
EXPONENTIAL ATTRACTORS FOR MODIFIED
SWIFT-HOHENBERG EQUATION IN RN

RADOS LAW CZAJA1 AND MARIA KANIA2

Abstract. A Cauchy problem for a modification of the Swift-Hohenberg equa-
tion in RN with a mildly integrable potential is considered. Existence of expo-
nential attractors containing a finite dimensional global attractor in H2(RN ) is
shown under the dissipative mechanism of fourth order parabolic equations in
unbounded domains.

1. Introduction

We consider the Cauchy problem for the fourth order parabolic equation

ut +∆2u+ γ∆u+ δu = f(x, u), t > 0, x ∈ RN , (1.1)

together with the initial condition

u(0) = u0, (1.2)

where γ, δ ⩾ 0 and f belongs to the class of functions of the form

f(x, s) = g(x) +m(x)s+ f0(x, s), x ∈ RN , s ∈ R, (1.3)

with mildly integrable potential m : RN → R satisfying

∥m∥Lr
U (RN ) = sup

y∈RN

∥m∥Lr(B(y,1)) < ∞ for some max
{

N
4
, 1
}
< r ⩽ ∞, (1.4)

g ∈ L2(RN) ∩ L∞(RN),

and f0 : RN × R → R such that

f0(x, 0) = 0, x ∈ RN , (1.5)

|f0(x, s1)− f0(x, s2)| ⩽ c0|s1 − s2|(1 + |s1|ρ−1 + |s2|ρ−1), x ∈ RN , s1, s2 ∈ R, (1.6)

where c0 is a certain positive constant and the exponent

ρ ⩾ 1 is arbitrarily large for N ⩽ 4 and 1 ⩽ ρ ⩽ N
N−4

for N ⩾ 5. (1.7)

Equation (1.1) is a modification of the Swift-Hohenberg equation

ut + (q20I +∆)2u = αu− u3
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introduced to model the pattern formation of cells in the Rayleigh-Bénard convec-
tion (see [25, 16]). The long-time behavior of solutions to this equation, and to its
various generalizations, was mostly investigated in the case when the problem is
considered in a bounded domain under given boundary conditions, mainly of the
Dirichlet type. For parabolic problems in bounded domains, including the Swift-
Hohenberg type equations, the existence of a global attractor and its finite fractal
dimensionality is thus well understood (see e.g. [20, 21, 23, 17, 14, 18]). The case
of unbounded domains or RN still constitutes a challenging task. Investigating the
asymptotic behavior of solutions in this situation is much more difficult, mainly due
to the lack of compactness of Sobolev embeddings. To avoid this hardship such
problems are usually studied in weighted Sobolev spaces or a very weak type of an
attractor is considered in locally uniform spaces or spaces of bounded and uniformly
continuous functions. For the Swift-Hohenberg type equations this was done e.g. in
[19, 13, 12].

For classical Sobolev spaces another approach can be taken in specific situations.
A dissipative mechanism for nonlinear reaction-diffusion equations in unbounded
domains exploiting exponentially decaying linear semigroup generated by ∆−V (x)I
with weakly integrable Schrödinger potential V was introduced by Arrieta et al. in
[1]. They showed that the interplay between diffusion and reaction terms guarantees
existence of compact global attractors in Bessel potential spaces and thus in classical
Sobolev spaces for a particular choice of parameters. Later Cholewa and Rodŕıguez-
Bernal in [4, 5] formulated a similar dissipative mechanism for semilinear fourth
order parabolic equations of the form

ut +∆2u = f(x, u), x ∈ RN , t > 0, (1.8)

to prove existence of global attractors in H2(RN) for semigroups generated by
(1.8). This approach was also successfully applied to the modification of the Swift-
Hohenberg equation of the form (1.1) in our paper [9].

We recall that the dissipativity mechanism of fourth order equations in unbounded
domains for the problem (1.1)–(1.3) is based on a structure condition

sf(x, s) ⩽ C(x)s2 +D(x) |s| , x ∈ RN , s ∈ R, (1.9)

with some functions C,D : RN → R satisfying

∥C∥Lr
U (RN ) = sup

y∈RN

∥C∥Lr(B(y,1)) < ∞ for some max
{

N
4
, 1
}
< r ⩽ ∞, (1.10)

0 ⩽ D ∈ Lq(RN) for some max
{

2N
N+4

, 1
}
⩽ q ⩽ 2 (q > 1 if N = 4),

and such that solutions of the linear problem{
wt +∆2w = C(x)w, x ∈ RN , t > 0,

w(0) = w0 ∈ L2(RN)

decay exponentially as t → ∞. The latter requirement is equivalent to the existence
of ωC > 0 such that∫

RN

(
|∆ϕ|2 − C(x)ϕ2

)
⩾ ωC ∥ϕ∥2L2(RN ) for ϕ ∈ H2(RN). (1.11)



MODIFIED SWIFT-HOHENBERG EQUATION IN RN 3

For simplification of further references, we introduce the following assumption.

