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Abstract: A Cauchy problem for a modification of the Swift–Hohenberg equation in RN with a mildly integrable
potential is considered. Applying the dissipative mechanism of fourth order parabolic equations in unbounded domains,
it is shown that the equation generates a semigroup of global solutions possessing a global attractor in the scale of Bessel
potential spaces and in H2(RN ) in particular.

Key words: Initial value problems for higher order parabolic equations, Swift–Hohenberg equation, semilinear parabolic
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1. Introduction
Dissipative mechanism for nonlinear reaction-diffusion equations in unbounded domains exploiting exponentially
decaying linear semigroup generated by ∆ − V (x)I with weakly integrable Schrödinger potential V was
introduced by Arrieta et al. in [2]. They showed that the interplay between diffusion and reaction terms
guarantees existence of compact global attractors in Bessel potential spaces and thus in classical Sobolev
spaces for a particular choice of parameters. These compact sets are used to describe long-time dynamics
of dissipative infinite-dimensional dynamical systems appearing in models from mathematical physics (see, e.g.,
[3, 5, 13, 25, 28]).

Later Cholewa and Rodríguez-Bernal in [6, 7] formulated a similar dissipative mechanism for semilinear
fourth order parabolic equations of the form

ut +∆2u = f(x, u), x ∈ RN , t > 0, (1.1)

to prove existence of global attractors in H2(RN ) for semigroups generated by (1.1).
In [4], based on the quasistability method, it was further proved that under slightly strengthened

assumptions these attractors have finite fractal dimension and are contained in exponential attractors. In
the case of fourth order problems, the dissipative mechanism is based on a structure condition

sf(x, s) ⩽ C(x)s2 +D(x) |s| , x ∈ RN , s ∈ R, (1.2)
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with some functions C,D : RN → R satisfying

‖C‖Lr
U (RN ) = sup

y∈RN

‖C‖Lr(B(y,1)) <∞ for some r satisfying max
{

N
4 , 1

}
< r ⩽ ∞, (1.3)

with B(y, 1) ⊂ RN denoting a unit ball centered at y ,

0 ⩽ D ∈ Lq(RN ) for some q satisfying max
{

2N
N+4 , 1

}
⩽ q ⩽ 2 (q > 1 if N = 4), (1.4)

and such that solutions of the linear problem{
wt +∆2w = C(x)w, x ∈ RN , t > 0,

w(0) = w0 ∈ L2(RN )
(1.5)

decay exponentially as t → ∞ . Another application of this mechanism appeared in [8] in the context of
suitable perturbations of the Cahn–Hilliard equation in RN , which define asymptotically compact semigroups
in H1(RN ) and in consequence admit global attractors in this space.

In this paper, following the above approach, we study the long-time behavior of solutions in Bessel
potential spaces (in particular in the standard Sobolev space H2(RN )) to the Cauchy problem for the fourth
order parabolic equation

ut +∆2u+ γ∆u+ δu = f(x, u), t > 0, (1.6)

subject to the initial condition
u(0) = u0, (1.7)

where γ , δ are nonnegative and x varies in the whole RN .
Such a form of perturbation of the main linear operator is motivated by the Swift–Hohenberg equation

([15, 27]) and its generalizations like

ut +
(
q20I +∆

)2
u+ h(u) = g(x)

with h being a cubic polynomial in the original model from 1977 by Swift and Hohenberg.
The Swift–Hohenberg type equations play a significant role in models with pattern formation (see, e.g.,

[9, 22] and the references therein). Having been introduced in connection with the investigation of Rayleigh–
Bénard convection cells, they also appear in a variety of other problems such as wavelength selection in cellular
flows [24] or the study of large aspect ratio lasers [19].

As concerns the long-time behavior of solutions in terms of attractors, the Swift–Hohenberg equation
and its modifications were mainly considered in bounded domains, see, e.g., [12, 17, 18, 21, 23, 26], under the
boundary conditions

u = ∆u = 0 on ∂Ω. (1.8)

Polat, in [23], showed that the equation

ut + (I +∆)2u+ u3 + αu2 − κu+ b|∇u|2 = 0, (1.9)
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with α = 0 and κ, b ∈ R , considered in a bounded domain Ω in R2 , generates a semigroup of mild solutions and
has a global attractor in H2

0 (Ω) . Song et al. generalized this result in [26] showing that Polat’s problem has a
global attractor in any Sobolev space Hk(Ω) . In [12], Giorgini considered a modification of the Swift–Hohenberg
equation in bounded Ω ⊂ R3

ut +∆2u+ 2∆u+ h(u) = 0, x ∈ Ω, t > 0,

with the nonlinearity h ∈ C2(R) satisfying for some positive δ,K

h(s)s ⩾ (1 + δ)s2 −K, h(0) = 0.

Under these assumptions, the existence of a global attractor in L2(Ω) , bounded in H4(Ω) , and of an exponential
attractor in a certain subspace of L2(Ω) was established in [12]. Next, Giorgini’s problem was studied in [18]
with h ∈ C1(R) satisfying

lim inf
|s|→∞

(h(s)s− s2) > 0,

where Khanmamedov proved the well-posedness of the problem and uniform global boundedness of solutions
w.r.t. the initial data. Moreover, he showed that the semigroup has the global attractor in H2(Ω) ∩ H1

0 (Ω) ,
which is a bounded subset of H5(Ω) .

The problem (1.6)–(1.8) in a bounded domain Ω ⊂ RN , N ⩽ 7 , was also considered in [17] with positive
parameters γ, δ and the nonlinear term f(x, u) = −h(u) with h ∈ C1(R) satisfying h(0) = 0 and certain
growth conditions. It was proved there that the semigroup generated by (1.6)–(1.8) possesses a global attractor,
which coincides with the unstable manifold of the set of stationary solutions in H2(Ω) ∩H1

0 (Ω) provided that

0 < γ < min
{
µD
1 , 2

√
δ
}
, (1.10)

where µD
1 denotes the smallest positive eigenvalue of −∆ on Ω with the Dirichlet boundary condition.

Due to the lack of compactness of Sobolev embeddings the Swift–Hohenberg type equations in unbounded
domains were investigated in locally uniform spaces and weighted Sobolev spaces. On the one hand, it allowed
to maintain in the considered space interesting stationary solutions of these equations (consult, e.g., [22]); on
the other hand, it significantly weakened the notion of attractor or made it dependent on the particular choice
of class of weights. The problem of existence of such weak attractors for Swift–Hohenberg type equations in
unbounded domains was addressed, e.g., in [10, 11, 16, 20]. In [20], Mielke and Schneider proved the existence
of the global attractor for a modified Swift–Hohenberg equation on the whole real line in a weighted Sobolev
space H1

ρ(R) . Precisely, they showed that the equation

ut + (I + ∂xx)
2u = κu− λu3 + βuux,

with κ, λ > 0 and β ∈ R , defines a semigroup on H1
l,u(R) , that is the subspace of H1

ρ(R) consisting of

translation continuous elements, with a global (H1
l,u(R),H1

ρ(R)) -attractor, which is translation invariant and

attracts bounded subsets of H1
l,u(R) w.r.t. the metric of H1

ρ . Ion in [16] studied the two-dimensional equation

(1.9) with b = 0 in bounded as well as unbounded domains, showing the existence of a global (L2(R2), L2
ρ(R2)) -

attractor for a certain class of weights ρ . Efendiev and Peletier in [10, 11] considered

ut +∆2u+ γ∆u+ h(u) = g(x) in R3
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with g ∈ L2
U (R3) and the nonlinearity h ∈ C2(R) such that

h(s)s ⩾ −c1 + c2|s|2+ϵ for |s| � 1 and |h(s)s| ⩽ c3|s| for |s| � 1,

h′(s) ⩾ −c4 for s ∈ R,

with positive constants c1, c2, c3, c4 and ε . Under these conditions, the semigroup of global solutions was
generated in W 4,2

U (R3) , where

W l,p
U (RN ) = {u ∈ D′(RN ) : ‖u‖W l,p

U (RN ) = sup
y∈RN

‖u‖W l,p(B(y,1)) <∞},

but its attractor, called there locally compact attractor, was shown to be bounded in W 4,2
U (R3) , compact only

in W 4,2
loc (R3) and attracting in the local topology of W 4,2

loc (R3) . The upper bound for Kolmogorov’s ε−entropy
of this object in the space W 4,2(B(y,R)) was provided and it was observed that in some situations such an
attractor can have infinite fractal dimension.

