

2
≤λ2(F )≤ 2s−1(2s−2− 1).

8 Fixed point theorems.

8.1 The paper [FP1].

Kuhlmann and Kuhlmann have recently proven [35] a new type of fixed point theorems, that
they refer to as the fixed point theorems for ball spaces. Their results are stated in a very general
language of spaces which are neither metric nor even topological, but instead utilize the notion of
so called balls, that is an arbitrary family of some subsets. Let X be a nonempty set. A ball space
is a pair (X,B), where B is a fixed family of nonempty subsets of X called balls. A nest of balls is
any nonempty chain N ⊂B ordered by inclusion. If f :X→X is a mapping, a ball B ∈B is called
f -contracting if it is either a singleton consisting of a fixed point of f , or if f(B)!B. The results
in [35] are the following ones:

Theorem 8.1. If (X,B) is a ball space and f :X→X a mapping such that:

1. there exists an f-contracting ball,

2. f(B) contains an f-contracting ball, if B ∈B is an f-contracting ball,

3. for every nest of f-contracting balls N, the intersection
⋂
N contains an f-contracting ball,

then f has a fixed point.

Theorem 8.2. If (X,B) is a ball space and f :X→X a mapping such that:

1. X is an f-contracting ball,

2. f(B) is an f-contracting ball, if B ∈B is an f-contracting ball,
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3. for every nest of f-contracting balls N, the intersection
⋂
N is an f-contracting ball,

then f has a unique fixed point.

The main results of the miniature note [FP1] by the author are two theorems ([FP1], Theorems
4 and 6) showing that Theorems 8.1 and 8.2 can be also deduced from Bourbaki-Witt fixed point
theorems.
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