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Abstract. We consider the Cahn-Hilliard-Oono equation in the whole of RN , N ≤ 3. We
prove the existence of an exponential attractor in H1(RN ), which contains a global attractor.
We also estimate from above fractal dimension of the attractors.

1. Introduction

The Cahn-Hilliard equation is well known in material sciences involving phase separation
processes, see e.g. [8, 52, 46, 43] and references therein. Several variations are also of
broader interest; multi-component alloy models [29, 11, 36], models with viscosity or with
inertial terms [28, 45, 40, 9, 31], the Cahn-Hilliard-Cook equations [3, 4, 51], and the Cahn-
Hilliard-Oono model [41, 30], which in turn involves hyperbolic relaxation models [49, 50]
and Navier-Stokes equations [44].

In contrast with the case of bounded domains much less references deal with the Cahn-
Hilliard type models in unbounded domains; see [7, 6, 35, 5, 38, 23, 22, 14, 15, 48, 49, 50,
55, 54] in chronological order. Specifically aspects of stability theory related to analysis of
the models in RN are worth further research.

In this paper given δ > 0 we consider in RN the Cahn-Hilliard-Oono equation

(1.1) ut +∆(∆u+ f(x, u)) + δu = 0, t > 0, x ∈ RN ,

subject to the initial condition

(1.2) u(0, x) = u0(x), x ∈ RN ,

where u0 ∈ H1(RN) and N ≤ 3. Without term δu (1.1) becomes the local Cahn-Hilliard
equation which can be obtained e.g. from [39, (2)] or [26, (1.17)] by taking unitary thickness
parameter and considering, moreover, the mobility term therein as unitary constant. The
latter simplification in the model is often exploited in the literature and our considerations
remain in this vein. Specifically, we build upon the approach in [14] suitable for the non-
degenerate problems, whereas the case of concentration-dependent mobilities, which may
vanish (see e.g. [27]), leads to the consideration of degenerate problems.
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2 CAHN-HILLIARD-OONO EQUATION IN RN

As noted in [42, p. 483] and [43, p. 7] the presence in (1.1) of term δu is to account for
long-ranged (i.e., nonlocal) interactions. We remark in turn that recently nonlocal Cahn-
Hilliard equation has been studied in [26] in the case of a degenerate mobility (see also [25]
for Vlasov-Cahn-Hilliard equation), which further expanded the profound nonlocal-to-local
analysis, carried out before in [20] and [21]. We do not pursue this matter here concentrating
on the approach adequate for the analysis of asymptotics of (1.1)-(1.2) as we describe below.

A small linear term δu essentially influences long-time dynamics of the Cauchy problem
(1.1)-(1.2). Namely, if δ = 0, then under dissipativity mechanism customarily used for
parabolic problems in large unbounded domains only a weak form of dissipativity is known,
that is, each individual solution is attracted by the set of equilibria (see [14]). On the other
hand, if δ > 0 then strong dissipativity occurs (see again [14]); in particular a semigroup
of global solutions to (1.1), {S(t)}t≥0, possesses a global attractor A in the sense of [32],
that is, A is compact, invariant under {S(t)}t≥0 and such that for each bounded subset B
of H1(RN)

d(S(t)B,A) = sup
v∈B

inf
w∈A

∥S(t)v − w∥H1(RN ) → 0 as t → ∞.

In [14] the existence of the global attractor has been proven for nonlinearities which included
as a sample a ‘logistic’ case

(1.3) f(x, u) = m(x)u− u|u|ρ−1

where

(1.4) ρ > 1 is arbitrarily large if N = 1, 2 and 1 < ρ < ρc :=
N + 2

N − 2
= 5 if N = 3,

(1.5) m ∈ Lr
U(RN) = {ϕ ∈ Lr

loc(RN) : sup
y∈RN

∥ϕ∥Lr(B(y,1)) < ∞} for some 2 ≤ r ≤ ∞,

andm is the sum, m = m1+m2, of a potentialm1 for which bottom spectrum of −(∆+m1(·))
in L2(RN) is positive, and m2 such that |m2(·)|

ρ
ρ−1 ∈ Ls(RN) for a certain

(1.6) max

{
1,

2N

N + 2

}
≤ s ≤ 2 (s > 1 if N = 2).

In this paper, having indicated in H1(RN) a suitable closed (although not compact) pos-
itively invariant absorbing set B, we will exhibit that with such f there actually exists an
exponential attractor M for {S(t)}t≥0, a notion having its origins in [24], namely M ⊂ B
such that

(i) A ⊂ M and S(t)M ⊂ M for every t ≥ 0,
(ii) M is compact in H1(RN) and has finite fractal dimension dimf (M) = lim sup

ε→0
log 1

ε
nε,

where nε is the smallest number of ε−balls needed to coverM in the considered space,
(iii) there exists ω > 0 such that for any B bounded in H1(RN)

eωtd(S(t)B,M) → 0 as t → ∞.

To introduce a general assumption on the nonlinear term f in (1.1) we consider as in [14]
a structure condition

uf(x, u) ≤ C(x)u2 +D(x)|u|, x ∈ RN , u ∈ R for some

C ∈ Lr
U(RN), D ∈ Ls(RN) and r, s as in (1.5) and (1.6)

(1.7)
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and C also such that the linear problem

(1.8)

{
ut = ∆u+ C(x)u, t > 0, x ∈ RN ,

u(0) = u0 ∈ L2(RN)

enjoys uniform exponential stability property, equivalently (see [14, (A.2)])

(1.9)

∫
RN

(
|∇ϕ|2 − C(x)ϕ2

)
≥ ω0∥ϕ∥2L2(RN ) for ϕ ∈ H1(RN) with some ω0 > 0.

Also, we consider an additional condition

(1.10) uf(x, u)− ν̃

∫ u

0

f(x, y)dy ≤ G(x)u2 +H(x) |u| , x ∈ RN , u ∈ R,

for sufficiently small ν̃ > 0 and some

(1.11) G ∈ Lr̃
U(RN), r̃ ≥ 2, 0 ≤ H ∈ Ls̃(RN), max

{
1,

2N

N + 2

}
≤ s̃ ≤ 2 (s̃ > 1 if N = 2)

such that

(1.12)

∫
RN

(
|∇ϕ|2 −G(x)ϕ2

)
≥ ω̃0∥ϕ∥2L2(RN ) for ϕ ∈ H1(RN) with some ω̃0 > 0.

Example. i) For f(x, u) = m(x)u − u|u|ρ−1 in (1.3) considered with m = m1 + m2 and
ρ > 1, after using Young’s inequality as in [14, (7.2)], we see that if m1 = −c for some

constant c > 0 and m2 ∈ L
2ρ
ρ−1 (RN) then (1.7)-(1.9) hold with

C(x) = m1, D(x) =
ρ− 1

ρ
|m2|

ρ
ρ−1 .