Note that the modification (1.6) of the Swift–Hohenberg equation considered here contains the term
γ∆u , which counteracts the dissipation of energy for γ > 0 . We can expect that (1.6) will have nicer properties
if we make the term γ∆u subordinate to the terms ∆2u and δu . Therefore, we will show that in general the
equation (1.6) generates a dissipative semigroup (e.g., in H2(RN )) only in a certain region of (γ, δ) parameters

0 ⩽ γ ⩽
√
νCδ, (1.11)

where νC > 0 depends exclusively on the properties of C(x) from the structure condition (1.2) (cp. (3.7)).
Observe that (1.11) is similar in vein to the restriction (1.10) for the bounded domain case.

In our considerations, the right-hand side of (1.6) takes the form

f(x, s) = g(x) +m(x)s+ f0(x, s), x ∈ RN , s ∈ R, (1.12)

with mildly integrable potential m : RN → R satisfying

‖m‖Lr
U (RN ) = sup

y∈RN

‖m‖Lr(B(y,1)) <∞ for some r as in (1.3), (1.13)

g ∈ L2(RN ), (1.14)

and f0 : RN × R → R such that
f0(x, 0) = 0, x ∈ RN , (1.15)

|f0(x, s1)− f0(x, s2)| ⩽ c0|s1 − s2|(1 + |s1|ρ−1 + |s2|ρ−1), x ∈ RN , s1, s2 ∈ R, (1.16)

where c0 is a certain positive constant and the exponent

ρ ⩾ 1 is arbitrarily large for N ⩽ 4 and 1 ⩽ ρ ⩽ N
N−4 for N ⩾ 5. (1.17)

In fact, except for the result of Section 5, we can strengthen (1.17) to

ρ ⩾ 1 is arbitrarily large for N ⩽ 4 and 1 ⩽ ρ < N+4
N−4 for N ⩾ 5. (1.18)
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If ρ ∈ ( N
N−4 ,

N+4
N−4 ) then we limit ourselves only to α = 1

2 below and instead of standard X
1
2 = H2(RN )

solutions we consider ε−regular mild solutions in the sense of [1] (see Remark 2.4).
The main result of the paper is the following.

Theorem 1.1 Let f be in the class of functions satisfying (1.12)–(1.16) and (1.17) or even (1.18) for α = 1
2 only

and assume the dissipativity mechanism (1.2), (1.3), (1.4) with the equation (1.5) having exponentially decaying
solutions. If the condition (1.11) holds, then the Cauchy problem (1.6), (1.7) with u0 from the fractional power
space Xα , α ∈ [ 12 , 1) , corresponding to the operator A given in (2.5), defines a C0 semigroup {S(t) : t ⩾ 0}

of global solutions possessing a compact global attractor A in Xα , which coincides with H2(RN ) for α = 1
2 .

More precisely, we have

A =Wu(E),

where Wu(E) denotes the unstable manifold of the set of stationary solutions of (1.6). Moreover, if g ∈
L2(RN ) ∩ L∞(RN ) and ρ satisfies (1.17), then A is bounded in L∞(RN ) and is contained in a positively
invariant bounded absorbing set from L∞(RN ) .

The article is organized as follows. In Section 2, we give a short summary of properties of the operator
∆2−V (x)I with a mildly integrable potential V and justify existence of unique local Xα , α ∈ [ 12 , 1) , solutions of
the abstract Cauchy problem corresponding to (1.6) within the considered class of nonlinearities. In Section 3, we
use the above-described dissipative mechanism to show boundedness of Xα solutions, which, therefore, generate
a C0 semigroup on Xα . Moreover, we also provide examples of nonlinear terms to which the mechanism applies.
Next, in Section 4, we show that the semigroup is asymptotically compact and prove the existence of the global
attractor from Theorem 1.1 using the existing Lyapunov function. Finally, we discuss in Section 5 regularity
properties of the constructed global attractor and showing its boundedness in L∞(RN ) , we complete the proof
of Theorem 1.1.

2. Local solvability of the problem

We consider the Cauchy problem (1.6), (1.7) for a modified Swift–Hohenberg equation in RN , that is

{
ut +∆2u+ γ∆u+ δu = f(x, u), x ∈ RN , t > 0,

u(0) = u0,

where γ, δ ⩾ 0 and

f(x, s) = g(x) +m(x)s+ f0(x, s), x ∈ RN , s ∈ R,

belongs to the class of functions satisfying (1.13), (1.14), (1.15) and the growth condition (1.16) with (1.17),
formulated in the Introduction.

Remark 2.1 A direct consequence of (1.15) and (1.16) is the following growth estimate

|f0(x, s)| ⩽ c0(|s|+ |s|ρ), x ∈ RN , s ∈ R with c0, ρ as in (1.16). (2.1)
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The local existence of solutions, but most of all the dissipativity of the problem, will be based on the
regularity of the potential m and the function C belonging to the common space Lr

U (RN ) (see (1.13) and
(1.3)).

Properties of the operator AV = ∆2 − V (x)I with V : RN → R satisfying

‖V ‖Lr
U (RN ) = sup

y∈RN

‖V ‖Lr(B(y,1)) <∞ for some r satisfying max
{

N
4 , 1

}
< r ⩽ ∞, (2.2)

were investigated in [6] from where we collect below the relevant facts. For simplicity, we denote the inner
product in X = L2(RN ) by 〈ϕ,ψ〉 and the corresponding norm by ‖ϕ‖ for ϕ,ψ ∈ L2(RN ) .

Proposition 2.2 (cf. [6]) Under the assumption (2.2),

(i) the operator AV is a densely defined self-adjoint operator in L2(RN ) with its domain D(AV ) dense in
H2(RN ) ; for r ⩾ 2 we have D(AV ) = H4(RN ) ,

(ii) the operator AV is bounded below and there exists ωV ∈ R such that

∫
RN

(
|∆ϕ|2 − V (x)ϕ2

)
⩾ ωV ‖ϕ‖2 , ϕ ∈ H2(RN ), (2.3)

(iii) if Eβ denotes the extrapolated fractional power scale associated to AV in L2(RN ) , then

Eβ =

{
H4β(RN ), β ∈ [0, β∗],

(H4β(RN ))′ = H−4β(RN ), β ∈ [−β∗, 0),

where β∗ = 1 +
(
N
8 − N

4r

)
− ∈ ( 12 , 1] and x− = min{x, 0} for x ∈ R ,

(iv) the analytic semigroup {e−AV t : t ⩾ 0} in L2(RN ) decays exponentially if and only if (2.3) holds with
a certain ωV > 0 ,

(v) (see [6, (2.24)]) for any ε0 > 0 there exists ξV (ε0) > 0 such that

∣∣∣∣∫
RN

V (x)ϕ2

∣∣∣∣ ⩽ ε0 ‖ϕ‖2H2(RN ) + ξV (ε0) ‖ϕ‖2 , ϕ ∈ H2(RN ). (2.4)

If additionally ωV in (2.3) is positive, then

(a) A
1
2

V is a positive definite self-adjoint operator in L2(RN ) with domain H2(RN ) ,

(b) norms
∥∥∥A 1

2

V ϕ
∥∥∥ and ‖ϕ‖H2(RN ) are equivalent and

〈A
1
2

V ϕ,A
1
2

V ψ〉 = 〈AV ϕ,ψ〉, ϕ ∈ D(AV ), ψ ∈ D(A
1
2

V ).
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For the potential m : RN → R satisfying (1.13) we choose a constant µ > 0 large enough so that∫
RN

(
|∆ϕ|2 −m(x)ϕ2 + µϕ2

)
⩾ ωm−µ ‖ϕ‖2 , ϕ ∈ H2(RN ),

holds with ωm−µ > 0 . Then the operator

A = Am−µ = Am + µI (2.5)

is positive definite self-adjoint in L2(RN ) with the domain D(Am) dense in H2(RN ) and thus generates
a strongly continuous analytic semigroup {e−At : t ⩾ 0} on X . Moreover, its fractional power space X

1
2 =

D(A 1
2 ) coincides up to the equivalence of norms with H2(RN ) endowed with the equivalent norm

‖ϕ‖2H2(RN ) = ‖∆ϕ‖2 + ‖ϕ‖2 .

