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1 Introduction

This paper is devoted to the fundamental question connected with solutions of semilinear
sectorial equations (1) being generalizations of parabolic equations: Provided that a local
in time solution exists, what is the expected future for the rest of its existence?

It is known from the classical references, such as [20, Chapter I], that, in general,
there are three potential forms of the further evolution of such solutions:
– the local solution may blow up, which means that its phase space norm becomes un-
bounded in a finite time; in general, it can be a consequence of unboundedness of the
values of the solution or the values of some of its derivatives, even though the solution
itself may stay bounded in the L∞−norm,
– the local solution may grow up, that is, it will exist for all positive times, while some
of its norms will become unbounded as t→ ∞,
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– the local solution will be extended globally in time with the required norms being
bounded for all t ≥ 0. This is a particularly interesting form of behavior, including the
possibility that the equation generates a dynamical system possessing a global attractor.

Throughout the last 70 years, plenty of results appeared in the literature concerning
qualitative behavior of solutions and describing separately the blow-up phenomenon,
less known case of grow-up solutions and, finally, well studied globally bounded in time
solutions, the latter including the particular case of semigroups with global attractors.
From the abundance of references, we distinguish [20] and [15] for the local solvability
of parabolic and sectorial equations, [24] for the issues regarding the blow-up, and [4,12,
19,31] for the existence of the global attractors for dissipative semigroups.

Usually, the authors study the above types of behavior as if these types would exist
apart. The reason is perhaps connected with the fact that even the description of one
kind is complicated enough. However, the situation we face in practice is the coexistence
of all these three types of behavior for a single evolution equation.

Our aim in this paper is thus to describe such a general typical situation for the
Cauchy problem for the semilinear sectorial equation

ut +Au = F (u), t > 0, u(0) = u0, (1)

where A is a sectorial positive operator and F stands for the nonlinear term. It is well-
known that many ordinary and partial differential equations or systems from the Applied
Sciences can be investigated within the approach of (1). This includes the heat propaga-
tion equation, reaction-diffusion systems, Fitzhugh-Nagumo equation, pattern formation
models like the Cahn-Hilliard equation or viscous Cahn-Hilliard equation, models of fluid
flows like the Burgers equation or the celebrated Navier-Stokes system and many others
(see e.g. [4, 31, 33]). Wherever possible, we illustrate the discussed type of behavior of
solutions using particular examples, mostly of ordinary differential equations or parabolic
second order equations, that allow a more detailed description. Of course, the questions
studied in this paper are much more involved for real world systems. Nevertheless, our
paper may serve as a guide for the future application to the above mentioned problems.

The contents of this paper are as follows. In Section 2, we formulate the basic
Assumption 2.1 on A and F in (1) and recall in Corollary 2.1, following [4,15], the local
existence of Xα solutions of (1) under this assumption (Xα stands for the phase space).
In Definition 2.2, we introduce the partition of Xα according to the above-mentioned
three types of behavior, introducing the subsets Xα

D, Xα
G and Xα

B . Moreover, we briefly
describe consequences of their coexistence and mention some previous results from works
where asymptotics of equations with solutions of different behavior was investigated.

In Section 3, we present a simple introductory example of a scalar reaction-diffusion
problem (7), (8) exhibiting the coexistence of all three ways solutions may evolve.

In Section 4, we show in Theorem 4.1 that the life time of an Xα solution of (1) is
a lower semicontinuous function of the initial data u0. As Example 4.1 shows, in general,
this function is not continuous, which makes it hard to characterize the components of
the partition of Xα from Definition 2.2. Nevertheless, the subordination condition (18)
together with an appropriate a priori estimate (17) allows to estimate the life time from
below (see Theorem 4.2).

In Section 5, we present a range of examples of parabolic equations which possess,
among others, solutions which grow up. The first example (20) shows that a linear
reaction term leads to the existence of grow-up solutions. However, for the Neumann
problem of the form (19), this observation can be generalized to nonlinearities with the
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divergent integral (21). Of course, this property still holds if we perturb the linear
reaction term by a bounded nonlinearity. In this case, except for the grow-up solutions,
all other solutions are globally bounded. As the example of (19), (25) exhibits, not only
sub-linear nonlinearities lead to grow-up solutions. Furthermore, as seen in problems (26)
and (27), reaction-diffusion equations with gradient-dependent nonlinearities may also
possess grow-up solutions. In certain cases, the asymptotics of equations with grow-up
solutions can be described in terms of non-compact attractors (see [22,23]).