This remains true if instead of constant m1 = −c we take (nonconstant) nonpositive m1 ∈
L∞(RN) such that the integral

∫
G
m1dx is infinite for all G from the family of open sets

in RN containing arbitrarily large balls, as in that case (1.8) enjoys uniform exponential
stability property with C(x) = m1(x) (see [1, Theorem 1.2]). When N = 1 this remains true
if we take (nonconstant) nonpositive m1 ∈ Lr

U(RN) (see [1, Theorem 3.5]).
ii) For f in i) we also obtain as in [14, (8.28)] that

uf(x, u)− ν̃

∫ u

0

f(x, y)dy ≤
(
1− ν̃

2

)
uf(x, u)

and hence we see that (1.10)-(1.12) hold with

G(x) =

(
1− ν̃

2

)
C(x), H(x) =

(
1− ν̃

2

)
D(x)

for C(x) and D(x) as in i) above.
Below, not restricting ourselves to a sample f in (1.3), we will assume (1.7)-(1.12) consid-

ering

(1.13) f(x, u) = g(x) +m(x)u+ f0(x, u), x ∈ RN , u ∈ R,

with m as in (1.5),

(1.14) g ∈ L2(RN)
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and f0 : RN × R → R satisfying

(1.15) f0(x, 0) = 0,
∂f0
∂u

(x, 0) = 0, x ∈ RN

and

(1.16) |f0(x, u1)− f0(x, u2)| ≤ c|u1 − u2|(1 + |u1|ρ−1 + |u2|ρ−1), u1, u2 ∈ R, x ∈ RN ,

for some ρ as in (1.4).
In [14, Theorem 8.7] it was shown that if f in (1.13)-(1.16) satisfies (1.7)-(1.9) then

the problem (1.1)-(1.2) is globally well-posed in H1(RN) and the associated C0 semigroup
{S(t)}t≥0 in H1(RN) has bounded orbits of bounded sets and for each t > 0, S(t) maps
bounded sets of H1(RN) into bounded sets of H2(RN). There is also a set B0 bounded in
H2(RN), which absorbs bounded subsets of H1(RN). Then, letting for some large t0 > 0

(1.17) B = clH1(RN )

⋃
t≥t0

S(t)B0,

we see that B ⊂ clH1(RN ) B0, B absorbs bounded sets of H1(RN) and is positively invariant
under {S(t)}t≥0.
In [14, Theorem 8.9] it was also shown that if, in addition, (1.10)-(1.12) hold then for each

B bounded in H1(RN) and for arbitrarily chosen ξ > 0 there exist certain τξ > 0 and Rξ > 0
such that

(1.18) sup
u0∈B

sup
t≥τξ

∥S(t)u0∥L2({|x|>Rξ}) < ξ.

Consequently, {S(t)}t≥0 is asymptotically compact in H1(RN) and has a global attractor A.
In the present paper our main result is the following theorem.

Theorem 1.1. Given N ≤ 3 assume that f is as in (1.13)-(1.16) and (1.7)-(1.12) hold.
Assume, in addition, that

∂f0
∂u

(x, u) → 0 as u → 0 uniformly for x ∈ RN .

Then there exists an exponential attractor M for (1.1)-(1.2) in H1(RN) as in (i)-(iii) above.

With the construction of an exponential attractor M, the results of the present paper
essentially broaden information available so far for the Cahn-Hilliard-Oono problem in RN

ensuring also finite fractal dimensionality of the global attractor A which is contained in M.
Mention should be made that in our analysis we exhibit a suitable decomposition of the

flow into exponentially stable and compact parts, which is related to the quasi-stability
method developed by I. Chueshov and I. Lasiecka [17, 18]. Regarding this we prove the
following result, in which we use the notion of quasi-stable dynamical system described in
Definition A.2 of the Appendix.

Theorem 1.2. Assume conditions of Theorem 1.1 and let B be as in (1.17).
Then there is τ > 0 such that for t∗ chosen suitably large dynamical system (H1(RN), S(t))

is quasi-stable on B = clH1(RN ) S(τ)B at time t∗.

Within the mentioned approach we obtain in particular estimates from above of fractal
dimension of exponential and global attractors, in which crucial is the compactness of the
embedding of the space

Z = {z ∈ L2(0, t∗;H
2(RN)) :

dz

dt
∈ L2(0, t∗; (H

2(RN))′)}
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into weighted-type space

L2(0, t∗;L
2r′

φ (RN)),

where r′ is Hölder’s conjugate to r given in (1.5), t∗ is as in Theorem 1.2 and φ(·) = 1
(1+|·|2)φ0

with φ0 >
N
2
. Using this we prove the following theorem, where in (1.21)-(1.22) the bounds of

dimensions of A and M are moreover expressed via [19] through the Kolmogorov ε−entropy,
which is known to measure quantitatively the compactness of the embedding of the above
space Z into L2(0, t∗;L

2r′
φ (RN)) (see [34] and [53, page 108]).

Theorem 1.3. Under the conditions of Theorem 1.1 for each 0 < q∗ < 1 there exist t∗ > 0
and κ∗, ξ∗ > 0 such that given any θ ∈ (0, 1−q∗) fractal dimension of the attractor A satisfies

(1.19) dimf (A) ≤ log 1
q∗+θ

m 2κ∗
θ

and A is contained in an exponential attractor M having fractal dimension estimated by

(1.20) dimf (M) ≤ 1 + log 1
q∗+θ

m 2κ∗
θ
,

where m 2κ∗
θ

is the maximal number of points zj in a closed ball in Z of radius 2κ∗
θ

around

zero with the property that ξ∗∥zj − zl∥L2(0,t∗;L2r′
φ (RN )) > 1 whenever j ̸= l.

If 0 < q∗ <
1
2
then fractal dimension of the attractor A also satisfies for any θ ∈ (0, 1

2
−q∗)

(1.21) dimf (A) ≤ log 1
2(q∗+θ)

N θ
κ∗ξ∗

and A is contained in an exponential attractor M having fractal dimension estimated by

(1.22) dimf (M) ≤ 1 + log 1
2(q∗+θ)

N θ
κ∗ξ∗

,

where N θ
κ∗ξ∗

is the minimal number of balls in L2(0, t∗;L
2r′
φ (RN)) of radius θ

κ∗ξ∗
needed to

cover the unit ball in Z.

In Section 2 we derive the estimates of the difference of the solutions to (1.1)-(1.2) and
prove Theorem 1.2. In Section 3 we prove Theorems 1.1 and 1.3. In the Appendix we include
for reader’s convenience some tools used in our approach.

2. Quasi-stability of the semigroup

We use the scale of Bessel potential spaces Hσ
2 (RN), σ ∈ R, defined as in [53] and denoted

here by Hσ(RN).
We also recall that ∆ in L2(RN) with domain H2(RN) is a selfadjoint operator, which has

spectrum σ(∆) = (−∞, 0] and generates a C0 analytic semigroup of contractions {e∆t}t≥0.
Given any α, γ > 0 we have then defined (−∆+ γ)−α in L2(RN) as in [33, Definition 1.4.1],
which operators are of the class L(L2(RN)) and are symmetric. Moreover, we have for γ > 0

∥(−∆+ γ)−
1
2∥L(L2(RN )) = ∥ 1

Γ(1
2
)

∫ ∞

0

s−
1
2 e−γse∆sds∥L(L2(RN )) ≤ γ− 1

2 .(2.1)

We assume the conditions of Theorem 1.1 guaranteeing, due to the results in [14] summa-
rized in the Introduction, that (1.1)-(1.2) governs a C0 semigroup {S(t)}t≥0 in H1(RN) with
a global attractor and with a positively invariant absorbing set B as in (1.17).