We consider the problem (1.6), (1.7) in the abstract form{
ut +Au = F(u), t > 0,

u(0) = u0
(2.6)

with
F(u)(x) = −γ∆u(x) + (µ− δ)u(x) + g(x) + F0(u)(x), F0(u)(x) = f0(x, u(x)).

We fix α ∈ [ 12 , 1) and note that F : Xα → X is well defined, since (2.1) yields

‖F0(u)‖2 ⩽ 2c20(‖u‖2 + ‖u‖2ρ
L2ρ(RN )

),

which combined with the Sobolev type embedding (see [29, 2.8.1/15]), due to (1.17),

H2(RN ) ↪→ L2ρ(RN ), (2.7)

implies
‖F(u)‖ ⩽ ‖g‖+ c(‖u‖H2(RN ) + ‖u‖ρH2(RN )), u ∈ Xα ⊂ H2(RN ), (2.8)

with some positive c .
In order to prove local solvability of (2.6) it suffices to show that F : Xα → X is Lipschitz continuous

on bounded subsets of Xα and apply the standard theory of analytic semigroups (see [5, 14]).

Theorem 2.3 Under the assumptions (1.12)–(1.17) for each u0 ∈ Xα , α ∈ [ 12 , 1) , there exists a unique local
Xα solution

u ∈ C([0, τu0);X
α) ∩ C((0, τu0);D(Am)) ∩ C1((0, τu0);X

1−)

of the problem (2.6) in X satisfying the Duhamel formula

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)F(u(s))ds, t ∈ [0, τu0
), (2.9)

and defined on its maximal interval of existence [0, τu0
) , i.e.,

lim sup
t→τ−

u0

‖u(t)‖Xα = ∞ unless τu0
= ∞.
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Proof For a fixed bounded subset B of Xα and u1, u2 ∈ B by (1.16) and the Hölder inequality we deduce
that

‖F0(u1)−F0(u2)‖ ⩽ c
(
‖u1 − u2‖+ ‖u1 − u2‖L2ρ(RN )(‖u1‖ρ−1

L2ρ(RN )
+ ‖u2‖ρ−1

L2ρ(RN )
)
)
.

Thus, by (2.7), we get

‖F(u1)−F(u2)‖ ⩽ c
(
‖u1 − u2‖H2(RN )(1 + γ + µ+ δ + ‖u1‖ρ−1

H2(RN )
+ ‖u2‖ρ−1

H2(RN )
)
)

and hence F : Xα → X is Lipschitz continuous on bounded subsets of Xα . 2

Remark 2.4 Observe that a different approach of ε−regular mild solutions from [1] for N ⩾ 5 allows to
extend the admissible interval [1, N

N−4 ] in (1.17) of the growth parameter ρ also to the interval ( N
N−4 ,

N+4
N−4 ] if

u0 ∈ H2(RN ) = X
1
2 . Indeed, we decompose F = F̃0 + F̃1 with

F̃0(u)(x) = f0(x, u(x)) + g(x), F̃1(u)(x) = −γ∆u(x) + (µ− δ)u(x).

It has already been shown in [6, Section 3.2] that for ρ ∈ ( N
N−4 ,

N+4
N−4 ] the map F0 is ε−regular relative to

(X
1
2 , X− 1

2 ) . More precisely, we have∥∥∥F̃0(v)− F̃0(w)
∥∥∥
Xγ̃(ϵ)− 1

2
⩽ c ‖v − w‖

X
1
2
+ϵ

(
1 + ‖v‖ρ−1

X
1
2
+ϵ

+ ‖w‖ρ−1

X
1
2
+ϵ

)
, v, w ∈ X

1
2+ϵ

with some constants c > 0 , ε > 0 and γ̃(ε) ∈ [ρε, 12 ] . Since∥∥∥F̃1(v)− F̃1(w)
∥∥∥
Xγ̃(ϵ)− 1

2
⩽ c ‖v − w‖Xγ̃(ϵ)

and γ̃(ε) ⩽ 1
2 , it follows that also F is an ε−regular map relative to (X

1
2 , X− 1

2 ) . Consequently, there exists
a unique local ε−regular mild solution of (2.6) with u0 ∈ H2(RN ) such that

u ∈ C([0, τu0);H
2(RN )) ∩ C((0, τu0);H

4β∗
(RN )) ∩ C1((0, τu0);L

2(RN ))

satisfies (2.9) and τ0 is its maximal existence time for ρ ∈ ( N
N−4 ,

N+4
N−4 ) in the sense that

lim sup
t→τ−

u0

‖u(t)‖H2(RN ) = ∞ unless τu0
= ∞.

Therefore, if ρ ∈ ( N
N−4 ,

N+4
N−4 ) in (1.16) then we limit ourselves only to α = 1

2 and instead of standard Xα

solutions we consider ε−regular mild solutions.

3. Semigroup of global solutions

In this section, we will take advantage of the interplay between the linear term and the nonlinearity in (1.6).
To this end, we assume here the structure condition (1.2) along with (1.3), (1.4) and require that solutions of
(1.5) decay exponentially, which by Proposition 2.2 (iv) means that∫

RN

(
|∆ϕ|2 − C(x)ϕ2

)
⩾ ωC ‖ϕ‖2 , ϕ ∈ H2(RN ) with some ωC > 0. (3.1)
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Multiplying (1.6) by 2ut in L2(RN ) , we obtain

d

dt
(L(u)) = −2 ‖ut‖2 ⩽ 0, (3.2)

where

L(u) = ‖∆u‖2 + δ ‖u‖2 − γ ‖∇u‖2 − 2

∫
RN

F (x, u) (3.3)

with the antiderivative

F (x, s) =

∫ s

0

f(x, τ)dτ, x ∈ RN , s ∈ R.

Remark 3.1 Note that the structure condition (1.2) implies

F (x, s) ⩽ 1

2
C(x)s2 +D(x) |s| , x ∈ RN , s ∈ R. (3.4)

Moreover, Proposition 2.2 (v) for C ∈ Lr
U (RN ) yields in particular

∫
RN

C(x)ϕ2 ⩽ 1

4
‖ϕ‖2H2(RN ) + ζC ‖ϕ‖2 , ϕ ∈ H2(RN ), (3.5)

with some positive constant ζC .

Proposition 3.2 The functional L from (3.3) is well defined for u ∈ H2(RN ) and for some c1 > 0 , we have

L(u) ⩽ c1(1 + ‖u‖2H2(RN ) + ‖u‖ρ+1
H2(RN )), u ∈ H2(RN ). (3.6)

Moreover, if

δ ⩾ γ2

νC
= 2

(
1 +

ζC + 1
2

ωC

)
γ2, (3.7)

where ωC comes from (3.1) and ζC from (3.5), then for some constants c2, c3 > 0 we have

L(u) ⩾ c2 ‖u‖2H2(RN ) − c3 ‖D‖2Lq(RN ) , u ∈ H2(RN ). (3.8)

In consequence, for any bounded subset B of Xα , α ∈ [ 12 , 1) , there exists RB > 0 such that

sup
t⩾0

sup
u0∈B

‖u(t, u0)‖Xα ⩽ RB . (3.9)

Proof Using the mean value theorem, (1.12) and (2.4) for |m| ∈ Lr
U (RN ) , we have∫

RN

|F (x, u)| =
∫
RN

|F (x, u)− F (x, 0)| =
∫
RN

|u| |f(x, θu)|

⩽ ε0 ‖u‖2H2(RN ) + ξ|m|(ε0) ‖u‖
2
+ ‖g‖‖u‖+

∫
RN

|u| |f0(x, θu)|
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where θ = θ(x) ∈ (0, 1) . Moreover, due to the embedding H2(RN ) ↪→ Lρ+1(RN ) for ρ ⩾ 1 satisfying (1.18),
we get from (2.1) ∫

RN

|u| |f0(x, θu)| ⩽ c(‖u‖2H2(RN ) + ‖u‖ρ+1
H2(RN )