In Section 6, we briefly explain the reasons of appearance of blow-up solutions for
parabolic equations and provide further examples of equations with solutions which be-
come unbounded in finite time.

If the problem under consideration manifests at least two different kinds of behavior
of solutions, there cannot exist a global attractor in the whole phase space in the sense of
Definition 2.4. Nevertheless, there may be determined local attractors, like stable station-
ary solutions, and their basins of attraction can be considered. In Section 7, we discuss
these notions and relate them with the existence of a Lyapunov function. In particular,
a Lyapunov function on Xα

D for the problem (1) with A having compact resolvent guar-
antees that solutions which stay bounded must approach the set of equilibria, although
the other solutions may become unbounded in a finite or infinite time (see Corollary 7.1).

For completeness of the presentation, we gather in the Appendix results concerning
the existence of sufficiently regular solutions and their global extendibility in time for
the homogeneous Neumann boundary problem for a reaction-diffusion equation with
a gradient-dependent nonlinearity.

2 Setting of the Problem

Our purpose is to examine the behavior of solutions of evolution equations, which can be
treated as autonomous abstract parabolic equations. To this end, consider an abstract
Cauchy problem (1) under the following assumptions.

Assumption 2.1 (i) −A : X ⊃ D(A) → X generates a strongly continuous analytic
linear semigroup {e−At : t ≥ 0} in a Banach space X and Reσ(A) > 0,
(ii) F : Xα → X is Lipschitz continuous on the bounded subsets of Xα = D(Aα) for
some α ∈ [0, 1).

Remark 2.1 Note that the generation of a strongly continuous analytic semigroup
by −A is equivalent to the sectoriality of the operator A (see e.g. [4, 15]). If A is merely
sectorial, the condition Reσ(A) > 0 of positivity of its spectrum can always be achieved
by adding a term cu to both sides of the differential equation in (1) with a sufficiently
large constant c. Then we define fractional power spaces Xβ , β ∈ R, connected with the
domains of the operators Aβ (see also [4, 15]) and the semigroup {e−At : t ≥ 0} satisfies∥∥e−Atx

∥∥
X

≤ C0e
−at ∥x∥X , t ≥ 0,

∥∥e−Atx
∥∥
Xβ ≤ Cβt

−βe−at ∥x∥X , t > 0, x ∈ X, (2)

for any β > 0 with some a > 0 and C0, Cβ ≥ 1.

Following the formalism of Dan Henry, we introduce a local Xα solution of (1).

Definition 2.1 Let u0 ∈ Xα. A function u is called a local Xα solution of (1) if, for
some τ > 0, u belongs to C([0, τ);Xα)∩C((0, τ);X1)∩C1((0, τ);X), u(0) = u0 and the
first equation in (1) holds in X for all t ∈ (0, τ).
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Below we quote a general theorem devoted to the local in time solvability of abstract
Cauchy problems even for nonautonomous equations. This theorem is a straightforward
generalization of the well-known results from [15] or [4].

Theorem 2.1 Let A : X ⊃ D(A) → X satisfy (i) of Assumption 2.1. Assume also
that G : [t0, T0)×Xα → X, where −∞ < t0 < T0 ≤ ∞, is a continuous function satisfying
for compact sets K1 ⊂ [t0, T0), K2 ⊂ (t0, T0) and each bounded set B ⊂ Xα

∥G(s, w1)−G(s, w2)∥X ≤MK1,B ∥w1 − w2∥Xα , s ∈ K1, w1, w2 ∈ B,

∥G(s1, w1)−G(s2, w2)∥X ≤MK2,B

(
|s1 − s2|θ+∥w1 − w2∥Xα

)
, s1, s2 ∈ K2, w1, w2 ∈ B

with some positive MK1,B, MK2,B and 0 < θ ≤ 1. Then, for any w0 ∈ Xα, there exists
a unique local Xα solution of the problem

wt +Aw = G(t, w), t0 < t < T0, w(t0) = w0, (3)

i.e., w ∈ C([t0, τ);X
α) ∩ C((t0, τ);X

1) ∩ C1((t0, τ);X) and satisfies (3) in X on
[t0, τ). Under the above assumptions, this Xα solution is equivalently a function
w ∈ C([t0, τ);X

α) satisfying the variation of constants formula

w(t) = e−A(t−t0)w0 +

∫ t

t0

e−A(t−s)G(s, w(s))ds, t ∈ [t0, τ).