To derive the quasi-stability estimates the following two remarks will be useful.

Remark 2.1. Since H2(RN) is a reflexive Banach space, B in (1.17) is bounded in H2(RN).
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Remark 2.2. Assume conditions of Theorem 1.1.
I) Then from [10, Lemmas 13.3, 13.4] we have

(2.2) m(x)− C(x) ≤ ω0

4
+ α0D(x), x ∈ RN ,

(2.3) |f0(x, u)− f0(x, v)| ≤
(ω0

8
+ c∗(|u|ρ−1 + |v|ρ−1)

)
|u− v|, u, v ∈ RN , x ∈ RN

for some α0, c∗ > 0.
II) Since H2(RN) ⊂ BUC(RN) and B is bounded in H2(RN) (see Remark 2.1), values of
elements of B are within the range of a certain real line interval [−CB, CB]. Since B is
positively invariant, denoting

u = S(·)u0, v = S(·)v0 for u0, v0 ∈ B,

we conclude that u and v never leave B. As a consequence, values of u and v are within the
range of [−CB, CB] and (2.3) implies that

(2.4) |f0(x, u)− f0(x, v)| ≤ LB|u− v|, x ∈ RN ,

with LB > 0 being a multiple of 1 + 2Cρ−1
B .

The proof of Theorem 1.2 now follows in a sequence of lemmas.

Lemma 2.3. Assume conditions of Theorem 1.1 and let B be as in (1.17). Then for arbi-
trarily fixed T > 0 and α ∈ (−3

4
, 1
4
] there is a positive constant µ = µα,T such that for any

u0, v0 ∈ B
∥S(t)u0 − S(t)v0∥H1(RN ) ≤

µ

t
1
4
−α

∥u0 − v0∥H4α(RN ), t ∈ (0, T ].

Proof. As follows from considerations of [14, Appendix B] the solution u = S(·)u0 of (1.1)
through u0 ∈ H1(RN) satisfies Duhamel’s formula

(2.5) u(t) = e−∆2tu0 +

∫ t

0

e−∆2(t−s)(−∆(f(·, u(s))− δu(s))ds, t > 0.

Writing (2.5) for u = S(·)u0 and v = S(·)v0 respectively, letting

F(u, v) := f(·, u)− f(·, v) = m(·)(u− v) + f0(·, u)− f0(·, v)

and using the estimates of {e−∆2t}t≥0 in Bessel scale as in [13, Corollary 2.7], we have that
U = u− v satisfies for a given ε ∈ (0, 1

4
) and 0 < t ≤ T

∥U(t)∥H1(RN ) ≤
MT

t
1
4
−α

∥U(0)∥H4α(RN ) +

∫ t

0

MT

(t− s)
3
4
+ε

R(s)ds,

where MT is a certain positive constant and

R(s) = ∥ − δU(s)−∆(F(u(s), v(s)))∥(H2+4ε(RN ))′ .

Following [53], we remark that for any real θ, θ̃ we have

(2.6) (Hθ(RN))′ = H−θ(RN) and Hθ(RN) ⊂ H θ̃(RN) when θ ≥ θ̃.

We frequently use that

(2.7) ∥ϕ∥L2(RN ) ≤ ∥ϕ∥H1(RN ), ϕ ∈ H1(RN).
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Also, due to [53, formula (1) on page 177 and Step 2 atop page 191]

(2.8) ∥ · ∥H−2(RN ) = ∥(−∆+ 1)−1 · ∥L2(RN ),

whereas from [47, formula (7.1) in Chapter 1] and contractive property of the heat semigroup

(2.9) ∥(−∆+ 1)−1∥L(L2(RN )) = ∥
∫ ∞

0

e−te∆tdt∥L2(RN ) ≤ 1,

From (2.6) it is straightforward that ∥U∥(H2+4ε(RN ))′ is bounded by a multiple of ∥U∥H1(RN ).

Choosing ε ∈ (0, 1
4
) close enough to 1

4
, we combine (2.6) with [16, Lemma 5.2] to get

∥∆(m(·)U)∥(H2+4ε(RN ))′ ≤ Cm,ε∥U∥H1(RN )

with some constant Cm,ε. Using again (2.6) we observe that ∥∆(f0(·, u)−f0(·, v))∥(H2+4ε(RN ))′

is bounded by a multiple of ∥∆(f0(·, u) − f0(·, v))∥H−2(RN ), which by (2.8) and (2.9) is, in
turn, bounded by a multiple of ∥f0(·, u)− f0(·, v)∥L2(RN ). Since due to (2.4)

(2.10) ∥f0(·, u)− f0(·, v)∥L2(RN ) ≤ LB∥U∥L2(RN )

we actually have

R(s) = ∥ − δU(s)−∆(F(u(s), v(s)))∥(H2+4ε(RN ))′ ≤ Cm,B,ε∥U(s)∥H1(RN )

for some constant Cm,B,ε > 0 and we thus obtain

∥U(t)∥H1(RN ) ≤
MT

t
1
4
−α

∥U(0)∥H4α(RN ) +

∫ t

0

Cm,B,εMT

(t− s)
3
4
+ε

∥U(s)∥H1(RN )ds, 0 < t ≤ T.

From this and [12, Lemma 1.2.9] we get the result. □

In the next lemma we derive an L2(0, T ;H2(RN))-estimate of the difference of solutions.

Lemma 2.4. Under the conditions and notation of Lemma 2.3 if u0, v0 ∈ B then given any
T > 0 there is a constant κT > 0 such that U = S(·)u0 − S(·)v0 satisfies

∥U∥L2(0,T ;H2(RN )) ≤ κT∥U(0)∥H1(RN ).

Proof. Writing (1.1) for u = S(t)u0, v = S(t)v0, we observe that U = u− v satisfies

Ut +∆(∆U + F(u, v)) + δU = 0.

From this for any γ > 0 we get

(−∆+ γ)−1Ut −∆U − F(u, v)− γU + γ(−∆+ γ)−1F(u, v) + (γ2 + δ)(−∆+ γ)−1U = 0.

(2.11)

Writing (2.11) with γ = 1, multiplying by ∆U in L2(RN) and taking into account that

⟨(−∆+ 1)−1Ut,∆U⟩L2(RN ) = ⟨Ut, (−∆+ 1)−1∆U⟩L2(RN )

= ⟨Ut,−U + (−∆+ 1)−1U⟩L2(RN )

=
1

2

d

dt
(−∥U∥2L2(RN ) + ∥(−∆+ 1)−

1
2U∥2L2(RN )),

we get

1

2

d

dt
(−∥U∥2L2(RN ) + ∥(−∆+ 1)−

1
2U∥2L2(RN ))− ∥∆U∥2L2(RN )

− ⟨F(u, v),∆U⟩L2(RN ) − ⟨U,∆U⟩L2(RN ) + ⟨(−∆+ 1)−1F(u, v),∆U⟩L2(RN )

+ (1 + δ)⟨(−∆+ 1)−1U,∆U⟩L2(RN ) = 0.
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From (2.9) and (2.10) we have

∥(−∆+ 1)−1(f0(·, u)− f0(·, v))∥L2(RN ) ≤ LB∥U∥L2(RN ),

whereas from (2.8) and [16, Lemma 5.2], we get

∥(−∆+ 1)−1(m(·)U)∥L2(RN ) = ∥m(·)U∥H−2(RN ) ≤ Cm(∥U∥2L2(RN ) + ∥∇U∥2L2(RN ))
1
2

with some constant Cm > 0, so that

(2.12) ∥(−∆+ 1)−1F(u, v)∥2L2(RN ) ≤ 2C2
m(∥U∥2L2(RN ) + ∥∇U∥2L2(RN )) + 2L2

B∥U∥2L2(RN ).