)

and in consequence (3.6).
For u ∈ H2(RN ), we estimate L(u) from below. By (3.4), we get

L(u) ⩾ ‖∆u‖2 + δ ‖u‖2 − γ ‖∇u‖2 −
∫
RN

C(x)u2 − 2

∫
RN

D(x) |u| . (3.10)

We estimate the last three terms. If q′ denotes the conjugate exponent to q from (1.4), we have H2(RN ) ↪→

Lq′(RN ) . Thus, by Hölder and Cauchy inequalities, we obtain for any ε1 > 0∫
RN

D(x) |u| ⩽ ‖D‖Lq(RN ) ‖u‖Lq′ (RN ) ⩽
ε1
2
‖u‖2H2(RN ) +

c2

2ε1
‖D‖2Lq(RN ) . (3.11)

Following [6, Corollary 2.11], by (3.5), we get for 0 < ν < 1
2

−2ν

∫
RN

C(x)u2 ⩾ −ν
2
‖u‖2H2(RN ) − 2νζC ‖u‖2 . (3.12)

Moreover, for any ε2 > 0 , we have

γ ‖∇u‖2 ⩽ γ ‖∆u‖ ‖u‖ ⩽ ε2 ‖∆u‖2 +
γ2

4ε2
‖u‖2 . (3.13)

Combining these estimates and using (3.1), we obtain for any 0 < ν < 1
2

L(u) ⩾
(
3

2
ν − ε2 − ε1

)
‖∆u‖2 +

(
δ − γ2

4ε2
− ε1 −

ν

2
+ (1− 2ν)ωC − 2νζC

)
‖u‖2 − c2

ε1
‖D‖2Lq(RN ) .

Setting

νC =
ωC

2(ωC + ζC + 1
2 )

∈
(
0,

1

2

)
(3.14)

and ε1 = ε2 = νC

4 , we have (1− 2νC)ωC − 2νCζC = νC and

L(u) ⩾ νC ‖∆u‖2 + νC
4

‖u‖2 +
(
δ − γ2

νC

)
‖u‖2 − 4c2

νC
‖D‖2Lq(RN ) .

Thus, we get (3.8) provided that (3.7) holds.
Applying (3.2), (3.6), and (3.8), we obtain

c2 ‖u(t)‖2H2(RN ) − c3 ‖D‖2Lq(RN ) ⩽ L(u(t)) ⩽ L(u0) ⩽ c1(1 + ‖u0‖2H2(RN ) + ‖u0‖ρ+1
H2(RN )), (3.15)

which yields the a priori estimate (3.9) with α = 1
2 for a bounded subset B of X 1

2 = H2(RN ) . The a priori
estimate (3.9) for α ∈ ( 12 , 1) is then a consequence of (2.8) and (3.15), see [5, Theorem 3.1.1] for details. 2
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Summarizing the above considerations, we conclude that the modified Swift–Hohenberg equation (1.6)
generates a C0 semigroup {S(t) : t ⩾ 0} on Xα for a given α ∈ [ 12 , 1) , that is, the mapping

[0,∞)×Xα 3 (t, u0) 7→ S(t)u0 ∈ Xα

is continuous (cp. [5, Remark 3.1.1]).

Theorem 3.3 Additionally to the conditions of Theorem 2.3 guaranteeing local solvability (with ρ satisfying
the enhanced bound (1.18) as in Remark 2.4 for α = 1

2 only), assume the structure condition (1.2) together with
(1.3), (1.4), and (3.1). If (3.7) holds, then the problem (2.6) with u0 ∈ Xα , α ∈ [ 12 , 1) , defines a C0 semigroup
of global Xα solutions

S(t)u0 = u(t;u0), t ⩾ 0, u0 ∈ Xα,

which has orbits of bounded sets bounded.

We emphasize that the restriction (3.7) is only related to properties of the function C , since ωC and
ζC come from (3.1) and (3.5), respectively. Note that a similar limitation was also required for the modified
Swift–Hohenberg equation considered in a bounded domain of RN to generate a semigroup of solutions (see
[17] and (1.10)).

Remark 3.4 Observe that in a simple situation when the structure condition (1.2) holds with C(x) ≡ −d , d
being a positive constant, and D ∈ L2(RN ) , the estimate of L(u) from below given in (3.8) holds provided that

δ + d >
γ2

4
, (3.16)

which replaces the restriction (3.7) in this case. Indeed, we write (3.10), take ε > 0 so small that δ+d− ε > γ2

4

and apply the estimates ∫
RN

D(x) |u| ⩽ ‖D‖ ‖u‖ ⩽ ε

4
‖u‖2 + 1

ε
‖D‖2

and

γ ‖∇u‖2 ⩽ γ ‖∆u‖ ‖u‖ ⩽ γ2

γ2 + 2ε
‖∆u‖2 +

(
γ2

4
+
ε

2

)
‖u‖2

(compare (3.13) with ε2 = γ2

γ2+2ε ). Thus, we obtain in this case

L(u) ⩾
(
1− γ2

γ2 + 2ε

)
‖∆u‖2 + (δ + d− γ2

4
− ε) ‖u‖2 − 2

ε
‖D‖2 , (3.17)

which proves the claim.

Example 3.5 A specific simple version of the dissipative mechanism was considered in [30] for the hyperbolic
relaxation of the Swift–Hohenberg equation. Namely, there γ = 2 , m(x) ≡ δ > 0 , g ∈ L2(RN ) and f0 ∈ C2(R)
is an x− independent function satisfying

|f ′′0 (s)| ⩽ C0(1 + |s|ρ−2
), s ∈ R, (3.18)
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with ρ > 2 , (N − 4)ρ ⩽ N and
f0(s)s ⩽ −(1 + δ)s2, s ∈ R. (3.19)

It is easy to see that (3.18) yields (1.16). Moreover, (3.19) implies that f0(0) = 0 and the structure condition
(1.2) holds with C(x) ≡ −1 and D(x) = |g(x)| , which is the case discussed in Remark 3.4 with d = 1 . Since
(3.16) is trivially satisfied (one can take e.g. ε2 = 2

2+δ ∈ (0, 1) in (3.17)), it follows that (3.8) holds without
any further restriction on δ > 0 . Thus, (3.7) is not needed in Theorem 3.3 in this example.

Now we give other examples of nonlinearities of the form (1.12) satisfying assumptions (1.13)–(1.16) and
the dissipative mechanism (1.2)–(1.4) with (3.1).

Example 3.6 Remaining in the simple setting of Remark 3.4 for N ⩽ 4 , we can take the nonlinearity

f(x, s) = −ds− cs2k−1 + g(x), x ∈ RN , s ∈ R,

where k ∈ N , k > 1 , c, d are positive constants and g ∈ L2(RN ) . The abovementioned assumptions are then
satisfied with f0(x, s) = −cs2k−1 , C(x) = m(x) ≡ −d , D(x) = |g(x)| , q = 2 and ωC = d . Moreover, (1.18)
also holds for N = 5 if k = 2, 3, 4 and for N = 6, 7 for k = 2 .

Example 3.7 Consider now the nonlinear term of the form

f(x, s) = m(x)s+ p2(x)s− |p(x)|ρ+1s|s|ρ−1, x ∈ RN , s ∈ R,

with m satisfying (1.13) and (2.3) with ωm > 0 , p ∈ L2(RN )∩L∞(RN ) and ρ > 1 as in (1.18). Using Young’s

inequality ab ⩽ ap̃

p̃ + bq̃

q̃ with

a = |p(x)s|
ρ−1
ρ , b = |p(x)s|

ρ+1
ρ , p̃ =

ρ

ρ− 1
and q̃ = ρ,

we obtain

f(x, s)s = m(x)s2 + |p(x)s|
ρ−1
ρ |p(x)s|

ρ+1
ρ − |p(x)s|ρ+1 ⩽ m(x)s2 +

ρ− 1

ρ
|p(x)s|+

(
1

ρ
− 1

)
|p(x)s|ρ+1.

Note that our assumptions are satisfied with

f0(x, s) = p2(x)s− |p(x)|ρ+1s|s|ρ−1

and C(x) = m(x) , D(x) = ρ−1
ρ |p(x)| and ωC = ωm .