Assumption 1. The function f satisfies conditions (1.3)-(1.7) and the dissipativity
mechanism (1.9)-(1.11) holds.

The asymptotic behavior of the solutions to the problem (1.1)–(1.2) under As-
sumption 1 was investigated in [9] by treating it as an abstract Cauchy problem

ut +Au = F(u) (1.12)

in the sense of [15, 6] with the main linear operator A being, for a sufficiently large
µ > 0, a positive definite self-adjoint operator

A = ∆2 −m(·)I + µI (1.13)

in L2(RN) with the domain D(A) dense in H2(RN), whereas

F(u)(x) = −γ∆u(x) + (µ− δ)u(x) + g(x) + f0(x, u(x)), u ∈ H2(RN), x ∈ RN .

The initial data for the abstract Cauchy problem was taken from Xα = D(Aα),

α ∈ [1
2
, 1), being the fractional power space corresponding to A. Note that X

1
2

coincides up to the equivalence of norms with H2(RN) endowed with the equivalent
norm ∥ϕ∥2H2(RN ) = ∥∆ϕ∥2L2(RN ) + ∥ϕ∥2L2(RN ) .

In order to precisely recall the result on the existence of a regular global attractor
from [9, Theorem 1.1, Theorem 5.4], we let

νC =
ωC

2(ωC + ζC) + 1
, (1.14)

where ωC comes from (1.11) and ζC > 0 is such that∫
RN

C(x)ϕ2 ⩽
1

4
∥ϕ∥2H2(RN ) + ζC ∥ϕ∥2L2(RN ) , ϕ ∈ H2(RN), (1.15)

holds, see [4, (2.24)]. Note that the constant νC > 0 depends exclusively on the
properties of C(·) from the structure condition (1.9).

Theorem 1.1. Let Assumption 1 hold. If

0 ⩽ γ ⩽
√
νCδ, (1.16)

then the Cauchy problem (1.1), (1.2) defines a C0 semigroup {S(t) : t ⩾ 0} of global
solutions in Xα, α ∈ [1

2
, 1), possessing a compact global attractor A in Xα. More

precisely, we have
A = W u(E),

where W u(E) denotes the unstable manifold of the set of stationary solutions of
(1.1). Moreover, A is bounded in L∞(RN) and is contained in a positively invariant
bounded absorbing set B from Xα ∩ L∞(RN).

The question of finite fractal dimension of this global attractor requires a special
attention, since our problem is set in an infite-dimensional space of functions defined
in RN for which the compactness of Sobolev embeddings is lacking. In [2], based
on the quasi-stability method developed by Lasiecka and Chueshov ([8, 7]), it was
proved that the global attractor for the problem (1.8) has a finite fractal dimen-
sion and is contained in an exponential attractor. This modern approach to show
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finite fractal dimension of invariant sets is more flexible than squeezing property or
smoothing property methods used before e.g. in [11] or [3] for problems in bounded
domains. Moreover, the quasi-stability of a semigroup on a positively invariant ab-
sorbing set (cp. Definition 2.4 and (1.21), (1.22) below) is a crucial step to prove
existence of an exponential attractor, which not only exponentially attracts initial
data from bounded sets, but is also more robust under perturbations of the system.

The aim of this note is to further study the semigroup from Theorem 1.1 in
the case of α = 1

2
in order to show that the global attractor A has finite fractal

dimension in X
1
2 = H2(RN). Moreover, following the ideas of [2], we will embed

A into an exponential attractor of a finite fractal dimension, which attracts all
bounded subsets of X

1
2 uniformly exponentially fast. To this end, we strengthen

the conditions of Theorem 1.1 introducing the following assumption.

Assumption 2. Let Assumption 1 hold and let the function f0 in (1.3), besides
(1.5) and (1.6), satisfy

∂f0
∂s

(x, s) → ∂f0
∂s

(x, 0) = 0 as s → 0 uniformly for x ∈ RN . (1.17)

Moreover, let the function D in (1.9) satisfy one of the conditions:

D ∈ Lp(RN) for some p ⩾ max
{

N
4
, 1
}

(p > 1 if N = 4) (1.18)

or

D(x) → 0 as |x| → ∞. (1.19)

The estimate of the fractal dimension of the global attractor A and the exponen-
tial attractors will be expessed in terms of the maximal cardinality of distinguishable
subsets of the closed unit ball in the space

Z(T1, T2) = C1([T1, T2];L
2(RN)) ∩ C([T1, T2];H

2(RN))

equipped with the norm ∥ · ∥Z(T1,T2) = ∥ · ∥H1(T1,T2;L2(RN )) + ∥ · ∥L2(T1,T2;H2(RN )) with
respect to the compact seminorm

nZ(T1,T2),R,µ(z) = µ ∥z|BR
∥L2(T1,T2;L2r′ (BR)) , z ∈ Z(T1, T2), (1.20)

where r′ denotes Hölder’s conjugate to r from (1.4), BR = {x ∈ RN : |x| < R} and
positive constants R, µ and T2 > T1 are given. For the proof of the compactness of
the seminorm nZ(T1,T2),R,µ, we refer the reader to [2, Lemma 13.8].
Then the main theorem of this paper is the following.