Moreover, the local Xα solution can be extended to the maximal interval of existence
[0, τw0

), which means that either τw0
= T0 or τw0

< T0 and lim supt→τ−
w0

∥w(t)∥Xα = ∞.

Henceforth, we understand a solution as an Xα solution defined on the maximal interval
of existence. If T0 = ∞ and the life time τw0 = ∞, then we call such a solution global.

For our problem (1), we thus have the following existence result.

Corollary 2.1 Under Assumption 2.1, for each u0 ∈ Xα, there exists a unique Xα

solution u = u(t, u0) of (1) defined on its maximal interval of existence [0, τu0
), i.e.,

either τu0
= ∞, or if τu0

<∞, then lim sup
t→τ−

u0

∥u(t, u0)∥Xα = ∞. (4)

According to the alternative (4), we define a partition of Xα into three disjoint parts,
which distinguish the behavior of a particular solution of (1).

Definition 2.2 We have Xα = Xα
D ∪Xα

G ∪Xα
B , where

• Xα
D denotes the set of initial data u0 in Xα corresponding to global in time and

globally bounded solutions for t ≥ 0, that is, τu0 = ∞ and the norm ∥u(t, u0)∥Xα stays
bounded as t→ ∞,

• Xα
G denotes the set of initial data u0 in Xα corresponding to global solutions which

are unbounded as t→ ∞, that is, τu0
= ∞ and lim sup

t→∞
∥u(t, u0)∥Xα = ∞,

• Xα
B denotes the set of initial data u0 ∈ Xα corresponding to solutions that blow up

in a finite time, that is, u(t, u0) exists for t > 0 near 0, but there exists τu0
> 0 such that

lim supt→τ−
u0

∥u(t, u0)∥Xα = ∞.

Thus, the solutions starting from u0 ∈ Xα
D are the global bounded solutions, the

solutions originating from u0 ∈ Xα
G are the grow-up solutions and those starting from

u0 ∈ Xα
B are called the blow-up solutions.
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Clearly, knowledge of interiors and boundaries of the above-introduced sets would be
vital for understanding the global dynamics of the problem under consideration on the
entire phase space. Unfortunately, for many models arising from the Applied Sciences,
global in time solvability is limited only to small initial data (see e.g. [17]).

In the last decades, we observed among scientists a kind of specialization in a specific
behavior of solutions. The group being focused on global bounded solutions treated
the other admissible behavior as non-existent and considered only equations for which
Xα = Xα

D. This approach concentrated on the theory of dissipative semigroups and
the description of asymptotic behavior of solutions using the notion of a global attractor
(see [4, 12,15,19,25,33] among many others). Let us recall these notions.

Definition 2.3 A semigroup {S(t) : t ≥ 0} on a metric space M is a continuous
mapping S : R+ ×M →M , which satisfies

S(0, u0) = u0, S(t+ s, u0) = S(t, S(s, u0)) for all t, s ≥ 0 and all u0 ∈M.

Henceforth, we will write S(t)u0 = S(t, u0).

Definition 2.4 Let {S(t) : t ≥ 0} be a semigroup on a metric space (M,d). We say
that a set A ⊂M attracts a set B ⊂M if for any ε > 0, there exists T > 0 such that

dist(S(t)B,A) := sup
u0∈B

inf
v∈A

d(S(t)u0, v) < ε whenever t ≥ T.

A nonempty compact set A ⊂ M is said to be a global attractor for {S(t) : t ≥ 0} if
it is invariant, i.e., S(t)A = A for all t ≥ 0, and it attracts each bounded subset of M .