Then the Cauchy-Schwarz inequality used with (2.12) implies for any ε > 0

|⟨(−∆+ 1)−1F(u, v),∆U⟩L2(RN )| ≤
1

ε
(C2

m + L2
B)∥U∥2H1(RN ) +

ε

2
∥∆U∥2L2(RN ),

whereas with (2.10) yields

|⟨f0(x, u)− f0(x, v),∆U⟩L2(RN )| ≤
1

2ε
L2
B∥U∥2L2(RN ) +

ε

2
∥∆U∥2L2(RN ).

Since for α ∈ (0, 1) close enough to 1 due to [14, Lemma A.1] we have

(2.13) ∥m(·)U∥L2(RN ) ≤ Cm,α∥U∥H2α(RN ),

using interpolation inequality ∥U∥H2α(RN ) ≤ cα∥U∥αH2(RN )∥U∥1−α
L2(RN )

(see [53, (11) on page

185]), we obtain by the Young inequality that

∥m(·)U∥L2(RN ) ≤ ε∥∆U∥L2(RN ) + dε∥U∥L2(RN )

where we have also used that ∥ · ∥L2(RN ) + ∥∆ · ∥L2(RN ) is an equivalent norm in H2(RN).
With the Cauchy-Schwarz inequality this yields

|⟨m(·)U,∆U⟩L2(RN )| ≤ ∥m(·)U∥L2(RN )∥∆U∥L2(RN )

≤ ε∥∆U∥2L2(RN ) + dε∥U∥L2(RN )∥∆U∥L2(RN )

≤ 3ε

2
∥∆U∥2L2(RN ) +

1

2ε
d2ε∥U∥2L2(RN ).

Summarizing, we get

|⟨F(u, v),∆U⟩L2(RN )| ≤ 2ε∥∆U∥2L2(RN ) +
1

2ε
(d2ε + L2

B)∥U∥2L2(RN ).

Note that due to the Cauchy-Schwarz inequality and (2.9) we also have

|⟨(−∆+ 1)−1U,∆U⟩L2(RN )| ≤
1

2ε
∥U∥2L2(RN ) +

ε

2
∥∆U∥2L2(RN ).

Similarly,

|⟨U,∆U⟩L2(RN )| ≤
1

2ε
∥U∥2L2(RN ) +

ε

2
∥∆U∥2L2(RN ).

As a consequence, taking also into account (2.7), we get

1

2

d

dt
(−∥U∥2L2(RN ) + ∥(−∆+ 1)−

1
2U∥2L2(RN ))− ∥∆U∥2L2(RN )

+
ε

2
(7 + δ)∥∆U∥2L2(RN ) +

1

ε

(
1 +

δ

2
+ C2

m +
d2ε
2

+
3L2

B
2

)
∥U∥2H1(RN ) ≥ 0.
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Choosing now ε = 1
7+δ

and denoting d := 2(7 + δ)(1 + δ
2
+ C2

m + d2ε
2
+

3L2
B

2
), we get

d

dt
(−∥U∥2L2(RN ) + ∥(−∆+ 1)−

1
2U∥2L2(RN )) + d∥U∥2H1(RN ) ≥ ∥∆U∥2L2(RN ).

Integrating with respect to t ∈ [0, T ], then omitting on the left-hand side the negative terms
resulting from integration and using (2.1), we obtain

∥U(0)∥2L2(RN ) + ∥U(T )∥2L2(RN ) + d∥U∥2L2(0,T ;H1(RN )) ≥ ∥∆U∥2L2(0,T ;L2(RN )).

Taking into account (2.7) and applying Lemma 2.3 with α = 1
4
, we have

∥U(t)∥2L2(RN ) ≤ ∥U(t)∥2H1(RN ) ≤ µ2∥U(0)∥2H1(RN ), t ∈ (0, T ],

which after integrating with respect to t ∈ (0, T ) yields

∥U∥2L2(0,T ;L2(RN )) ≤ ∥U∥2L2(0,T ;H1(RN )) ≤ µ2T∥U(0)∥2H1(RN ).

As a consequence we get

∥∆U∥2L2(0,T ;L2(RN )) ≤ (1 + µ2 + dµ2T )∥U(0)∥2H1(RN ).

Since ∥ · ∥L2(RN ) + ∥∆ · ∥L2(RN ) is an equivalent norm in H2(RN), the result now follows
easily. □

Using Lemma 2.4 we derive below an estimate involving time derivative.

Lemma 2.5. Under the conditions and notation of Lemma 2.3 if u0, v0 ∈ B then given any
T > 0 there is a constant ωT > 0 such that U = S(·)u0 − S(·)v0 satisfies

∥Ut∥L2(0,T ;H−2(RN )) ≤ ωT∥U(0)∥H1(RN ).

Proof. Writing (2.11) with γ = 1 and applying L2(RN)-norm, we get

∥(−∆+ 1)−1Ut∥L2(RN ) ≤ ∥∆U∥L2(RN ) + ∥F(u, v)∥L2(RN ) + ∥U∥L2(RN )

+ ∥(−∆+ 1)−1F(u, v)∥L2(RN ) + (1 + δ)∥(−∆+ 1)−1U∥L2(RN ).

Due to (2.9), (2.10) and (2.13) both ∥(−∆ + 1)−1F(u, v)∥L2(RN ) and ∥F(u, v)∥L2(RN ) are
bounded from above by a multiple of ∥U∥H2(RN ) (see the embedding in (2.6)). It is also
straightforward that the sum ∥∆U∥L2(RN ) + ∥U∥L2(RN ) + (1 + δ)∥(−∆ + 1)−1U∥L2(RN ) is
estimated from above by a multiple of ∥U∥H2(RN ) (see again (2.9)). As a consequence there
is a constant ω > 0 such that

∥(−∆+ 1)−1Ut∥L2(RN ) ≤ ω∥U∥H2(RN ), t > 0,

which in turn yields

∥(−∆+ 1)−1Ut∥L2(0,T ;L2(RN )) ≤ ω∥U∥L2(0,T ;H2(RN )), T > 0.

Using now (2.8) and Lemma 2.4, we get the result. □

Given a positive function φ of variable x ∈ RN and q ≥ 1, we denote by Lq
φ(RN) the

weighted space consisting of all ϕ ∈ Lq
loc(RN) such that ϕφ

1
q ∈ Lq(RN), with norm

∥ϕ∥Lq
φ(RN ) = ∥ϕφ

1
q ∥Lq(RN ).