Theorem 1.2. Let Assumption 2 and (1.16) be satisfied and let {S(t) : t ⩾ 0} be

the semigroup of global X
1
2 -solutions of (1.1)-(1.2) possessing the global attractor

A contained in the absorbing set B from Theorem 1.1. Then

(i) There exist positive constants R∗, T ∗ > 0, T > T ∗, ηT ∈ (0, 1), κT , µT > 0
such that the semigroup {S(t) : t ⩾ 0} is quasi-stable on B with respect to the
compact seminorm nZ(T ∗,T ) = nZ(T ∗,T ),R∗,µT

defined in (1.20) and parameters
(ηT , κT ), that is, for any u0, v0 ∈ B we have

∥S(·)u0 − S(·)v0∥Z(T ∗,T ) ⩽ κT∥u0 − v0∥H2(RN ), (1.21)
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and

∥S(T )u0 − S(T )v0∥H2(RN ) ⩽ ηT ∥u0 − v0∥H2(RN ) + nZ(T ∗,T )(S(·)u0 − S(·)v0), (1.22)

(ii) For any σ ∈ (0, 1−ηT ) there exist a T−weak exponential attractor M0 ⊂ B and
an exponential attractor M ⊂ B for the semigroup (see Definition 2.1), both
with rate of attraction ξ ∈ (0, 1

T
ln 1

ηT+σ
), containing the global attractor A,

(iii) The fractal dimensions of A, M0 and M are estimated by

dim
H2(RN )
f (A) ⩽ dim

H2(RN )
f (M0) ⩽ log 1

ηT+σ
mZ(T ∗,T )

(
2κTσ

−1
)

and

dim
H2(RN )
f (A) ⩽ dim

H2(RN )
f (M) ⩽ 1 + log 1

ηT+σ
mZ(T ∗,T )

(
2κTσ

−1
)
, (1.23)

where mZ(T ∗,T ) (2κTσ
−1) is the maximal number of zj in

B
Z(T ∗,T )

(0, 1) = {z ∈ Z(T ∗, T ) : ∥z∥Z(T ∗,T ) ⩽ 1}

having the property that nZ(T ∗,T )(zj − zl) ⩾ σ
2κT

for j ̸= l.

The paper is organized as follows. In Section 2 we formulate the existence results
concerning exponential attractors, which emphasize the role of quasi-stable semi-
groups among dissipative semigroups possessing finite-dimensional attractors. In
Section 3, using the Assumption 2, we prove that the semigroup generated by the
modified Swift-Hohenberg equation (1.1) is quasi-stable on the absorbing set B from
Theorem 1.1. Furthermore, we show that the semigroup is Hölder continuous with
respect to time, uniformly on the set B. Hence the abstract results from Section 2
apply and yield Theorem 1.2.

2. Exponential attractors via quasi-stability

In this section we review the abstract results concerning the existence of expo-
nential attractors. Here and subsequently, given a subset G of a metric space V
and ε > 0, by NV (G, ε) we denote the minimal number of open ε−balls centered
at points from G necessary to cover the set G. Moreover, ΛV (G) stands for the

ω−limit set of G, that is, ΛV (G) =
⋂
s⩾0

clV
⋃
t⩾s

S(t)G.

Let us first recall the notion of an exponential attractor and its weaker counterpart
for a semigroup {S(t) : t ⩾ 0} on a metric space V , that is, a family of maps
S(t) : V → V , t ⩾ 0, such that S(t)S(s) = S(t + s), t, s ⩾ 0, with S(0) being
an identity map on V .

Definition 2.1. An exponential attractor for a semigroup {S(t) : t ⩾ 0} on a metric
space (V, d) is a nonempty compact set M ⊂ V such that

(i) M is positively invariant under the semigroup, i.e., S(t)M ⊂ M for t ⩾ 0,
(ii) the fractal dimension of M in V is finite with a given bound χ ⩾ 0, i.e.,

dimV
f (M) = lim sup

ε→0+
log 1

ε
NV (M, ε) ⩽ χ < ∞,
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(iii) there is ξ > 0 such that for every bounded subset G of V we have

lim
t→∞

eξt distV (S(t)G,M) = lim
t→∞

eξt sup
x∈G

inf
y∈M

d(S(t)x, y) = 0.