Definition 2.5 A semigroup {S(t) : t ≥ 0} on a metric space M is called asymptot-
ically compact if for arbitrary sequences tn → ∞ and {un} ⊂ M bounded, the sequence
{S(tn)un} has a convergent subsequence in M . We say that {S(t) : t ≥ 0} is dissipative
if there exists a bounded set B0 ⊂M which attracts each bounded subset of M .

In the case of Xα = Xα
D, the solutions of (1) form a semigroup {S(t) : t ≥ 0} on Xα,

S(t)u0 = u(t, u0), t ≥ 0, u0 ∈ Xα.

If there exists a bounded absorbing set B0 ⊂ Xα for this semigroup, that is, for any
bounded subset B of Xα there exists tB > 0 such that S(t)B ⊂ B0 for t ≥ tB and
the semigroup is asymptotically compact (or asymptotically smooth in the sense of [12]),
then the semigroup is dissipative and it possesses a global attractor in Xα. This compact
maximal invariant setA attracting all bounded subsets ofXα determines then all possible
long-time dynamics of solutions (cp. e.g. [25, Proposition 10.14]). The global attractor
contains, in particular, all stationary solutions, all periodic solutions (if they exist) and
all bounded invariant complete orbits connecting them. Recently, much effort is put
to thoroughly describe the structure of a global attractor (see for instance [8, 9] and
references therein) for particular classes of equations.

Observe that the notion of a semigroup for (1) can be defined just on a subsetM ofXα

such that solutions originating from M exist globally in time and do not leave M . Such
a general approach was presented in the introductory part of the monograph [27, Sections
2.1-2.3]. For instance, one can take M = Xα

D ∪Xα
G or M = Xα

D. Note, however, that in
general, we do not know in advance whether M is a closed subset of Xα.

The case of a semigroup on M = Xα
D in the admissible presence of other behavior of

solutions was considered, e.g. in [6]. Besides Assumption 2.1, it was required there the
following.
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Assumption 2.2 The resolvent of the operator A is compact.

In this setting, it was shown in [6] that the semigroup on M = Xα
D ̸= ∅ is asymptotically

smooth. Hence the point dissipativity of {S(t) : t ≥ 0} onM implies that for any u0 ∈ Xα

the solution u(·, u0) of (1) either blows up in a finite time, or grows up, or approaches
a nonempty compact invariant set. Moreover, if all bounded complete orbits of points
are uniformly bounded in Xα, then the solutions that stay bounded approach a maximal
compact invariant set, which plays the role of the global attractor in this setting.

Note that the presence of grow-up solutions forbids that they approach a maximal
invariant set which is bounded in Xα. In [3], the authors introduced a concept of an
unbounded attractor, where the boundedness of the attractor was substituted by the
minimality property. The asymptotic behavior of grow-up solutions was studied, for
example, in [1,22,23] for ’slowly non-dissipative reaction-diffusion equations’ of the form{

ut = uxx + bu+ g(x, u, ux), x ∈ (0, π), t > 0,

ux(t, 0) = ux(t, π) = 0, t > 0, u(0, x) = u0(x), x ∈ (0, π),
(5)

with b > 0 and g being a C2 bounded function. Such a problem defines a semigroup
on Xα = Xα

D ∪ Xα
G with α ∈ ( 34 , 1) and with nonempty Xα

G. Then any solution to (5)
converges either to a bounded stationary solution or a certain object called an equilibrium
at infinity. For a characterization of the structure of a non-compact global attractor,
see [23].

As regards the blow-up solutions, there exists a vast literature investigating the rates
and the profiles of blow-up solutions to particular differential equations, but the notion,
which would encompass the dynamics of the problem and include blow-up solutions, has
not been formulated yet.

The aim of this paper is to emphasize that a typical situation is the coexistence of
various types of behavior of solutions, formulate common properties of solutions, char-
acterize their three classes, and indicate open problems connected with that partition.

3 Introductory Example

It is easy to find examples of systems allowing only for a limited set of behavior of
solutions. In particular, if there is a global attractor for the system in a phase space, then
all solutions need to exist globally and be bounded in the phase space. Many examples
of such systems coming from the Applied Sciences are available, see e.g. [4, 15,19,31].