For more examples of suitable right-hand sides of (1.6), we refer the reader to [8, Section 7].

4. Asymptotic compactness and global attractor

In this section, we consider the very same assumptions as in Theorem 3.3 so that (1.6), (1.7) defines a semigroup
on Xα with a given α ∈ [ 12 , 1) . Our aim is to show that this semigroup is asymptotically compact and in
consequence has a global attractor. To this end, we will estimate the tails of orbits of bounded subsets of Xα

in the sense of the following lemma.
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Lemma 4.1 For each bounded subset B of Xα and each ε > 0 , there exist Tε,B > 0 and kε,B ∈ N such that
for any k ⩾ kε,B we have

sup
u0∈B

sup
t⩾Tε,B

‖S(t)u0‖L2(|x|⩾2k) < ε.

Proof Let θ : [0,∞) → [0, 1] be a C∞ function such that θ(s) = 0 for 0 ⩽ s ⩽ 1 and θ(s) = 1 for s ⩾ 2 and
let θ0 > 0 be such that |θ′(s)| ⩽ θ0 and |θ′′(s)| ⩽ θ0 for s ∈ R . We define

ηk(x) = θ2
(
|x|
k

)
for x ∈ RN and k ∈ N

and note that

|∇ηk| (x) ⩽
2θ0
k
,
∣∣∣∇η 1

2

k

∣∣∣ (x) ⩽ θ0
k
, |∆ηk| (x) ⩽

θ1
k2
,
∣∣∣∆η 1

2

k

∣∣∣ (x) ⩽ θ1
k2
, x ∈ RN , (4.1)

with some θ1 > 0 depending on θ0 and N .
We multiply (1.6) by ηku in L2(RN ) and get∫

RN

ηkutu+

∫
RN

ηk(∆u)
2 + γ

∫
RN

ηk(∆u)u+ δ

∫
RN

ηku
2 =

∫
RN

ηkf(x, u)u−
∫
RN

(∆ηk(∆u)u+2(∆u)∇ηk · ∇u).

By (4.1) and (3.9), we obtain

−
∫
RN

(∆ηk(∆u)u+ 2(∆u)∇ηk · ∇u) ⩽ cB
k
,

where henceforth cB denotes a positive constant depending on the set B , which may change from line to line.
Applying (1.2), we get for 0 < ν < 2

1

2

d

dt

∥∥∥η 1
2

k u
∥∥∥2 + γ

∫
RN

ηk(∆u)u+
ν

2

∥∥∥η 1
2

k ∆u
∥∥∥2 + (

1− ν

2

)∫
RN

ηk(∆u)
2

+ δ

∫
RN

ηku
2 −

∫
RN

C(x)(η
1
2

k u)
2 ⩽ cB

k
+

∫
RN

D(x) |u| ηk.

Since we have
∆(η

1
2

k u) = ∆(η
1
2

k )u+ 2∇(η
1
2

k ) · ∇u+ η
1
2

k ∆u (4.2)

and as a result

ηk(∆u)
2 =

(
∆(η

1
2

k u)− 2∇(η
1
2

k ) · ∇u−∆(η
1
2

k )u
)2

,

it follows from (3.9), (4.1), and (4.2) that∫
RN

(
4∆(η

1
2

k u)∇(η
1
2

k ) · ∇u+ 2∆(η
1
2

k u)∆(η
1
2

k )u− 4
(
∇(η

1
2

k ) · ∇u
)
∆(η

1
2

k )u
)
⩽ cB

k

and in consequence
1

2

d

dt

∥∥∥η 1
2

k u
∥∥∥2 + γ

∫
RN

ηk(∆u)u+
ν

2

∥∥∥η 1
2

k ∆u
∥∥∥2 + (

1− ν

2

)∥∥∥∆(η
1
2

k u)
∥∥∥2

+ δ

∫
RN

ηku
2 −

∫
RN

C(x)(η
1
2

k u)
2 ⩽ cB

k
+

∫
RN

D(x) |u| ηk.
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We estimate the last term as in (3.11) with arbitrary ε1 > 0 by

∥∥∥η 1
2

kD
∥∥∥
Lq(RN )

∥∥∥η 1
2

k u
∥∥∥
Lq′ (RN )

⩽ ε1
2

(∥∥∥∆(η
1
2

k u)
∥∥∥2 + ∥∥∥η 1

2

k u
∥∥∥2)+

c2

2ε1

∥∥∥η 1
2

kD
∥∥∥2
Lq(RN )

.

Moreover, by (3.9) and (4.1), we get

−γ
∫
RN

ηk(∆u)u = γ

∫
RN

∇u · ∇(ηk)u+ γ

∫
RN

∣∣∣η 1
2

k ∇u
∣∣∣2 ⩽ γ

∥∥∥∇(η
1
2

k u)
∥∥∥2 + cB

k
,

which, as in (3.13), gives for arbitrary ε2 > 0

−γ
∫
RN

ηk(∆u)u ⩽ ε2

∥∥∥∆(η
1
2

k u)
∥∥∥2 + γ2

4ε2

∥∥∥η 1
2

k u
∥∥∥2 + cB

k
.

Thus, these inequalities, the estimate as in (3.12) with η
1
2

k u in the role of u and (3.1) imply that for any
0 < ν < 1

2 , we have

1

2

d

dt

∥∥∥η 1
2

k u
∥∥∥2 + ν

2

∥∥∥η 1
2

k ∆u
∥∥∥2 + (

(1− 2ν)ωC − 2νζC + δ − γ2

4ε2
− ν

2
− ε1

2

)∥∥∥η 1
2

k u
∥∥∥2

+
(
ν − ε2 −

ε1
2

)∥∥∥∆(η
1
2

k u)
∥∥∥2 ⩽ cB

k
+

c2

2ε1

∥∥∥η 1
2

kD
∥∥∥2
Lq(RN )

.

Thus, taking ν = νC from (3.14) and ε1 = νC

2 , ε2 = νC

4 , we obtain in particular

d

dt

∥∥∥η 1
2

k u
∥∥∥2 + νC

2

∥∥∥η 1
2

k u
∥∥∥2 + 2

(
δ − γ2

νC

)∥∥∥η 1
2

k u
∥∥∥2 ⩽ cB

k
+

2c2

νC

∥∥∥η 1
2

kD
∥∥∥2
Lq(RN )

.

Therefore, if (3.7) holds, by the Gronwall inequality, we get

∥∥∥η 1
2

k u(t)
∥∥∥2 ⩽

∥∥∥η 1
2

k u0

∥∥∥2 e− νC
2 t +

2

νC

(
cB
k

+
2c2

νC

∥∥∥η 1
2

kD
∥∥∥2
Lq(RN )

)
, t ⩾ 0.

Note that ‖u‖2L2(|x|⩾2k) ⩽
∥∥∥η 1

2

k u
∥∥∥2 ⩽ ‖u‖2 and

∥∥∥η 1
2

kD
∥∥∥2
Lq(RN )

⩽ ‖D‖2Lq(|x|>k) → 0 as k → ∞,

since D ∈ Lq(RN ) . Thus, for each ε > 0 , there exist Tε,B > 0 and kε,B ∈ N such that for t ⩾ Tε,B and
k ⩾ kε,B we have ‖u(t)‖L2(|x|⩾2k) < ε, which ends the proof. 2

Proposition 4.2 The semigroup {S(t) : t ⩾ 0} on Xα is asymptotically compact, that is, for any sequence
{S(tn)u0n} , where {u0n} is bounded in Xα and tn → ∞ , there exists a convergent subsequence in Xα .

Proof By Lemma 4.1 for a given ε > 0 , there exist T > 0 , r0 > 0 and n0 ∈ N such that for l, n ⩾ n0 we
have tl, tn ⩾ T + 1 and

‖S(tl − 1)u0l − S(tn − 1)u0n‖L2(|x|⩾r0)
< ε. (4.3)
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Moreover, by (3.9), the sequence {S(tn − 1)u0n} is bounded in Xα ↪→ H2(RN ) , hence in H2(|x| < r0) , which
is compactly embedded into L2(|x| < r0) . Thus, we can choose a convergent subsequence {S(tnk

− 1)u0nk
} in

L2(|x| < r0) . Combining this with (4.3), we see that {S(tnk
− 1)u0nk

} is a Cauchy sequence in L2(RN ) , hence
convergent in L2(RN ) . Since this sequence was bounded in Xα , it follows from the Duhamel formula (2.9) and
[5, Theorem 3.2.1] that the sequence

S(1)S(tnk
− 1)u0nk

= S(tnk
)u0nk

contains a convergent subsequence in Xα , which proves the claim. 2

Having proved the asymptotic compactness of the semigroup, our next goal is to show that it possesses
a global attractor. For this purpose we make the following two observations.