If instead of (i) we consider a weaker requirement that

(i’) there exists a positive number T > 0 such that S(T )M ⊂ M,

then we call M a T−weak exponential attractor for the semigroup.

Before we give an equivalent condition for the existence of a weak exponential
attractor for a semigroup on a complete metric space, based on [22, Theorem 2.1],
we recall the notion of an asymptotically closed semigroup.

Definition 2.2. A semigroup {S(t) : t ⩾ 0} on a metric space (V, d) is called
asymptotically closed if for any t ⩾ 0, tk ⩾ 0, tk → ∞ and any bounded sequence
xk ∈ V the following implication holds:

if S(tk)xk → x and S(t+ tk)xk → y withx, y ∈ V, then S(t)x = y.

Theorem 2.3. Let {S(t) : t ⩾ 0} be an asymptotically closed semigroup on a com-
plete metric space (V, d) and let T > 0. Then, the following statements are equiva-
lent:

(1) There exists a T−weak exponential attractor M0 in V for the semigroup.
(2) There exists a nonempty bounded (optionally also positively invariant) absorb-

ing set B ⊂ V for the semigroup such that

NV (S(kT )B, aqk) ⩽ bhk, k ∈ N, k ⩾ k0, (2.1)

holds for some k0 ∈ N, a, b > 0, q ∈ (0, 1) and h ⩾ 1.

Moreover, if (2) holds, then

M0 = A ∪ E0 = clV E0 ⊂ B,

with E0 being a certain countable subset of B and A = ΛV (clV E0) being the global
attractor for the semigroup, is a T−weak exponential attractor with rate of attraction
ξ ∈ (0, 1

T
ln 1

q
), and its fractal dimension is estimated by

dimV
f (M0) ⩽ log 1

q
h.

The most versatile method to verify (2.1) is based on the quasi-stability of a semi-
group, which was introduced by I. Chueshov in [7, Definition 3.4.1] (see also [8]).

Definition 2.4. We say that a semigroup {S(t) : t ⩾ 0} on a metric space (V, d)
is quasi-stable on a set B ⊂ V at positive time T > 0 with respect to a compact
seminorm nZ and parameters (η, κ) if there exist constants η ∈ [0, 1), κ > 0 and
a map K : B → Z into some auxiliary normed space Z such that

∥Kx−Ky∥Z ⩽ κd(x, y), x, y ∈ B, (2.2)

d(S(T )x, S(T )y) ⩽ ηd(x, y) + nZ(Kx−Ky), x, y ∈ B, (2.3)

hold, where nZ : Z → [0,∞) is some compact seminorm on Z, which means that for
any bounded sequence zk ∈ Z there exists a Cauchy subsequence zkj with respect
to nZ , that is, nZ(zkj − zkl) → 0 as j, l → ∞.
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Following the lines of the proof of [7, Theorem 3.1.21], we formulate the re-
sult, which shows that the quasi-stability of a semigroup on a positively invariant
bounded absorbing set B implies the covering condition of the form (2.1).

Theorem 2.5. Let {S(t) : t ⩾ 0} be a semigroup on a metric space (V, d), T > 0
and let B be a positively invariant bounded absorbing set for the semigroup. If the
semigroup is quasi-stable on B at time T with respect to a compact seminorm nZ
and parameters (η, κ), then there exists a > 0 such that for any σ ∈ (0, 1− η)

NV (S(kT )B, a(η + σ)k) ⩽
(
mZ

(
2κσ−1

))k
, k ∈ N.

Thus (2.1) is satisfied with q = η + σ and h = mZ (2κσ−1), where mZ (2κσ−1) is

the maximal number of elements zj in B
Z
(0, 1) = {z ∈ Z : ∥z∥Z ⩽ 1} having the

property that nZ(zj − zl) ⩾ σ
2κ

for j ̸= l.

Combining the above result with Theorem 2.3, we get the following corollary.

Corollary 2.6. Let {S(t) : t ⩾ 0} be an asymptotically closed semigroup on a com-
plete metric space (V, d), T > 0 and let B be a bounded absorbing set for the
semigroup. If the semigroup is quasi-stable on B at time T with respect to a com-
pact seminorm nZ and parameters (η, κ), then for any σ ∈ (0, 1 − η) there exists
a T−weak exponential attractor M0 ⊂ B in V for the semigroup with rate of at-
traction ξ ∈ (0, 1

T
ln 1

η+σ
), and its fractal dimension is estimated by

dimV
f (M0) ⩽ log 1

η+σ
mZ

(
2κσ−1

)
.

Moreover, the semigroup has a global attractor A contained in M0.

Assuming further that the semigroup is Hölder continuous in time, uniformly on
B, one can show that the global attractor A is in fact contained in an exponential
attractor M (cp. [24, Theorem 3.4]).