It is also simple to find a system having only blow-up solutions. For instance, the
ODE problem

y′ = y2 + 1, y(0) = y0, (6)

has an explicit solution

y(t) = tan(t+ arctan(y0)) defined for t ∈
(
−π/2− arctan(y0), π/2− arctan(y0)

)
,

which blows up at the finite life time τy0
= π/2− arctan(y0) for each y0 ∈ R.

We will now present a fairly complete analysis of a 1-D scalar parabolic equation,
which exhibits the coexistence of all the three types of behavior: the blow-up solutions,
the grow-up solutions, the bounded solutions approaching a certain local attractor as
well as the bounded solutions being unstable equilibria.
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Consider a 1-D Neumann semilinear parabolic problem of the form{
ut = uxx + f(u), t > 0, x ∈ (0, π),

ux(t, 0) = ux(t, π) = 0, t > 0, u(0, x) = u0(x), x ∈ (0, π),
(7)

with the nonlinearity f given by

f(y) =
µ

2
(y3 − y) for y < 1 and f(y) = µ(y − 1) for y ≥ 1, (8)

with µ > 0. The polynomial occurring in the nonlinear term f in (−∞, 1) is opposite to
the well-known ’bi-stable nonlinearity’ as in the Chafee-Infante problem.

The existence of Xα solutions u to (7) as well as the subordination condition follow
from a more general Example 4.2 below.

Now we analyze an ordinary differential equation connected with the parabolic prob-
lem (7) satisfied by the x-independent solutions y = y(t) of (7), that means

y′ = f(y), t > 0, y(0) = y0. (9)

The equation in (9) is of separable variables and can be explicitly solved. Except for
three equilibria: the asymptotically stable y0 = 0, unstable y0 = −1 and y0 = 1, we have
other bounded globally defined solutions

y(t) = sgn(y0)
(
1−

(
1− y−2

0

)
eµt

)−1/2
, t ∈ R for y0 ∈ (−1, 0) ∪ (0, 1).

For y0 > 1, the solutions y(t) = (y0 − 1)eµt + 1 are also globally defined for t ∈ R, but
they are unbounded as t→ ∞. Finally, the solutions for y0 < −1 are given by

y(t) = −
(
1−

(
1− y−2

0

)
eµt

)−1/2
, t ∈

(
−∞,−µ−1 ln

(
1− y−2

0

))
,

and blow up in a finite time.
Using the explicit form of solutions of the ordinary differential equation (9), we are

able to give a description of solutions to (7) based on the Comparison Principle (see [28,
Theorem 10.1]). We recall that theorem for completeness.

Proposition 3.1 Consider a uniformly parabolic linear operator in divergence form
in a bounded domain Ω ⊂ RN with regular boundary ∂Ω:

Pu := ut −Au = ut −
N∑

i,j=1

(
aij(t, x)uxi

)
xj
, (t, x) ∈ (0, T )× Ω,

where {aij} is a symmetric matrix with bounded coefficients. Let g = g(t, x, u) be C1 in
u and Hölder continuous in t and x. Assume that u and v are C1 functions of t in [0, T ]
and C2 functions in x in Ω, which satisfy the following three inequalities:

Pu− g(t, x, u) ≥ Pv − g(t, x, v), (t, x) ∈ (0, T )× Ω,

u(0, x) ≥ v(0, x), x ∈ Ω,

∂u

∂ν
+ βu ≥ ∂v

∂ν
+ βv, (t, x) ∈ (0, T )× ∂Ω,

where β = β(t, x) ≥ 0 on (0, T ) × ∂Ω. Then u(t, x) ≥ v(t, x) for all (t, x) ∈ [0, T ] × Ω.
Moreover, if, in addition, u(0, x) > v(0, x) for x in an open subset Ω1 ⊂ Ω, then we have
u(t, x) > v(t, x) in [0, T ]× Ω1.
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Using Proposition 3.1, we will compare the solutions of (7) and (9), and knowing the
behavior of solutions to (9), we get the corresponding information for certain solutions
of the parabolic problem (7). More precisely, having solutions u of (7) and y of (9), we
see that ut − uxx − f(u) = 0 = y′ − f(y) as long as both solutions exist and x ∈ (0, π).
Moreover, ux(t, 0) = ux(t, π) = 0 and the same is true for the x-independent solution
y(t). Thus we can compare u with the solution y starting from y0 = min

x∈[0,π]
u0(x) or y0 =

max
x∈[0,π]

u0(x). We introduce the range of initial data

Ru0
=

[
min

x∈[0,π]
u0(x), max

x∈[0,π]
u0(x)

]
.

