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K - formally real field

P C K - ordering: P+ P C P,P-PC P, Pn(—P) = {0}
and PU(—P) =K

Xk - set of all orderings, Gx = K*/(XK?\ {0})

1, if a € P,
o7 _{ -1, ifa¢ P,

(ay,...,ay,) - reduced quadratic form a; € Gk, (Xk,Gg) -
space of orderings

(al,...,an) = (bl,...,bm) iff.
[n=m]ANVP € Xg(a1(P)+ ...+ a,(P)=0(P)+ ...+ b,(P))]

b € D(ay, as) iff. VP € Xg[(a1(P) = b(P)) V (as(P) = b(P))].
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a € Gg
Ul(a) ={P € Xi :a(P) =1}

(Y, Gkly) - subspace:

Y = ﬂaeS U(a’)

G|y = group of all restrictions aly, a € Gk.
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Is it possible to say something about the behaviour of re-
duced quadratic forms by looking at the finite subspaces?

Y C Xg: arbitrary finite subspace

be D(ai,a) onY

VP € Y|[(a1(P) = b(P)) V (az(P) = b(P))]
VP € Xg[(a1(P) = b(P)) V (az(P) = b(P))]
b€ D(ay,as) on Xg
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Th. (Extended Isotropy Theorem): If U(a) =" (., D(¢;) #
|y =1
W, d1,...,¢, - quadratic forms, then yes

M. Marshall, Spaces of orderings: systems of quadratic

forms, local structures and saturation, Comm. in Alg. 12
(1984), 723-743
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It suffices to show that the pp conjecture fails to hold on
some subspace

X, = U(x2—|—y2 — 1) ﬂU(l—F%—ZBZ _QQ)a G, = G]R(:c,y)|Xn
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It suffices to show that the pp conjecture fails to hold on
some subspace

X, = U(x2 —|—y2 — 1) N U(l aF % —z% - y2), Gn = G]R(:c,y)|Xn
X = ﬂneN\{o} Xny G = Griy)lx,

Ay={(a,b) eR?: 1<+ <1+1}
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Th. Let (Y, H) be a subspace, let d € D((1,a1) ® (1, a2)).
Then d € D(1,a1)D(1,a9)D(1,a1as) in (Y, H) if and only if
for every connected component (Y, Hy) of (Y, H) which is not
a fan, if a1, ay € H (where (Y, H) denotes the residue space of
(Yo, Hp)), neither ay, as nor ajas is equal to -1, (1,a1) ® (1, as)
is isotropic over (Yp, Hy), then d € H.
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M. Marshall, Local-global properties of positive primitive
formulas in the theory of spaces of orderings, to appear
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d ¢ D((17 a'l) ® (1a a2))
c€Y:aioc=1,ay0=1and do=-1
Tarski Transfer Principle: there is a point (a,b) € A, such

that
ai(a,b) > 0,az(a,b) > 0,d(a,b) <0
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There exists a connected component (Y, Hy) of (Y, H), which
is not a fan, such that ai,as € H, neither aq, as nor ajas is
equal to —1, (1, a1) X (1, az) is isotropic over (Yy, Hy) and d ¢ H




d € D((17 a'l) ® (1a a2))
There exists a connected component (Y, Hy) of (Y, H), which
is not a fan, such that ai,as € H, neither aq, as nor ajas is

equal to —1, (1,a;) x (1, ag) is isotropic over (Y, Hy) and d ¢ H

(Y, H) = (Yo, Hy)
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there are elements of Y making a;, as and ajas positive
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there is no element of Y making both a; and as postive

let 01,049,053 € Y be such that aj, as and ajas have the
following signs:

01| 09 | O3
ai + | - -
as -+ -

aaz || - | - | +
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consider the subspace which is not a fan and for which
{01,029, 03} is a minimal generating set

let (Y1, H1) be its group extension by d
(Y1, Hy) consists of 6 orderings oy, 05, 05, 07, 05 , 05 , with
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consider the subspace which is not a fan and for which
{01,029, 03} is a minimal generating set

let (Y1, H1) be its group extension by d

(Y1, Hy) consists of 6 orderings oy, 05, 05, 07, 05 , 05 , with

respect to which the signs of ai, as, ajas, d are as follows:

af’ O';_ 0;[ oy |0y | O3
a =F - - + - -
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U(—m) NU(—m9) NU(m3) NU(my) NU(m5) N U (76)
U(—m) NU(me) NU(mw3) NU(my) NU(m5) N U (7g)
U(—m) NU(m) NU(—m3) NU(mwy) NU(75) NU ()
U(m)NU(m) NU(—m3) NU(my) NU(m5) N U (7g)
U(m) NU(m) NU(—m3) NU(—mq) NU(75) N U ()
U(m) NU(my) NU(m3) NU(—m4) NU(m5) N U ()
U(m)NU(m) NU(m3) NU(—my) NU(—m5) NU(7g)
U(m)NU(my) NU(mw3) NU(my) NU(—m5) N U(7g)
U(m) NU(mg) NU(w3) NU(mg) NU(—75) N U (—6)
U(m) NU(my) NU(m3) NU(my) NU(m5) N U (—)
U(m) NU(—=mo) NU(mw3) NU(my) NU (75) N U (—7g)
U(m) NU(—mg) NU(w3) NU(my) NU(ms) N U ().
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signs of a1, as and d on the V"J/1"2)2 are exactly the same
as on the sector A!71"2)2 for respective 41, 2, j1, Jo:
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Tarski Transfer Principle: V125 form a partition of (X, G)

signs of a1, as and d on the V"J/1"2)2 are exactly the same
as on the sector A!71"2)2 for respective 41, 2, j1, Jo:
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4-element fans
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4-element fans

{of,01,08,05}

{0-]—_’_7 0-]__7 0-;_7 0-3_}

+ 14,23 + 12,26 N
oy € V5 and 0, € V' then m(0]0;050,) = —1-a
contradiction




4-element fans

{of,01,08,05}

{O-T_7 0-]__7 0-;_7 0?)_}

+ 14,23 + 12,26 +o— =N
oy € V5 and 0, € V' then m(0]0;050,) = —1-a
contradiction
+ 14,23 + 16,25 S
o € V*** and 0, € V' then m5(0{ 0y 050, ) = —1-a

contradiction




4-element fans

{of,01,08,05}

{O-T_7 0-]__7 0-;_7 0?)_}

+ 14,23 + 12,26 N

oy € V5 and 0, € V' then m(0]0;050,) = —1-a
contradiction

+ 14,23 + 16,25 N

o € V*** and 0, € V' then m5(0{ 0y 050, ) = —1-a
contradiction

of € 171524




4-element fans

{of,01,08,05}

{of,07,0%,05}

+ 14,23 + 12,26 + o= 4=\ _
o €V and o, € V=2 then m (0] 0;050,)=—-1-a
contradiction
+ 14,23 + 16,25 + — 4+ N
o] €V and o, € V% then m5(0{0;050,) =—1-a
contradiction
of € V152
of € VI and o5 € V132 then m3(0)0;0505)=—1-a

contradiction




4-element fans

{of,01,08,05}

{of,07,0%,05}

+ 14,23 + 12,26 o)
o €V and o, € V=2 then m (0] 0;050,)=—-1-a
contradiction
+ 14,23 + 16,25 +o— =y
o] €V and o, € V% then m5(0{0;050,) =—1-a
contradiction
of € V152
of € VI and o5 € V132 then m3(0)0;0505)=—1-a
contradiction
+ 15,24 — 11,22 +o— 4 -\
o €V and o5 € V1% then my(0{0;0505) =—1-a

contradiction
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