In what follows, we consider φ : RN → (0, 1] of the form

(2.14) φ(·) = 1

(1 + | · |2)φ0
with φ0 >

N

2
.
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Lemma 2.6. Under the conditions and notation of Lemma 2.3 there exist positive constants
τ and γ such that if u0, v0 ∈ B then U = S(·)u0 − S(·)v0 satisfies for each t ≥ τ and all
sufficiently large R the estimate of the form

∥(−∆+ γ)−
1
2U(t)∥L2(RN ) ≤ e−

δ
2
(t−τ)∥(−∆+ γ)−

1
2U(τ)∥L2(RN ) + ζR∥U∥L2(τ,t;L2r′

φ (RN ))

+ αR∥U∥L2(τ,t;L2s′ (RN ))

where φ is as in (2.14), r is from (1.5), ζR is a certain constant depending on R and αR → 0+

as R → ∞.

Proof. For u = S(t)u0, v = S(t)v0 with u0, v0 ∈ B, multiplying (2.11) by U = u − v in
L2(RN) gives for any γ > 0

1

2

d

dt
∥(−∆+ γ)−

1
2U∥2L2(RN ) + ∥∇U∥2L2(RN ) − ⟨F(u, v), U⟩L2(RN ) − γ∥U∥2L2(RN )

+ (γ2 + δ)∥(−∆+ γ)−
1
2U∥2L2(RN ) = −γ⟨(−∆+ γ)−1F(u, v), U⟩L2(RN )

and we proceed in three steps.
Step 1. In this step we find an estimate of ∥∇U∥2L2(RN ) − ⟨F(u, v), U⟩L2(RN ) from below.

By assumption there exists ω0 > 0 such that (1.9) holds and there is a continuous decreas-
ing real valued function ω(ν) defined in a certain interval [0, ν0] and satisfying

lim
ν→0+

ω(ν) = ω(0) = ω0

such that∫
RN

(
(1− ν)|∇ϕ|2 − C(x)ϕ2

)
≥ ω(ν)∥ϕ∥2L2(RN ) for ν ∈ [0, ν0], ϕ ∈ H1(RN).

(see [14, Theorems A.2 and A.4]). Using this with a suitably small ν > 0 (such ν is fixed
from now on), and applying (2.2), given any ball BR = {x ∈ RN : |x| < R} we get∫
RN

(|∇U |2 −m(x)U2) =

∫
RN

(ν + 1− ν)|∇U |2 −
∫
RN

(C +m− C)(x)U2

≥ ν∥∇U∥2L2(RN ) +
3ω0

4
∥U∥2L2(RN ) −

(∫
BR

+

∫
Bc

R

)
(m− C)(x)U2

≥ ν∥∇U∥2L2(RN ) +
ω0

2
∥U∥2L2(RN ) −

∫
BR

(m− C)(x)U2 − α0

∫
Bc

R

D(x)U2

where Bc
R = RN \BR. Also, by assumption on D, due to the Hölder inequality we have∫

Bc
R

D(x)U2 ≤ ∥D∥Ls(Bc
R)∥U∥2

L2s′ (RN )
.

Since by the locally uniform integrability of m and C there is a positive constant kR such
that ∫

BR

(m(x)− C(x))U2 ≤ kR∥U∥2
L2r′ (BR)

,

where the exponent r′ is Hölder’s conjugate to r, we actually get∫
RN

(|∇U |2 −m(x)U2) ≥ ν∥∇U∥2L2(RN ) +
ω0

2
∥U∥2L2(RN ) − kR∥U∥2

L2r′ (BR)

− α0∥D∥Ls(Bc
R)∥U∥2

L2s′ (RN )
.
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Applying (2.3) and (2.4), we get∫
RN

(f0(x, u)− f0(x, v))U ≤
(∫

BR

+

∫
Bc

R

)
|f0(x, u)− f0(x, v)||U |

≤ LB

∫
BR

U2 +
ω0

8

∫
Bc

R

U2 + c∗

∫
Bc

R

(|u|ρ−1 + |v|ρ−1)U2.

Due to (1.18) given any ξ > 0 there exist τξ > 0 and Rξ > 0 such that supt≥τξ
∥u∥L2(Bc

Rξ
) ≤ ξ

which yields, since values of u are within the range of [−CB, CB],

∥u∥Lℓ(Bc
R) ≤ C

1− 2
ℓ

B ∥u∥
2
ℓ

L2(Bc
R) ≤ C

1− 2
ℓ

B ξ
2
ℓ for any t ≥ τξ and R ≥ Rξ, ℓ ≥ 2

and the same holds true for v. Using this with ℓ = q(ρ − 1) and q ≥ max{N
2
, 2
ρ−1

}, via the

Hölder inequality and Sobolev embedding H1(RN) ⊂ L2q′(RN), we obtain∫
Bc

R

(|u|ρ−1 + |v|ρ−1)U2 ≤ ∥|u|ρ−1 + |v|ρ−1∥Lq(Bc
R)∥U∥2

L2q′ (Bc
R)

≤ c2S(q
′)(∥u∥ρ−1

Lq(ρ−1)(Bc
R)

+ ∥v∥ρ−1

Lq(ρ−1)(Bc
R)
)∥U∥2H1(RN )

≤ 2c2S(q
′)C

ρ−1− 2
q

B ξ
2
q (∥U∥2L2(RN ) + ∥∇U∥2L2(RN )), t ≥ τξ, R ≥ Rξ,

where cS(q
′) denotes the Sobolev embedding constant. Choosing then suitably small ξ > 0,

we get for all large enough R∫
RN

(f0(x, u)− f0(x, v))U ≤ LB

∫
BR

U2 +
ω0

8
∥U∥2L2(RN )

+min

{
3ν

4
,
ω0

8

}
(∥U∥2L2(RN ) + ∥∇U∥2L2(RN )), t ≥ τξ.

As a consequence we obtain

∥∇U∥2L2(RN ) − ⟨F(u, v), U⟩L2(RN ) ≥
ν

4
∥∇U∥2L2(RN ) +

ω0

4
∥U∥2L2(RN ) − kR∥U∥2

L2r′ (BR)

− LB∥U∥2L2(BR) − α0∥D∥Ls(Bc
R)∥U∥2

L2s′ (RN )
, t ≥ τξ.

Step 2. In this step we find an estimate of |γ⟨(−∆+ γ)−1F(u, v), U⟩L2(RN )| from above.
Since due to the resolvent equation

(−∆+ γ)−1F(u, v) = (−∆+ 1)−1F(u, v) + (1− γ)(−∆+ γ)−1(−∆+ 1)−1F(u, v),

we have

|γ⟨(−∆+ γ)−1F(u, v),U⟩L2(RN )| ≤ |γ⟨(−∆+ 1)−1F(u, v), U⟩L2(RN )|

+ |γ⟨(1− γ)(−∆+ γ)−
1
2 (−∆+ 1)−1F(u, v), (−∆+ γ)−

1
2U⟩L2(RN )|.