Theorem 2.7. Let {S(t) : t ⩾ 0} be an asymptotically closed semigroup on a com-
plete metric space (V, d), T > 0 and let B be a bounded absorbing set for the
semigroup. If the semigroup is quasi-stable on B at time T with respect to a com-
pact seminorm nZ and parameters (η, κ) and there exist T2 > T1 ⩾ 0, ζ > 0 and
ν ∈ (0, 1] such that

d(S(t1)x, S(t2)x) ⩽ ζ |t1 − t2|ν , t1, t2 ∈ [T1, T2], x ∈ B,

then for any σ ∈ (0, 1 − η) there exists an exponential attractor M ⊂ B in V
(independent of ν, ζ, T2) for the semigroup with rate of attraction ξ ∈ (0, 1

T
ln 1

η+σ
),

and its fractal dimension is estimated by

dimV
f (M) ⩽ 1

ν
+ log 1

η+σ
mZ

(
2κσ−1

)
.

We also have M = A ∪ E = clV E ⊂ B, where E is a certain subset of B.

For more details of the proofs of results in this section we refer the reader to [10].
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3. Existence of exponential attractors

In this section we show that the global attractorA for the semigroup {S(t) : t ⩾ 0}
of global X

1
2 solutions to (1.12), S(t)u0 = u(t), t ⩾ 0, is contained in a finite

dimensional exponential attractor. Recall from [9] that the X
1
2 solutions of the

abstract Cauchy problem (1.12) satisfy the Duhamel formula

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)F(u(s))ds, t ⩾ 0 (3.1)

and ∥∥e−At
∥∥
L(H4β1 (RN ),H4β2 (RN ))

⩽ M
e−ωt

tβ2−β1
, t > 0, −β∗ ⩽ β1 ⩽ β2 ⩽ β∗ (3.2)

with

β∗ = 1 +min
{(

N
8
− N

4r

)
, 0
}
∈
(
1
2
, 1
]
.

In what follows, given R > 0, we denote

BR = {x ∈ RN : |x| < R} and Bc
R = RN \BR,

whereas B is the absorbing set from Theorem 1.1. Since by Theorem 1.1 the values
of elements of B belong to some interval IB ⊂ R, note that if we let u, v ∈ IB and
use (1.6), then

|f0(x, u)− f0(x, v)| ⩽ LB |u− v| for x ∈ RN , u, v ∈ IB, (3.3)

where LB is a positive constant depending only on IB and c0, ρ from (1.6).

Lemma 3.1. Under Assumption 1 for arbitrarily fixed q ∈ [2,∞) and each ε > 0
there exist certain tε > 0 and Rε > 0 such that

∥S(t)u0∥Lq(Bc
Rε

) < ε for any t ⩾ tε, u0 ∈ B. (3.4)

Proof. For q = 2 it was proved in [9, Lemma 4.1], whereas for q > 2 it follows from
[9, Proposition 5.3], since there exists RB > 0 such that

∥S(t)u0∥L∞(RN ) ⩽ RB, t ⩾ τ, u0 ∈ B

for any τ > 0 small enough. □

Lemma 3.2. Let Assumption 1 hold. If u0, v0 ∈ B and u = S(·)u0, v = S(·)v0,
then U = u− v satisfies

sup
t∈[0,T ]

∥U(t)∥H2(RN ) ⩽ cT ∥U(0)∥H2(RN ) , T ⩾ 0, (3.5)

sup
t∈[0,T ]

t
1
2 ∥U(t)∥H2(RN ) ⩽ cT ∥U(0)∥L2(RN ) , T ⩾ 0, (3.6)

for some positive constant cT . In particular, we have

∥U∥L2(0,T ;H2(RN )) ⩽ cTT
1
2 ∥U(0)∥H2(RN ) , T > 0. (3.7)
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Proof. Given u0, v0 ∈ B and using Duhamel’s formula (3.1) we have

U(t) = e−AtU(0)+

∫ t

0

e−A(t−s)
[
−γ∆U(s)+(µ−δ)U(s)+f0(·, u)−f0(·, v)

]
ds, t ⩾ 0.

(3.8)
From (3.3) we infer that

∥f0(·, u)− f0(·, v)∥L2(RN ) ⩽ LB ∥U(t)∥L2(RN ) ⩽ LB ∥U(t)∥H2(RN ) , (3.9)

whereas (3.2) yields in particular with some MT > 0∥∥e−At
∥∥
L(H2(RN ))

⩽ MT , t ∈ [0, T ],∥∥e−At
∥∥
L(L2(RN ),H2(RN ))

⩽ MT t
− 1

2 , t ∈ (0, T ].
(3.10)

Joining (3.8)-(3.10), we obtain with L̃B = γ + µ+ δ + LB

∥U(t)∥H2(RN ) ⩽ MT ∥U(0)∥H2(RN ) +MT L̃B

∫ t

0

(t− s)−
1
2 ∥U(s)∥H2(RN ) ds, t ∈ (0, T ],

∥U(t)∥H2(RN ) ⩽ MT t
− 1

2 ∥U(0)∥L2(RN )+MT L̃B

∫ t

0

(t−s)−
1
2 ∥U(s)∥H2(RN ) ds, t ∈ (0, T ],

and the claims follow applying the Volterra type inequality [6, Lemma 1.2.9]. □

If f0 : RN × R → R in (1.3) satisfies additionally (1.17), then the structure con-
dition (1.9) and the growth condition (1.6) have the following two implications (for
their proofs, see [2, Lemmas 13.3 and 13.4]).