Proposition 4.3 The set E of stationary solutions of (1.6) is bounded in Xα .

Proof Multiplying
∆2u+ γ∆u+ δu = f(x, u)

by u in L2(RN ) , we get from (1.2)

‖∆u‖2 + δ ‖u‖2 − γ ‖∇u‖2 =

∫
RN

f(x, u)u ⩽
∫
RN

C(x)u2 +

∫
RN

D(x) |u| .

Applying (3.1), (3.11), (3.12), and (3.13) with ν = νC from (3.14) and ε1 = νC

2 , ε2 = νC

4 , we obtain

νC ‖∆u‖2 + νC
4

‖u‖2 +
(
δ − γ2

νC

)
‖u‖2 ⩽ c2

νC
‖D‖2Lq(RN ) .

Invoking (3.7), we conclude that

‖u‖2H2(RN ) ⩽
4c2

ν2C
‖D‖2Lq(RN ) ,

which shows boundedness of the set of equilibria of (1.6) in H2(RN ) . If ρ satisfies (1.17), then by (2.8) the set
of stationary solutions is bounded in X1 = D(A) . 2

Proposition 4.4 The functional L from (3.3) is continuous on Xα .

Proof Since Xα ↪→ H2(RN ) , it suffices to show continuity of L on H2(RN ) . Let u, un ∈ H2(RN ) , n ∈ N ,
be such that ‖un − u‖H2(RN ) → 0 as n→ ∞ . Since

|L(un)− L(u)| ⩽ ‖∆(un − u)‖(‖∆un‖+ ‖∆u‖) + 2

∫
RN

|F (x, un)− F (x, u)|

+ γ‖∇(un − u)‖(‖∇un‖+ ‖∇u‖) + δ‖un − u‖(‖un‖+ ‖u‖),

it suffices to show that
∫
RN |F (x, un) − F (x, u)| → 0 as n → ∞ . Using the mean value theorem, (1.12) and

(2.1), we have ∫
RN

|F (x, un)− F (x, u)| =
∫
RN

|f(x, u+ θ(un − u))||un − u| ⩽ ‖g‖‖un − u‖

+ 2

∫
RN

|m(x)|(|un|+ |u|)|un − u|+ c

∫
RN

|un − u|(|un|+ |u|+ |un|ρ + |u|ρ)
(4.4)
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with θ = θ(x) ∈ (0, 1) . Considering a partition of RN by disjoint unitary cubes Qi centered at i ∈ ZN , by the
Hölder inequality and Sobolev embeddings with r from (1.3) and its conjugate exponent r′ , we get∫

RN

|m(x)|(|un|+ |u|)|un − u| ⩽
∑
i∈ZN

‖m‖Lr(Qi)
‖|un|+ |u|‖L2r′ (Qi)

‖un − u‖L2r′ (Qi)

⩽ c ‖m‖Lr
U (RN )

(∑
i∈ZN

‖|un|+ |u|‖2H2(Qi)

) 1
2
(∑
i∈ZN

‖un − u‖2H2(Qi)

) 1
2

⩽ c ‖m‖Lr
U (RN ) (‖un‖H2(RN ) + ‖u‖H2(RN )) ‖un − u‖H2(RN ) .

Applying the Hölder inequality to the last term on the right side of (4.4) and next using the embeddings (2.7)

for ρ from (1.17) and H2(RN ) ↪→ L
2Nρ
N+4 (RN ) for ρ ∈

(
N

N−4 ,
N+4
N−4

)
, we consequently obtain∫

RN

|F (x, un)− F (x, u)| ⩽ c‖un − u‖H2(RN )

× (‖g‖+ (‖m‖Lr
U (RN ) + 1)(‖un‖H2(RN ) + ‖u‖H2(RN )) + ‖un‖ρH2(RN )

+ ‖u‖ρ
H2(RN )

),

which implies the continuity of L on H2(RN ) . 2

Theorem 4.5 Under assumptions of Theorem 3.3 the semigroup {S(t) : t ⩾ 0} on Xα with α ∈ [ 12 , 1) has
a global attractor A in Xα . More precisely, we have

A =Wu(E), (4.5)

where Wu(E) denotes the unstable manifold of the set of stationary solutions of (1.6).

Proof The functional L : Xα → R defined in (3.3) is a Lyapunov function for the semigroup {S(t) : t ⩾ 0} ,
since L is continuous on Xα by Proposition 4.4, bounded below by (3.8), nonincreasing along the solutions
and constant only for stationary solutions due to (3.2). Since by (3.9) orbits of bounded subsets of Xα are
bounded in Xα , Proposition 4.3 and [3, Theorems 2.41 and 2.43] imply the existence of a global attractor A

for the semigroup in Xα with the structure given in (4.5). 2

5. Regularity of global attractor
In this section, we strengthen the regularity of g assuming that

g ∈ L2(RN ) ∩ L∞(RN ). (5.1)

Therefore, for a given arbitrary 2 ⩽ p < ∞ , we have g ∈ Lp(RN ) and in the following paragraphs, we will
rewrite the differential equation (1.6) as

ut +Au = F1(u) + F2(u) + F3(u), (5.2)

where the operator A = ∆2 −m(x)I + µI is now considered over the base space Lp(RN ) and such that −A
generates an exponentially decaying analytic semigroup {e−At : t ⩾ 0} on Lp(RN ) . Moreover, the extrapolated
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scale of fractional power spaces corresponding to A is characterized by

Eβ
p =

{
H4β

p (RN ), β ∈ [0, β∗(p)],

(H−4β
p′ (RN ))′ = H4β

p (RN ), β ∈ [−β∗(p), 0),

where β∗(p) = 1 +
(

N
4p − N

4r

)
−

∈ (0, 1] and β∗(p) = β∗(p′) with r as in (1.3) and x− = min{x, 0} , and we

have for some ω = ω(p) > 0 and M =M(p) ⩾ 1

∥∥e−At
∥∥
L(E

β1
p ,E

β2
p )

⩽M
e−ωt

tβ2−β1
, t > 0, −β∗(p) ⩽ β1 ⩽ β2 ⩽ β∗(p). (5.3)

For the proofs of these statements, we refer the reader to [6, Theorem 1.1].
Furthermore, the right-hand side of (5.2) consists of

F1(u)(x) = g(x) + (µ− δ)u+ f01(x, u(x))

where f01(x, 0) = 0 and f01 is globally Lipschitz w.r.t. the second variable,

F2(u)(x) = f02(x, u(x))

with f02(x, 0) = 0 and such that with ρ from (1.16)

|f02(x, s1)− f02(x, s2)| ⩽ c |s1 − s2| (|s1|ρ−1
+ |s2|ρ−1

), s1, s2 ∈ R, (5.4)

and f0(x, s) = f01(x, s) + f02(x, s) (see [6, Lemma 3.1]), whereas F3(u) = −γ∆u . In order to deal with F3 , it
is useful to observe that

β∗(p) ⩾ 1

2
if and only if r ⩾ Np

N + 2p
.