From this, using the Cauchy-Schwarz inequality with ε = 1 and ε = γ2+δ
γ

respectively, we
get

|γ⟨(−∆+ γ)−1F(u, v), U⟩L2(RN )| ≤
γ

2
∥(−∆+ 1)−1F(u, v)∥2L2(RN ) +

γ

2
∥U∥2L2(RN )

+
γ2 + δ

2
∥(−∆+ γ)−

1
2U∥2L2(RN ) +

γ(1− γ)2

2(γ2 + δ)
∥(−∆+ 1)−1F(u, v)∥2L2(RN ),
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where in the last term above we have also used (2.1). Recalling then (2.12), we obtain

|γ⟨(−∆+ γ)−1F(u, v), U⟩L2(RN )| ≤ γ
(
1 +

(1− γ)2

γ2 + δ

)
C2

m(∥U∥2L2(RN ) + ∥∇U∥2L2(RN ))

+ γ

(
1

2
+ L2

B +
(1− γ)2

γ2 + δ
L2
B

)
∥U∥2L2(RN ) +

γ2 + δ

2
∥(−∆+ γ)−

1
2U∥2L2(RN ).

Step 3. We now combine the estimates to complete the proof.
Hence for all t ≥ τξ, any γ > 0 and each large enough R we have

1

2

d

dt
∥(−∆+ γ)−

1
2U∥2L2(RN ) +

ν

4
∥∇U∥2L2(RN ) +

ω0

4
∥U∥2L2(RN ) − kR∥U∥2

L2r′ (BR)
− LB∥U∥2L2(BR)

− γ∥U∥2L2(RN ) − α0∥D∥Ls(Bc
R)∥U∥2

L2s′ (RN )
+

γ2 + δ

2
∥(−∆+ γ)−

1
2U∥2L2(RN )

≤ γ
(
1 +

(1− γ)2

γ2 + δ

)
C2

m(∥U∥2L2(RN ) + ∥∇U∥2L2(RN ))

+ γ

(
1

2
+ L2

B +
(1− γ)2

γ2 + δ
L2
B

)
∥U∥2L2(RN ),

which with γ > 0 chosen now suitably small gives

1

2

d

dt
∥(−∆+ γ)−

1
2U∥2L2(RN ) +

ν

8
∥∇U∥2L2(RN ) +

γ2 + δ

2
∥(−∆+ γ)−

1
2U∥2L2(RN )

+
ω0

16
∥U∥2L2(RN ) ≤ kR∥U∥2

L2r′ (BR)
+ LB∥U∥2L2(BR) + α0∥D∥Ls(Bc

R)∥U∥2
L2s′ (RN )

≤ (kR + LB|BR|
1
r )∥U∥2

L2r′ (BR)
+ α0∥D∥Ls(Bc

R)∥U∥2
L2s′ (RN )

.

(2.15)

Since
∫
BR

|U |2r′ ≤
∫
BR

|U |2r′ φ
inf
BR

φ
≤ 1

inf
BR

φ

∫
RN |U |2r′φ, we have

∥U∥2
L2r′ (BR)

≤ (inf
BR

φ)−
1
r′ ∥U∥2

L2r′
φ (RN )

.

Using this in (2.15), denoting ζ2R = 2(kR+LB|BR|
1
r )(inf

BR

φ)−
1
r′ , and omitting on the left-hand

side of (2.15) nonnegative terms ν
8
∥∇U∥2L2(RN ),

ω0

16
∥U∥2L2(RN ) and

1
2
γ2∥(−∆+ γ)−

1
2U∥2L2(RN ),

we obtain after letting
α2
R := 2α0∥D∥Ls(Bc

R)

that
d

dt
∥(−∆+ γ)−

1
2U∥2L2(RN ) + δ∥(−∆+ γ)−

1
2U∥2L2(RN ) ≤ ζ2R∥U∥2

L2r′
φ (RN )

+α2
R∥U∥2

L2s′ (RN )
, t ≥ τξ.

The result now follows easily. □

Then we have the following result.

Lemma 2.7. Under the conditions and notation of Lemma 2.3 if τ and γ are as in Lemma
2.6 and u0, v0 ∈ S(τ)B then U = S(·)u0 − S(·)v0 satisfies for each T ≥ 0 and all sufficiently
large R the estimate

∥(−∆+ γ)−
1
2U(T )∥L2(RN ) ≤ e−

δT
2 ∥(−∆+ γ)−

1
2U(0)∥L2(RN ) + ζR∥U∥L2(0,T ;L2r′

φ (RN ))

+ αR∥U∥L2(0,T ;L2s′ (RN ))

with φ, ζR and αR as in Lemma 2.6.
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Proof. By assumption u0 = S(τ)ũ0, v0 = S(τ)ṽ0 for some ũ0, ṽ0 ∈ B, whereas by Lemma 2.6
Ũ(t) = S(t)ũ0 − S(t)ṽ0 satisfies for t ≥ τ and all sufficiently large R

∥(−∆+ γ)−
1
2 Ũ(t)∥L2(RN ) ≤ e−

δ
2
(t−τ)∥(−∆+ γ)−

1
2 Ũ(τ)∥L2(RN ) + ζR∥Ũ∥L2(τ,t;L2r′

φ (RN ))

+ αR∥Ũ∥L2(τ,t;L2s′ (RN )).

Since Ũ(t) = U(t− τ) whenever t− τ ≥ 0 and Ũ(τ) = U(0), we actually have for t ≥ τ

∥(−∆+ γ)−
1
2U(t− τ)∥L2(RN ) ≤ e−

δ
2
(t−τ)∥(−∆+ γ)−

1
2U(0)∥L2(RN )

+ ζR∥U(· − τ)∥L2(τ,t;L2r′
φ (RN )) + αR∥U(· − τ)∥L2(τ,t;L2s′ (RN ))

and letting T = t− τ we get the result. □

Given τ as in Lemma 2.6 we define

(2.16) B = clH1(RN ) S(τ)B.

Remark 2.8. From the semigroup property and the properties of B listed below (1.17) (see
also Remark 2.1) it follows that B ⊂ B, B is bounded in H2(RN) and that B is positively
invariant and absorbs bounded sets of H1(RN) under {S(t)}t≥0.

Due to Lemmas 2.3 and 2.4 the estimate in Lemma 2.7 now leads to the following estimate
in H1(RN).

Lemma 2.9. Under the conditions and notation of Lemma 2.3 given any q∗ ∈ (0, 1) there
exist t∗ ≥ 1 and ξ∗ > 0 such that if B is as in (2.16) and u0, v0 ∈ B then U = S(·)u0−S(·)v0
satisfies

(2.17) ∥U(t∗)∥H1(RN ) ≤ q∗∥U(0)∥H1(RN ) + ξ∗∥U∥L2(0,t∗;L2r′
φ (RN )),

where φ is as in (2.14).

Proof. First let u0, v0 ∈ S(τ)B. Due to positive invariance of B, S(t)u0, S(t)v0 ∈ B for every
t ≥ 0. Given t ≥ 1, using the semigroup property and then Lemma 2.3 with α = −1

2
and

T = 1, we get via (2.8)

∥U(t)∥H1(RN ) = ∥S(1)S(t− 1)u0 − S(1)S(t− 1)v0∥H1(RN )

≤ µ∥S(t− 1)u0 − S(t− 1)v0∥H−2(RN )

= µ∥(−∆+ 1)−1(S(t− 1)u0 − S(t− 1)v0)∥L2(RN )

= µ∥(−∆+ 1)−1U(t− 1)∥L2(RN ).