The following characterization is then a consequence of Proposition 3.1 (compare Theo-
rem 4.2 and Proposition 4.1 below to get the estimates of the life time of solution u).

(i) Whenever Ru0
⊂ (−∞,−1), the corresponding to u0 solution of (7) blows up in

a finite time τu0
. Moreover, τu0

is estimated from above by the blow-up time of the
solution to (9) with y0 = max

x∈[0,π]
u0(x), and estimated from below by the blow-up time of

the solution to (9) with initial data y0 = min
x∈[0,π]

u0(x).

(ii) If Ru0
⊂ (−1, 1), then the solution u(·, u0) of (7) tends to zero as t→ ∞.

(iii) Whenever Ru0
⊂ (1,∞), the corresponding solution grows up as t→ ∞.

Evidently, there are many initial data u0 outside of the above three classes; then the
situation is more delicate and requires further studies using more sophisticated tools.
Nevertheless, the three types of behavior of solutions are present among the solutions of
(7).

4 Life Time of Solutions

We have seen in problem (6) possessing only blow-up solutions that the life time was
a continuous function of the initial data. However, we show below that, in general, the
life time of a solution to a sectorial equation need not be upper semicontinuous, but
certainly is a lower semicontinuous function.

Theorem 4.1 Under Assumption 2.1, consider the Xα solution u(t, u0) of

ut +Au = F (u), t > 0, (10)

satisfying the initial condition u(0) = u0 ∈ Xα. Then the life time τu0 is a lower
semicontinuous function of u0. More precisely, we have

∀0<T<τu0
∃δ>0∀v0∈Xα ∥v0 − u0∥Xα < δ ⇒ τv0 > T,

where τv0 is the life time of the Xα solution of (10) starting from v0.
Moreover, the solutions depend continuously on the initial data; for 0 < T < τu0

,
there exists δ > 0 and L ≥ 1 such that if ∥v0 − u0∥Xα < δ, then we have

∥u(t, v0)− u(t, u0)∥Xα ≤ L ∥v0 − u0∥Xα , t ∈ [0, T ]. (11)

Proof. Let u(t) be the solution of (10) corresponding to the initial data u0 and let
v(t) be its ’perturbation’, that is, the solution of (10) corresponding to the initial data
v0 (eventually close to u0). Setting w(t) := v(t)− u(t), we see that w is a solution of

wt +Aw = F (w + u(t))− F (u(t)), 0 < t < τu0
, w(0) = w0, (12)
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with w0 = v0 − u0 ∈ Xα. Observe that

G(t, w) = F (w + u(t))− F (u(t)), (t, w) ∈ [0, τu0
)×Xα,

satisfies Theorem 2.1 with θ = 1 since ut ∈ C((0, τu0
), Xα) (see [4, Corollary 2.3.1]).

Thus, for any w0 ∈ Xα, we have a unique solution of (12) with the life time τw0
.

Let h : R → [0, 1] be of class C1 such that h(s) = 1 for s ≤ 1 and h(s) = 0 for s ≥ 2.
We fix an arbitrary T ∈ (0, τu0

). We define a function H(t, z) = G(t, zh(∥z∥Xα)),
(t, z) ∈ [0, T ] × Xα. Note that H is continuous, H(t, 0) = G(t, 0) = 0 and there exists
LH > 0 depending on F , T and u0 such that

∥H(t, z1)−H(t, z2)∥X ≤ LH ∥z1 − z2∥Xα , t ∈ [0, T ], z1, z2 ∈ Xα, (13)

since ∥zh(∥z∥Xα)∥Xα ≤ 2 for any z ∈ Xα.
Let E = C([0, T ], Xα) be equipped with equivalent Bielecki’s norm

∥z∥E = max{∥z(s)∥Xα e
−ξs : s ∈ [0, T ]},

where ξ > 0 is so large that CαLHΓ(1 − α) 1
(a+ξ)1−α < 1. Let z0 ∈ Xα and define the

transformation Φ: E → E by

Φ(z)(t) = e−Atz0 +

∫ t

0

e−A(t−s)H(s, z(s))ds, t ∈ [0, T ], z ∈ E.

