Department of
Probability Theory
 Institute
of Mathematics
 University
of Silesia
 
Katarzyna Horbacz – List of publications
Journal articles:
-  Dynamical systems with multiplicative perturbations,
 Ann. Polon. Math.
 50 (1989),  11--26.
-  Asymptotic stability of dynamical systems with 
multiplicative perturbations,
Ann. Polon. Math.
 50 (1989), 209--218.
-  Statistical properties of the Ejgielies model
of a cogged bit,
 Applicationes Mathematicae
 21.1 (1991), 15--26.
-  Invariant densities for one-dimensional random dynamical systems,
Univ. Iagell. Acta Math.
 28 (1991),  101--106. 
-  Weak and strong asymptotic stability,
Bull. Polish Acad. Sci. Math.
40.1 (1992), 271--282.
-  Dynamical systems with multiplicative perturbations:
The strong convergence of measures,
 Ann. Polon. Math.
 58 (1993), 85--93.
-  Randomly connected dynamical systems -- asymptotic stability,
Ann. Polon. Math.
 68.1 (1998),  31--50.
-  Randomly connected dynamical systems on Banach spaces,
Stoch. Anal. Appl.
19.4 (2001), 519--543.
-  with T. Szarek, Continuous iterated function systems on Polish spaces,
 Bull. Polish Acad. Sci. Math.
 49.2 (2001),  191--202.
-  Asymptotic stability of a system of randomly connected transformations 
on Polish spaces,
 Ann. Polon. Math. 
 76.3 (2001), 197--211.
-  Randomly connected differential equations with Poisson type perturbations,
 Nonlinear Studies 
9.1 (2002),  81--98.
-  Invariant measures related with randomly connected Poisson driven
differential equations,
 Ann. Polon. Math.
79.1 (2002), 31--44 .
-  Random dynamical systems with jumps,
J. Appl. Probab.
41 (2004),  890--910.
-  with J. Myjak and  T. Szarek,
On stability of some general random dynamical system,
J. Statist. Phys. 119  (2005), 35--60.
-  with J. Myjak and  T. Szarek,
Stability of random dynamical systems on Banach spaces,
 Positivity
10.3 (2006), 517--538.
-  Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential
equations,
Boll. Uni. Mat. Ital.
(8) 9-B
(2006),
 545--566.
-  Pointwise and Rényi dimensions of an invariant measures of random dynamical 
systems with jumps,
J. Statist. Phys. 122.5 (2006), 1041--1059. 
-  with T. Szarek,
Irreducible Markov systems on Polish spaces,
Studia Math. 177.3 (2006), 285--295.
-  Invariant measures for random dynamical systems,
Dissertationes Math. 451 (2008). 
-  with T. Bielaczyc,
The Hausdorff dimension of invariant measures for random dynamical systems,
J. Math. Anal. Appl. 391 (2012), 298--311.
-  Continuous random dynamical systems,  J. Math. Anal. Appl. 408 (2013), 623--637. 
-  Stability of the heat equation driven by an impulsive noise, 
 Chaos, Solitons and Fractals, 57 (2013), 1--8. 
-  with D. Czapla,
Equicontinuity and Stability Properties of Markov Chains Arising from Iterated Function Systems on Polish Spaces,
Stoch. Anal. Appl. 32.1 (2014), 1--29.
-  with T. Bielaczyc,
Dimensions of invariant measures for continuous random dynamical systems,
AIP Conference Proceedings 1648, 850025 (2015).
-  with M. Ślęczka, Law of Large Numbers for Random Dynamical Systems,
J. Statist. Phys.  162 (2016), 671--684 (DOI 10.1007/s10955-015-1423-6).
-  with S. Hille, T. Szarek and H. Wojewódka,
Law of the iterated logarithm for some Markov operators,
 Asymptotic Analysis 97 (2016), 91--112 (DOI: 10.3233/ASY-151344).
-  with T. Bielaczyc,
Dimensions of invariant measures for continuous random dynamical systems,
 Math. Meth. Appl. Sci. 39 (2016), 3947--3960 (DOI: 10.1002/mma.3836).  
-  with D. Czapla,
The stability of Markov chains with partially equicontinuous transition structure,
AIP Conference Proceedings 1738, 480039 (2016) (DOI: 10.1063/1.4952275).
-  with S. Hille, T. Szarek, H. Wojewódka,
Limit theorems for some Markov operators, 
J. Math. Anal. Appl. 443 (2016), 385--408.
- Strong law of large numbers for continuous random dynamical systems,  Statistics and Probability Letters 118 (2016), 70--79.
- The Central Limit Theorem for Random Dynamical Systems,  Journal of Statistical Physics 164 (2016), 1261-1291 (DOI: 10.1007/s10955-016-1601-1) .
-  with S. Hille, T. Szarek,
Existence of a unique invariant measure for a class of equicontinuous Markov operators with application to a stochastic model for an autoregulated gene,
accepted for publication by  Annales Mathématiques Blaise Pascal.
- The Central Limit Theorem for Continuous Random Dynamical Systems, 
AIP Conference Proceedings 1863, 560026 (2017) (DOI: 10.1063/1.4992709) .
Katowice, August 2017
[HOMEPAGE] 
[CV]  [DEPARTMENT OF PROBABILITY THEORY]