Due to the resolvent equation and (2.9)

∥(−∆+ 1)−1U(t− 1)∥L2(RN ) = ∥(1 + (γ − 1)(−∆+ 1)−1)(−∆+ γ)−1U(t− 1)∥L2(RN )

≤ (1 + |γ − 1|)∥(−∆+ γ)−1U(t− 1)∥L2(RN ),

whereas by (2.1)

∥(−∆+ γ)−1U(t− 1)∥L2(RN ) = ∥(−∆+ γ)−
1
2 (−∆+ γ)−

1
2U(t− 1)∥L2(RN )

≤ γ− 1
2∥(−∆+ γ)−

1
2U(t− 1)∥L2(RN ).
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Using this and applying the estimate of Lemma 2.7 with T = t− 1, we get for all sufficiently
large R

∥U(t)∥H1(RN ) ≤ µ(1 + |γ − 1|)γ− 1
2∥(−∆+ γ)−

1
2U(t− 1)∥L2(RN )

≤ µ(1 + |γ − 1|)γ− 1
2 e−

δ
2
(t−1)∥(−∆+ γ)−

1
2U(0)∥L2(RN )

+ µ(1 + |γ − 1|)γ− 1
2 (ζR∥U∥L2(0,t;L2r′

φ (RN )) + αR∥U∥L2(0,t;L2s′ (RN ))).

Applying (2.1), (2.7) and the Sobolev embedding H2(RN) ⊂ L2s′(RN), we get

∥U(t)∥H1(RN ) ≤ µ(1 + |γ − 1|)γ−1e−
δ
2
(t−1)∥U(0)∥H1(RN )

+ µ(1 + |γ − 1|)γ− 1
2 (ζR∥U∥L2(0,t;L2r′

φ (RN )) + αRc(s
′)∥U∥L2(0,t;H2(RN ))),

where c(s′) is the Sobolev embedding constant. Applying Lemma 2.4, we thus obtain for
each t ≥ 1 and all sufficiently large R

∥U(t)∥H1(RN ) ≤ (ηt + βRκt)∥U(0)∥H1(RN ) + ξR∥U∥L2(0,t;L2r′
φ (RN )),

with ξR = µ(1 + |γ − 1|)−1γ− 1
2 ζR,

ηt = µ(1 + |γ − 1|)γ−1e−
δ
2
(t−1) and βR = µ(1 + |γ − 1|)−1γ− 1

2 c(s′)αR.

Choosing t∗ ≥ 1 such that ηt∗≤ q∗
2
, we next take R∗ so large that βR∗κt∗≤ q∗

2
. Hence we

obtain

(2.18) ∥U(t∗)∥H1(RN ) ≤ q∗∥U(0)∥H1(RN ) + ξ∗∥U∥L2(0,t∗;L2r′
φ (RN )),

where ξ∗ = ξR∗ .
Taking now u0, v0 ∈ B with B as in (2.16), we write (2.18) for the approximating sequences

of initial data from S(τ)B ⊂ B. Since by Lemma 2.4 and the Sobolev embedding

∥S(·)u1 − S(·)v1∥L2(0,t∗;L2r′
φ (RN )) ≤ c∥S(·)u1 − S(·)v1∥L2(0,t∗;H2(RN ))

≤ cκt∗ ∥u1 − v1∥H1(RN ) , u1, v1 ∈ B,

we can pass to the limit on both sides of (2.18) and get the result. □

We now give the following compactness result.

Lemma 2.10. Given T > 0 consider the space

Z = {z ∈ L2(0, T ;H2(RN)) :
dz

dt
∈ L2(0, T ; (H2(RN))′)}

with norm ∥z∥L2(0,T ;H2(RN )) + ∥dz
dt
∥L2(0,T ;(H2(RN ))′) and let φ be as in (2.14).

If p > max{N
4
, 1} then Z is compactly embedded in L2(0, T ;L2p′

φ (RN)), where p′ is Hölder’s
conjugate to p. In particular, n(·) = ∥ · ∥

L2(0,T ;L2p′
φ (RN ))

is a compact norm on Z in the sense

of Definition A.1.

Proof. By Sobolev embedding H2(RN) ⊂ L2p′(RN). Taking into account that φ ≤ 1 we

observe that L2p′(RN) ⊂ L2p′
φ (RN). Since φ ∈ L1(RN), writing φ as φ

1
p
+ 1

p′ and using the

Hölder inequality, we conclude that L2p′
φ (RN) ⊂ L2

φ(RN), where the latter space is a Hilbert
space. Therefore we have

H2(RN) ⊂ L2p′

φ (RN) ⊂ L2
φ(RN) ⊂ (L2

φ(RN))′ ⊂ (H2(RN))′
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algebraically and topologically. In addition, the identity map is compact from H2(RN) to
L2p′
φ (RN), because H2(RN) is continuously embedded into locally uniform space H2

U(RN),

whereas H2
U(RN) is compactly embedded in L2p′

φ (RN) (see [2, Lemma 4.1 (iii)]). Hence [37,
Theorem I.5.1] applies and we get the result. □

Proof of Theorem 1.2. We specify that conditions in Definition A.2 hold here with B =
B, X = H1(RN), Z = {z ∈ L2(0, t∗;H

2(RN)) : dz
dt

∈ L2(0, t∗; (H
2(RN))′)}, nZ(·) being

a multiple of ∥ · ∥L2(0,t∗;L2r′
φ (RN )), and mapping K such that B ∋ u0

K→ S(·)u0 ∈ Z, where t∗
is taken from Lemma 2.9. Indeed, with this notation the estimate in (A.2) is satisfied by
Lemma 2.9 with q∗ < 1 and V = S(t∗), whereas compactness of nZ(·) on the space Z follows
from Lemma 2.10. Also, K : B → Z is globally Lipschitz (cp. (A.1)), since by Lemmas
2.4-2.5 and (2.6)

(2.19) ∥Ku0 −Kv0∥Z = ∥S(·)u0 − S(·)v0∥Z ≤ κ∗∥u0 − v0∥H1(RN ), u0, v0 ∈ B

where κ∗ = κt∗ + ωt∗ . □

3. Finite-dimensional attractors for the semigroup

First we show Hölder continuity in time of the semigroup {S(t)}t≥0.

Lemma 3.1. Assume conditions of Theorem 1.1 and let B be bounded in H2(RN) and
positively invariant under {S(t)}t≥0.

Then, given any β < 2, for arbitrarily fixed ζ ∈ (0, 1) and T > τ > 0 we have

(3.1) ∥S(t1)u0 − S(t2)u0∥Hβ(RN ) ≤ χ|t1 − t2|ζ , t1, t2 ∈ [τ, T ], u0 ∈ B

for some positive constant χ.