Lemma 3.3. Under Assumption 1 and (1.17) for each ε > 0 there exist αε > 0 and
cε > 0 such that

m(x)− C(x) ⩽ ε+ αεD(x) for x ∈ RN , (3.11)

|f0(x, u)− f0(x, v)| ⩽
(
ε+ cε(|u|ρ−1 + |v|ρ−1)

)
|u− v|, u, v ∈ R, x ∈ RN (3.12)

with ρ ⩾ 1 as in (1.7).

For the purpose of showing that the semigroup is quasi-stable, we will further
impose on D in (1.9) one of the conditions: (1.18) or (1.19).

Lemma 3.4. Let Assumption 2 hold. Then there exist constants a, b, R∗, T ∗ > 0
such that for any u0, v0 ∈ B the function U(t) = S(t)u0 − S(t)v0, t ⩾ 0, satisfies
the estimate

∥U(t)∥L2(RN ) ⩽ e−a(t−T ∗) ∥U(T ∗)∥L2(RN ) + b ∥U∥L2(T ∗,t;L2r′ (BR∗ )) , t ⩾ T ∗, (3.13)

where r′ denotes the Hölder conjugate to r from (1.10).

Proof. Setting u = S(·)u0, v = S(·)v0 for u0, v0 ∈ B and U = u− v, we have

Ut +∆2U + γ∆U + δU = m(x)U + f0(x, u)− f0(x, v).

Multiplying the above equation by U in L2(RN) we obtain

1

2

d

dt
∥U∥2L2(RN ) +

∫
RN

(|∆U |2 − C(x)U2) dx−
∫
RN

(m(x)− C(x))U2 dx

− γ∥∇U∥2L2(RN ) + δ ∥U∥2L2(RN ) =

∫
RN

(f0(x, u)− f0(x, v))U dx.
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Using the Cauchy inequality with νC ∈
(
0, 1

2

)
defined in (1.14) we have

γ ∥∇U∥2L2(RN ) ⩽ γ ∥∆U∥L2(RN ) ∥U∥L2(RN ) ⩽
νC
4

∥∆U∥2L2(RN ) +
γ2

νC
∥U∥2L2(RN )

and thus (1.11), (1.14) and (1.15) imply∫
RN

(|∆U |2 − C(x)U2) dx− γ ∥∇U∥2L2(RN ) ⩾ +(1− 2νC)

∫
RN

(|∆U |2 − C(x)U2) dx

+
5νC
4

∥∆U∥2L2(RN ) −
(
2νCζC +

νC
2

+
γ2

νC

)
∥U∥2L2(RN )

⩾
5νC
4

∥∆U∥2L2(RN ) +

(
νC
2

− γ2

νC

)
∥U∥2L2(RN ) .

Consequently, applying (1.16) we obtain

1

2

d

dt
∥U∥2L2(RN ) +

5νC
4

∥∆U∥2L2(RN ) −
∫
RN

(m(x)− C(x))U2 dx+
νC
2

∥U∥2L2(RN )

⩽
∫
RN

(f0(x, u)− f0(x, v))U dx.

(3.14)

We first consider the case when D satisfies (1.18). Splitting the first integral on BR

and Bc
R for arbitrary R > 0 and using (3.11) we get with some αC > 0

1

2

d

dt
∥U∥2 + 5νC

4
∥∆U∥2 −

∫
BR

(m(x)− C(x))U2 dx− αC

∫
Bc

R

D(x)U2 dx

+
νC
4

∥U∥2 ⩽
∫
RN

(f0(x, u)− f0(x, v))U dx.

(3.15)

Note that∫
Bc

R

D(x)U2 dx ⩽ ∥D∥Lp(Bc
R) ∥U∥2L2p′ (RN ) ⩽ bp ∥D∥Lp(Bc

R) (∥∆U∥2L2(RN ) + ∥U∥2L2(RN )),

where the constant bp > 0 is such that

∥U∥2
L2p′ (RN )

⩽ bp(∥∆U∥2L2(RN ) + ∥U∥2L2(RN ))

with p as in (1.18) and p′ denoting its Hölder conjugate. Moreover, due to (1.4) and
(1.10), there exists a certain positive constant kR such that∫

BR

(m(x)− C(x))U2 dx ⩽ ∥m− C∥Lr(BR) ∥U∥2L2r′ (BR) ⩽ kR ∥U∥2L2r′ (BR) .