Following the idea from [7, Proposition 3.3], below we make a key observation, setting

β(p) =

{
β∗(p), 0 < β∗(p) < 1

2 ,
1
2 , β∗(p) ⩾ 1

2 .
(5.5)

Lemma 5.1 Assume that u(·, u0) is an Xα solution of (2.6) for a given α ∈ [ 12 , 1) and N > 2 . If

sup
t⩾0

‖u(t, u0)‖Lp0 (RN ) <∞ for some p0 ⩾ 2 (5.6)

and for p ⩾ p0 the following estimate

‖u‖
Cb([2ε,∞);E

β(p)
p )

⩽ K(ε, ‖u‖Cb([ε,∞);Lp(RN ))), u ∈ Cb([ε,∞);Lp(RN )), (5.7)

holds with some continuous function K(ε, ·) and ε > 0 small enough, then

‖u‖Cb([ε,∞);L∞(RN )) ⩽ K0(ε, ‖u‖Cb([0,∞);Lp0 (RN ))) (5.8)

for some continuous function K0(ε, ·) and any ε > 0 small enough.
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Proof For the sake of completeness of the presentation, we include a sketch of the proof. We apply (5.7) with
p = p0 . If β∗(p) < 1

2 then

4β(p)− N

p
= 4β∗(p)− N

p
= 4− N

r
> 0,

whereas if β∗(p) ⩾ 1
2 and p > N

2 , then 4β(p)− N
p = 2− N

p > 0 and in both situations Eβ(p)
p ↪→ L∞(RN ) and

(5.8) follows.

If β∗(p) ⩾ 1
2 and p ⩽ N

2 , then in particular we have E
β(p)
p ↪→ Lp1(RN ) with p1 = Np

N−2 > p and apply
(5.7) with p = p1 . In the worst case scenario, repeatedly using (5.7) with bigger and bigger p ’s, after a finite
number of steps, we get some pn > N

2 and (5.8) must hold regardless of the value of β∗(pn) . 2

We locally solve the Cauchy problem corresponding to (5.2) for initial data from Lp(RN ) with sufficiently
large p .

Lemma 5.2 For N > 2 , we consider the problem{
vt +Av = F1(v) + F2(v) + F3(v), t > t0,

v(t0) = v0 ∈ Lp(RN ).
(5.9)

If

p >
N

N − 2
and p ⩾ N

2
(ρ− 1), where ρ comes from (1.16), (5.10)

then there exists a unique maximally defined Lp(RN ) solution of (5.9) such that

v ∈ C([t0, τv0);L
p(RN )) ∩ C((t0, τv0);E

1
2
p ) ∩ C1((t0, τv0);L

p(RN )).

Proof Since p > N
N−2 , we have β∗(p) >

1
2 and consider (5.9) in the base space Y = E

− 1
2

p = H−2
p (RN ) .

To guarantee its local solvability in Lp(RN ) via the semigroup approach of [5, 14], we need to check that the
right-hand side of (5.9) is Lipschitz continuous on bounded sets as a map from Lp(RN ) into H−2

p (RN ) . Since

F1 is a globally Lipschitz map from Lp(RN ) into itself and

‖F3(v1)−F3(v2)‖H−2
p (RN ) ⩽ c ‖v1 − v2‖Lp(RN ) ,

for a given bounded subset B of Lp(RN ) , it is sufficient to show with some constant L(B) > 0 that

‖F2(v1)−F2(v2)‖H−2
p (RN ) ⩽ L(B) ‖v1 − v2‖Lp(RN ) , v1, v2 ∈ B. (5.11)

From (5.4) and (5.10) using the Sobolev embedding Lq(RN ) ↪→ H−2
p (RN ) with q = p

ρ ⩾ Np
N+2p and the Hölder

inequality, we obtain

‖F2(v1)−F2(v2)‖H−2
p (RN ) ⩽ c‖v1 − v2‖Lp(RN )

(
‖v1‖ρ−1

Lp(RN )
+ ‖u2‖ρ−1

Lp(RN )

)
and thus (5.11) in consequence. 2

In the proposition below we assume that (1.16) holds with ρ satisfying (1.17).
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Proposition 5.3 Assume that B is a bounded subset of Xα for a given α ∈ [ 12 , 1) . Then, denoting by u(·, u0)

the Xα solution of (2.6), for any ε > 0 there exists R̃B,ε > 0 such that

sup
t⩾ε

sup
u0∈B

‖u(t, u0)‖L∞(RN ) ⩽ R̃B,ε. (5.12)

Proof Observe that (3.9) implies an a priori bound of orbits in H2(RN ) . For N ⩽ 3 , this automatically
yields the L∞(RN ) bound. In view of Lemma 5.1 for N ⩾ 4 it suffices to show (5.6) uniform with respect to
u0 ∈ B and (5.7). For N = 4 , by (3.9), we get the a priori bound in Lp0(RN ) with arbitrary p0 ⩾ 2 . Finally,
for N ⩾ 5 , it implies a bound in Lp0(RN ) with p0 = 2N

N−4 . Note that p0 > N
N−2 and p0 ⩾ N

2 (ρ − 1) due to
(1.17). Therefore, for any N ⩾ 4 , it follows that (5.6) is satisfied uniformly for u0 ∈ B with some p0 ⩾ 2 such
that

p0 >
N

N − 2
and p0 ⩾ N

2
(ρ− 1). (5.13)

Therefore, we are left to show (5.7) for N ⩾ 4 and p ⩾ p0 using (5.13). To this end, we suppose that
u ∈ Cb([ε,∞);Lp(RN )) with some positive ε small enough. In particular, we have u(ε) ∈ Lp(RN ) and consider
the problem (5.9) with t0 = ε , v0 = u(ε) , which by Lemma 5.2 and (5.5) has a unique maximally defined
Lp(RN ) solution such that

v ∈ C([ε, τv0);L
p(RN )) ∩ C((ε, τv0);Eβ(p)

p ) ∩ C1((ε, τv0);L
p(RN )).

Since u ∈ C([ε,∞);Lp(RN )) is also an Lp(RN ) solution of the same problem, these functions must coincide.
In particular, we have u ∈ C([2ε,∞);H4β

p (RN )) with β = β(p) as in (5.5).

We will follow some of the arguments of the proof of [7, Proposition 3.3], where (1.6) with γ = δ = 0 was
discussed. Firstly, we write the Duhamel’s formula corresponding to (5.2) on a short interval

u(t) = e−A(t−ε)u(ε) +

∫ t

ε

e−A(t−s)[F1(u(s)) + F2(u(s)) + F3(u(s))]ds, ε < t ⩽ 1

with sufficiently small 0 < ε ⩽ 1
2 and estimate it in H4β

p (RN ) = Eβ
p with β = β(p) . Note that by (5.3), we get

in particular ∥∥∥e−A(t−ε)u(ε)
∥∥∥
Eβ

p

⩽ c

(t− ε)β
‖u(ε)‖Lp(RN ) ⩽

c

(t− ε)β
‖u‖Cb([ε,∞);Lp(RN )) ,

∥∥∥∥∫ t

ε

e−A(t−s)F1(u(s))ds

∥∥∥∥
Eβ

p

⩽ c

(t− ε)β

(
‖g‖Lp(RN ) + ‖u‖Cb([ε,∞);Lp(RN ))

)
,

∥∥∥∥∫ t

ε

e−A(t−s)F2(u(s))ds

∥∥∥∥
Eβ

p

⩽ c

(t− ε)β
‖u‖(1−θ)ρ

Cb([ε,∞);Lp(RN ))

(
sup

s∈(ε,t]

∥∥(s− ε)βu(s)
∥∥
Eβ

p

)θρ
with some θ ∈ (0, 1) such that θρ ∈ (0, 1) , since p > N

N−2 and p ⩾ N
2 (ρ − 1) . Indeed, considering only ρ > 1

we have ∥∥∥∥∫ t

ε

e−A(t−s)F2(u(s))ds

∥∥∥∥
Eβ

p

⩽ c

∫ t

ε

1

(t− s)β−ζ
‖u(s)‖ρLqρ(RN ) ds

2746



CZAJA and KANIA/Turk J Math

for some −β∗(p) ⩽ ζ ⩽ 0 such that β−1 < ζ provided that 4ζ− N
p ⩽ −N

q and p ⩾ q > 1 . By the interpolation

inequality (see [29, 2.4.2/11, 1.9.3/3]), we further obtain∥∥∥∥∫ t

ε

e−A(t−s)F2(u(s))ds

∥∥∥∥
Eβ

p

⩽ c

∫ t

ε

1

(t− s)β−ζ
‖u(s)‖θρ

H4β
p (RN )

‖u(s)‖(1−θ)ρ

Lp(RN )
ds

if 4βθ − N
p ⩾ −N

qρ and p ⩽ qρ for some θ ∈ (0, 1) , which we additionally want such that 0 < θρ < 1 .