Proof. Letting Fj(u), j = 1, 2, 3, as in [14, Appendix B] and using [14, Lemmas B.1, B.2,
B.3] with p = 2 and r ≥ 2, observe that

H4(α− 1
2
)(RN) ∋ u →

3∑
j=1

Fj(u) + const.u ∈ (H2(RN))′

is Lipschitz continuous on bounded sets whenever α < 1 is close enough to 1. Concerning
u = S(·)u0, observe that it is the solution as in [12, Lemma 2.2.1] if we let therein F (u) =∑3

j=1 Fj(u) + (δ + 1)u, A = ∆2 + 1 and Xα = H4(α− 1
2
)(RN) (see [13, Corollary 2.7] for the

action of the semigroup generated by −∆2−1 on the scale of Bessel potential spaces). Then
[12, (2.2.3)] gives the result with β = 4(α − 1

2
) for any α < 1 close enough to 1. Applying

(2.6), we see that (3.1) actually holds for any β < 2. □

We are ready to prove Theorems 1.1 and 1.3 announced in the Introduction.

Proof of Theorems 1.1 and 1.3. The quasi-stability of the semigroup {S(t)}t≥0 in H1(RN)
generated by (1.1)–(1.2), which has already been proved in Theorem 1.2, guarantees that
the assumptions of Theorem A.4 are fulfilled with V = S(t∗). In particular, invoking (2.17)
with constants t∗ ≥ 1, q∗ ∈ (0, 1) and ξ∗ > 0 and the global Lipschitz condition (2.19) for
K : B → Z with a Lipschitz constant κ∗ > 0, it follows that for any θ ∈ (0, 1 − q∗) there
exists a compact set E ⊂ B in H1(RN) such that S(t∗)E ⊂ E and for some c > 0

(3.2) d(S(kt∗)B,E) ≤ c(q∗ + θ)k, k ∈ N,
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and

(3.3) dimf (E) ≤ log 1
q∗+θ

m 2κ∗
θ
,

where m 2κ∗
θ

is the maximal number of points zj in a closed ball {z ∈ Z : ∥z∥Z ≤ 2κ∗
θ
} in Z

with the property that ξ∗∥zj − zl∥L2(0,t∗;L2r′
φ (RN )) > 1 whenever j ̸= l. Since by invariance of

A we have A = S(kt∗)A ⊂ S(kt∗)B, we see that A ⊂ E and thus the global attractor A
has its fractal dimension estimated as in (1.19).

Setting

M =
⋃

t∈[t∗,2t∗]

S(t)E ⊂ B,

it follows that M is compact in H1(RN), since S(t)u0 is continuous in H1(RN) with respect
to a pair of arguments (t, u0) ∈ [0,∞)×H1(RN). Moreover, S(t)M ⊂ M for t ≥ 0, because
S(t∗)E ⊂ E. Using Lemma 2.3 with α = 1

4
and (3.1) with β = 1, the fractal dimension of M

in H1(RN) is estimated from above by 1
ζ
(1 + dimf (E)) (see [17, Proposition 3.1.13]). Since

this holds for any ζ ∈ (0, 1), we get from (3.3)

dimf (M) ≤ 1 + log 1
q∗+θ

m 2κ∗
θ
.

Note that if B is bounded in H1(RN), then there exists tB ≥ 0 such that S(tB)B ⊂ B. For
t ≥ tB + 2t∗, we have t − tB = kt∗ + t∗ + r with some r ∈ [0, t∗], k ∈ N, and using again
Lemma 2.3 with α = 1

4
, we obtain from (3.2)

d(S(t)B,M) = d(S(t− tB)S(tB)B,M) ≤ d(S(t∗ + r)S(kt∗)B, S(t∗ + r)E)

≤ µd(S(kt∗)B,E) ≤ µc(q∗ + θ)k ≤ CBe
−ξt,

where ξ = − 1
t∗
ln (q∗ + θ) > 0 and CB > 0. Hence M enjoys the properties (i), (ii) and (iii)

listed in the Introduction and thus is an exponential attractor for the semigroup {S(t)}t≥0

with the upper bound of its fractal dimension as in (1.20).
If 0 < q∗ <

1
2
we moreover apply [19, Theorem 2.1, Corollary 3.5]. Based on this we obtain,

in turn, the estimate of fractal dimension of the global attractor A expressed through the
Kolmogorov ε−entropy as in (1.21). Also, A is then contained in an exponential attractor
M satisfying the estimate (1.22). □

Appendix A. Estimate of fractal dimension via method of quasi-stability

We recall that given in a Banach space X a compact set B its fractal dimension is

dimf (B) = lim sup
ε→0

log 1
ε
nε,

where nε denotes the smallest number of ε–balls needed to cover B in X. In what follows
we include key notions and results connected with estimates of fractal dimension using the
method of quasi-stability (see e.g. [18, 17]).

Definition A.1 ([17, Definition 3.1.14]). We say that nZ : Z → [0,∞) is a compact seminorm
on a normed space Z if and only if nZ satisfies

nZ(x+ y) ≤ nZ(x) + nZ(y), nZ(λx) = |λ|nZ(x), x, y ∈ Z, λ ∈ R,
and each sequence {zn} bounded in Z contains a subsequence {znj

} such that

nZ(znj
− znl

) → 0 as j, l → ∞.
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Definition A.2 ([17, Definition 3.4.1]). Let X be a Banach space and B be a subset of X.
We say that a mapping V : B → X is quasi-stable on B if there is a normed space Z with
a compact seminorm nZ on Z, and a mapping K : B → Z such that for some constants
q∗ ∈ [0, 1), κ∗ > 0 we have

(A.1) ∥Kx−Ky∥Z ≤ κ∗ ∥x− y∥X , x, y ∈ B,

(A.2) ∥V x− V y∥X ≤ q∗ ∥x− y∥X + nZ(Kx−Ky), x, y ∈ B.

In case of a semigroup {S(t)}t≥0 on X, we say that the dynamical system (X,S(t)) is quasi-
stable on B ⊂ X at time t∗ > 0 if the mapping S(t∗) is quasi-stable on B.

Theorem A.3 ([17, Theorem 3.1.21]). Let X be a Banach space, B be bounded and closed in
X and V : B → X be quasi-stable on B as in Definition A.2. If B ⊂ V B then B is actually
compact in X, its fractal dimension dimf (B) in X is finite and, given any θ ∈ (0, 1− q∗),

dimf (B) ≤ log 1
q∗+θ

m 2κ∗
θ
,

where m 2κ∗
θ

is the maximal number of points zj in the ball {z ∈ Z : ∥z∥Z ≤ 2κ∗
θ
} such that

nZ(zj − zl) > 1 whenever j ̸= l.

Theorem A.4 ([17, Theorem 3.2.1]). Let X be a Banach space, B be bounded and closed
in X and V : B → X be quasi-stable on B as in Definition A.2. If V B ⊂ B then given
θ ∈ (0, 1− q∗), there exists a compact set Eθ ⊂ B satisfying

V Eθ ⊂ Eθ, d(V kB,Eθ) ≤ r(q∗ + θ)k, k ∈ N,
for some r > 0, and also such that its fractal dimension in X is finite and estimated by

dimf (Eθ) ≤ log 1
q∗+θ

m 2κ∗
θ
,

where m 2κ∗
θ

is as in Theorem A.3.
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