Combining these estimates with (3.15), we get

1

2

d

dt
∥U∥2L2(RN ) +

(νC
4

− αCbp ∥D∥Lp(Bc
R)

)
(∥∆U∥2L2(RN ) + ∥U∥2L2(RN ))

− kR ∥U∥2L2r′ (BR) ⩽
∫
RN

(f0(x, u)− f0(x, v))U dx.
(3.16)
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Due to (3.3) and the embedding L2r′(BR) ↪→ L2(BR) we have∫
BR

(f0(x, u)− f0(x, v))U dx ⩽ LB ∥U∥2L2(BR) ⩽ LBbr,R ∥U∥2L2r′ (BR)

with some br,R > 0. By (3.12) there exists c∗ > 0 such that for ρ > 1 and q >
max{N

4
, 2
ρ−1

, 1} we have∫
Bc

R

(f0(x, u)− f0(x, v))U dx ⩽
∫
Bc

R

(νC
16

+ c∗(|u|ρ−1 + |v|ρ−1)
)
U2

⩽
νC
16

∥U∥2L2(Bc
R) + c∗

(
∥u∥ρ−1

Lq(ρ−1)(Bc
R)

+ ∥v∥ρ−1

Lq(ρ−1)(Bc
R)

)
∥U∥2L2q′ (RN )

⩽
νC
16

∥U∥2L2(Bc
R) + c∗bq

(
∥u∥ρ−1

Lq(ρ−1)(Bc
R)

+ ∥v∥ρ−1

Lq(ρ−1)(Bc
R)

)
(∥∆U∥2L2(RN ) + ∥U∥2L2(RN )).

Due to (1.18) and (3.4) we choose R = R∗ > 0 and T ∗ ⩾ 0 such that

αCbp ∥D∥Lp(Bc
R∗ )

+ c∗bq

(
∥u∥ρ−1

Lq(ρ−1)(Bc
R∗ )

+ ∥v∥ρ−1

Lq(ρ−1)(Bc
R∗ )

)
<

νC
16

for t ⩾ T ∗.

From (3.16) and the above estimates we obtain

1

2

d

dt
∥U∥2L2(RN ) +

νC
8

∥U∥2L2(RN ) ⩽ (kR∗ + LBbr,R∗) ∥U∥2L2r′ (BR∗ ) , t ⩾ T ∗. (3.17)

Note that it is easy to prove an analogous estimate for ρ = 1.Moreover, if D satisfies
(1.19) instead of (1.18), then instead of directly applying (3.11), we use in (3.14)
its consequence

m(x)− C(x) ⩽
νC
4

for |x| ⩾ R

with a sufficiently large R, to get from (3.14)

1

2

d

dt
∥U∥2 + 5νC

4
∥∆U∥2 −

∫
BR

(m(x)− C(x))U2 dx+
νC
4

∥U∥2

⩽
∫
RN

(f0(x, u)− f0(x, v))U dx.

Since the other arguments of the previous part of the proof carry over to this case
as if αC would be equal to 0, we obtain (3.17) again. Application of the Gronwall

inequality to (3.17) leads to (3.13) with a =
√
νC
2

and b =
√

2(kR∗ + LBbr,R∗). □

Lemma 3.5. Let Assumption 2 hold. For every τ > 0 there exist positive constants
a, b, R∗, T ∗, cτ , cT ∗ such that for any u0, v0 ∈ B the function U(t) = S(t)u0−S(t)v0,
t ⩾ 0, satisfies for all t ⩾ T ∗ the estimate

∥U(t+ τ)∥H2(RN ) ⩽
cτcT ∗

τ
1
2

e−a(t−T ∗) ∥U(0)∥H2(RN ) +
bcτ

τ
1
2

∥U∥L2(T ∗,t;L2r′ (BR∗ )) , (3.18)

where r′ denote Hölder conjugate to r from (1.10).

Proof. Since B is positively invariant and u0, v0 ∈ B, we have S(t)u0, S(t)v0 ∈ B
for every t ⩾ 0. Using the semigroup property and (3.6) we see that for τ > 0 there
exists a positive constant cτ such that

∥U(t+ τ)∥H2(RN ) = ∥S(τ)U(t)∥H2(RN ) ⩽ cττ
− 1

2∥U(t)∥L2(RN ), t ⩾ 0.
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Next it follows from Lemma 3.4 that there are positive constants a, b, T ∗, R∗ such
that for t ⩾ T ∗

∥U(t+ τ)∥H2(RN ) ⩽ cττ
− 1

2

(
e−a(t−T ∗) ∥U(T ∗)∥L2(RN ) + b ∥U∥L2(T ∗,t;L2r′ (BR∗ ))

)
.