Since p > N
N−2 and p ⩾ N

2 (ρ − 1) , then 1 < Np
N+2p ⩽ p

ρ and all above restrictions will be fulfilled if we
find

−β∗(p) ⩽ ζ ⩽ 0, β − 1 < ζ, (5.14)

and q ∈ (pρ , p] such that

4ζ − N

p
⩽ −N

q
< 4β − Nρ

p
. (5.15)

Taking q ∈ (pρ , p] such that 1
q >

ρ
p −

4β
N , we get −2− N

p < −N
q < 4β− Nρ

p . If β = 1
2 , we take ζ > β−1 = − 1

2 >

−β∗(p) so close to − 1
2 that −2− N

p < 4ζ− N
p < −N

q , whereas if 0 < β < 1
2 we simply choose ζ = − 1

2 > β− 1 ,

hence fulfilling both (5.14) and (5.15). Then the claim follows noticing that

∫ t

ε

(t− ε)β

(t− s)β−ζ(s− ε)βθρ
ds = (t− ε)1+ζ−βθρB(1− βθρ, 1 + ζ − β) ⩽ B(1− βθρ, 1 + ζ − β),

where we used Euler’s Beta function.
For our problem, we also need to estimate the term with F3 . Note that we have∥∥∥∥∫ t

ε

e−A(t−s)F3(u(s))ds

∥∥∥∥
Eβ

p

⩽ c

∫ t

ε

e−ω(t−s)

(t− s)β−ξ
‖u(s)‖H4ξ+2

p (RN ) ds

for some ξ = ξ(p) ∈ [−β∗(p), 0] such that β − 1 < ξ .
Observe further that

‖u‖H4ξ+2
p (RN ) ⩽ c ‖u‖θ1

H4β
p (RN )

‖u‖1−θ1
Lp(RN ) , u ∈ H4β

p (RN ), (5.16)

provided that 4θ1β ⩾ 4ξ + 2 for some θ1 ∈ (0, 1) . Since 0 < β ⩽ 1
2 and β∗(p) >

1
2 , these restrictions are

fulfilled with

−1

2
< ξ < β − 1

2
and 1

β

(
ξ +

1

2

)
< θ1 < 1. (5.17)

Consequently, we obtain∥∥∥∥∫ t

ε

e−A(t−s)F3(u(s))ds

∥∥∥∥
Eβ

p

⩽ c

(t− ε)β
‖u‖1−θ1

Cb([ε,∞);Lp(RN ))

(
sup

s∈(ε,t]

∥∥(s− ε)βu(s)
∥∥
Eβ

p

)θ1
,

since as before ∫ t

ε

(t− ε)β

(t− s)β−ξ(s− ε)βθ1
ds ⩽ B(1− βθ1, 1 + ξ − β), ε < t ⩽ 1.
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Combining these estimates and denoting z = sup
t∈(ε,1]

∥∥(t− ε)βu(t)
∥∥
Eβ

p
, if z ⩾ 1 , we get

z ⩽ c
(
‖g‖Lp(RN ) + ‖u‖Cb([ε,∞);Lp(RN ))

)
+ L̃(‖u‖Cb([ε,∞);Lp(RN )))z

θ2 ,

with θ2 = max{θρ, θ1} ∈ (0, 1) and a nonnegative continuous function L̃ . In particular, this gives

εβ ‖u(2ε)‖Eβ
p
⩽ z ⩽ max{1, z0(‖u‖Cb([ε,∞);Lp(RN )))}, (5.18)

where z0(h) is the only nonnegative root of z = c(‖g‖Lp(RN ) + h) + L̃(h)zθ2 .

Now we estimate in Eβ
p the Duhamel’s formula corresponding to (5.2) on an unbounded interval

u(t) = e−A(t−2ε)u(2ε) +

∫ t

2ε

e−A(t−s)[F1(u(s)) + F2(u(s)) + F3(u(s))]ds, t ⩾ 2ε.

This time, by (5.3) and (5.18), we have for t ⩾ 2ε∥∥∥e−A(t−2ε)u(2ε)
∥∥∥
Eβ

p

⩽M ‖u(2ε)‖Eβ
p
⩽Mε−β max{1, z0(‖u‖Cb([ε,∞);Lp(RN )))}. (5.19)

By (5.3), we also obtain∥∥∥∥∫ t

2ε

e−A(t−s)F1(u(s))ds

∥∥∥∥
Eβ

p

⩽ c
(
‖g‖Lp(RN ) + ‖u‖Cb([ε,∞);Lp(RN ))

)
, (5.20)

and, using the fact that p > N
N−2 and p ⩾ N

2 (ρ− 1) and reasoning as before, we get

∥∥∥∥∫ t

2ε

e−A(t−s)F2(u(s))ds

∥∥∥∥
Eβ

p

⩽ c ‖u‖(1−θ)ρ

Cb([ε,∞);Lp(RN ))

(
sup

s∈[2ε,t]

‖u(s)‖Eβ
p

)θρ

, (5.21)

with some θ ∈ (0, 1) such that θρ ∈ (0, 1) and some ζ > β − 1 , since∫ t

2ε

e−ω(t−s)

(t− s)β
ds ⩽ Γ(1− β)

ω1−β
and

∫ t

2ε

e−ω(t−s)

(t− s)β−ζ
ds ⩽ Γ(1− β + ζ)

ω1−β+ζ
.

Moreover, using (5.16) with ξ, θ1 as in (5.17), we estimate the term with F3 by∥∥∥∥∫ t

2ε

e−A(t−s)F3(u(s))ds

∥∥∥∥
Eβ

p

⩽ c ‖u‖1−θ1
Cb([ε,∞);Lp(RN ))

(
sup

s∈[2ε,t]

‖u(s)‖Eβ
p

)θ1
. (5.22)

Setting z(t) = sup
s∈[2ε,t]

‖u(s)‖Eβ
p

, we join (5.19), (5.20), (5.21), (5.22) and if z(t) ⩾ 1 , we get

z(t) ⩽ a(ε, ‖u‖Cb([ε,∞);Lp(RN ))) + L(‖u‖Cb([ε,∞);Lp(RN )))z(t)
θ2

with θ2 = max{θρ, θ1} ∈ (0, 1) , a nonnegative continuous function L and

a(ε, h) = c(Mε−β max{1, z0(h)}+ ‖g‖Lp(RN ) + h).
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This gives
‖u(t)‖Eβ

p
⩽ z(t) ⩽ max{1, z1(ε, ‖u‖Cb([ε,∞);Lp(RN )))}, t ⩾ 2ε, (5.23)

where z1(ε, h) is the only nonnegative root of the equation z = a(ε, h) + L(h)zθ2 . Thus, (5.23) yields (5.7),
which ends the proof. 2

Theorem 5.4 Under the assumptions of Theorem 4.5 with ρ satisfying (1.17) and g as in (5.1), the global
attractor A from Theorem 4.5 is bounded in L∞(RN ) and there exists a positively invariant bounded absorbing
set B in L∞(RN ) .

Proof By (5.12), A = S(ε)A is contained in a closed ball in L∞(RN ) centered at 0 and of some radius R̃A,ε .
If B0 denotes an ε0−neighborhood of A in Xα , then

B =
⋃

t⩾TB0

S(t)B0,

with TB0
> 0 being an absorption time of B0 , is a positively invariant bounded absorbing set, which is bounded

in L∞(RN ) again by (5.12). 2

We now gather the results to complete the proof of Theorem 1.1 announced in Introduction.
Proof of Theorem 1.1 Under the assumptions of Theorem 1.1, the problem (1.6),(1.7) generates a C0

semigroup of global Xα , α ∈ [ 12 , 1) , solutions with orbits of bounded sets bounded by Theorem 3.3 provided
that γ and δ satisfy the condition (1.11). This semigroup is asymptotically compact by Proposition 4.2 and
in consequence possesses the global attractor A coinciding with the unstable manifold Wu(E) of the set of
stationary solutions of (1.6) due to Theorem 4.5. Knowing that g ∈ L2(RN ) ∩ L∞(RN ) and ρ satisfies (1.17),
it then follows from Theorem 5.4 that A is contained in a positively invariant bounded absorbing set from
L∞(RN ) , which completes the proof. □
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