Combining the above estimate with (3.5), due to imbedding H2(RN) ↪→ L2(RN),
we obtain (3.18). □

Note that applying Lemma 3.5 with τ = 1 for all t ⩾ T ∗, we get

∥U(t+ 1)∥H2(RN ) ⩽ c1cT ∗e−a(t−T ∗) ∥U(0)∥H2(RN ) + bc1 ∥U∥L2(T ∗,t;L2r′ (BR∗ )) .

Taking t so large that c1cT ∗e−a(t−T ∗) < 1, we obtain the estimate (1.22), i.e., for
u0, v0 ∈ B we have

∥S(T )u0 − S(T )v0∥H2(RN ) ⩽ ηT ∥u0 − v0∥H2(RN )+µT∥S(·)u0−S(·)v0∥L2(T ∗,T ;L2r′ (BR)),

with T = t+ 1, ηT = c1cT ∗e−a(T−T ∗−1) < 1 and µT = bc1.
Additionally, the estimate (1.21) in Theorem 1.2 is a direct consequence of the

following lemma.

Lemma 3.6. Let Assumption 2 be satisfied, u0, v0 ∈ B and U(t) = S(t)u0−S(t)v0.
Then

∥U∥H1(0,T ;L2(RN )) + ∥U∥L2(0,T ;H2(RN )) ⩽ κT∥U(0)∥H2(RN ), T > 0, (3.19)

for some positive constant κT .

Proof. Setting u = S(·)u0, v = S(·)v0 for u0, v0 ∈ B and U = u− v, we have

Ut +AU = (µ− δ)U − γ∆U + f0(x, u)− f0(x, v), (3.20)

where A is the positive definite self-adjoint operator in L2(RN) defined in (1.13).
Multiplying the above equation by AU in L2(RN) and using the Cauchy inequality
we obtain

1

2

d

dt

∥∥∥A 1
2U

∥∥∥2

+
1

2
∥AU∥2 ⩽ (µ− δ)

∥∥∥A 1
2U

∥∥∥2

+ γ2∥∆U∥2 + ∥f0(x, u)− f0(x, v)∥2.

Since D(A 1
2 ) = H2(RN) (see [4, Corollary 2.7]), due to (3.9) and (3.5), we get

1

2

d

dt

∥∥∥A 1
2U

∥∥∥2

+
1

2
∥AU∥2 ⩽ (µ− δ)

∥∥∥A 1
2U

∥∥∥2

+ γ2∥∆U∥2 + L2
B∥U∥2H2(RN )

⩽ c2T (L
2
B + γ2 + cµ)∥U(0)∥2H2(RN ), t ∈ (0, T ).

Integrating over (0, T ) we obtain with some kT > 0

∥AU∥L2(0,T ;L2(RN )) ⩽ kT ∥U(0)∥H2(RN ) .

Applying this estimate and Lemma 3.2 to (3.20) yields

∥Ut∥L2(0,T ;L2(RN )) ⩽ ∥AU∥L2(0,T ;L2(RN )) + (µ+ δ + γ + LB) ∥U∥L2(0,T ;H2(RN ))

⩽ (kT + T
1
2 cT (µ+ δ + γ + LB)) ∥U(0)∥H2(RN ) ,

which together with (3.7) gives (3.19). □
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Before we give a proof of Theorem 1.2 we need one more property of the semi-
group.

Lemma 3.7. Let u0 ∈ B. For every ν ∈ (0, 1) and T > 0 there exists a posi-
tive constant ζT,ν such that the function S(·)u0 satisfies the following local Hölder
condition with exponent ν

∥S(t1)u0 − S(t2)u0)∥H2(RN ) ⩽ ζT,ν |t1 − t2|ν , t1, t2 ∈ [T, 2T ]. (3.21)

Proof. Since f0 satisfies the Lipschitz condition (3.3) and S(·)u0 the integral equa-
tion (3.1), using (3.2) and reasoning as in the proof of [6, (2.2.3)], we obtain the
desired conclusion. □

Proof of Theorem 1.2. Having established (1.21) and (1.22) from part (i) as conse-
quences of Lemmas 3.5 and 3.6, we conclude that the semigroup is quasi-stable on
B in the sense of Definition 2.4. Note that estimates (2.2) and (2.3) are satisfied
with the map K : B → Z(T ∗, T ) defined as K(u0) = S(·)u0.

Since {S(t) : t ⩾ 0}, as a C0 semigroup, is asymptotically closed on H2(RN)
and is Hölder continuous in time by Lemma 3.7, the parts (ii) and (iii) are direct
consequences of Corollary 2.6 and Theorem 2.7. Because M does not depend on
ν ∈ (0, 1), which was arbitrary in (3.21), the estimate (1.23) follows by passing to
the limit with ν → 1. □
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