Note that for z1, z2 ∈ E and t ∈ [0, T ], using estimates (2), we get

∥Φ(z1)(t)− Φ(z2)(t)∥Xα ≤ CαLH

∫ t

0

e−a(t−s)

(t− s)α
∥z1(s)− z2(s)∥Xα ds

≤ CαLH ∥z1 − z2∥E
∫ t

0

e−a(t−s)

(t− s)α
eξsds = CαLH ∥z1 − z2∥E

eξt

(a+ ξ)1−α

∫ (a+ξ)t

0

r−αe−rdr.

Thus we obtain

∥Φ(z1)− Φ(z2)∥E ≤ CαLHΓ(1− α)
1

(a+ ξ)1−α
∥z1 − z2∥E , z1, z2 ∈ E,

and Φ is a contraction on E. By the Banach Fixed Point Theorem, for any z0 ∈ Xα,
there exists a unique z ∈ C([0, T ], Xα), which satisfies

z(t) = e−Atz0 +

∫ t

0

e−A(t−s)H(s, z(s))ds, t ∈ [0, T ]. (14)

Take z1, z2 ∈ Xα and let z(t, z1), z(t, z2) be the corresponding solutions of (14) starting
from z1 and z2, respectively. Let y(t) = ∥z(t, z1)− z(t, z2)∥Xα for t ∈ [0, T ] and note
that by (2) and (13)

y(t) ≤ C0e
−at ∥z1 − z2∥Xα + CαLH

∫ t

0

e−a(t−s)

(t− s)α
y(s)ds, t ∈ [0, T ].

By the Volterra type inequality (see e.g. [4, Lemma 1.2.9]) there exists a constant L ≥ 1
such that the following Lipschitz condition holds:

∥z(t, z1)− z(t, z2)∥Xα ≤ L ∥z1 − z2∥Xα , t ∈ [0, T ]. (15)
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Since H(t, 0) = 0, t ∈ [0, T ], we also have z(t, 0) = 0, t ∈ [0, T ]. Take any w0 ∈ Xα such
that ∥w0∥Xα ≤ 1

L . By (15) we obtain ∥z(t, w0)∥ ≤ 1 for t ∈ [0, T ]. Since H(t, z) = G(t, z)
for t ∈ [0, T ] and z ∈ Xα such that ∥z∥Xα ≤ 1, we obtain from (14)

z(t, w0) = e−Atw0 +

∫ t

0

e−A(t−s)G(s, z(s, w0))ds, t ∈ [0, T ].

Thus z(t, w0) is an X
α solution of (12) on [0, T ]. By the uniqueness of solutions of (12),

we see that τw0
> T for w0 ∈ Xα such that ∥w0∥Xα ≤ 1

L . Set δ = 1
L and take v0 ∈ Xα

such that ∥v0 − u0∥Xα < δ. Then the solution w(t, w0) of (12) with w0 = v0 − u0 exists
at least on the interval [0, T ]. Hence w(t, w0) + u(t, u0), t ∈ [0, T ], is an Xα solution of
(10) on [0, T ] starting from v0, which shows that τv0 > T . Moreover, we have (11), which
ends the proof. □

In general, the life time τu0
need not be upper semicontinuous with respect to u0 as

the following example shows.

Example 4.1 Consider the planar system of ordinary differential equations{
x′ = 1,

y′ = ey sinx,
(16)

with the initial condition u(0) = (x(0), y(0)) = u0 ∈ R2. If u0 = (0,− ln 2), then
the solution u(t) = (x(t), y(t)) of (16) is u(t, u0) = (t,− ln(cos t + 1)) for t ∈ (−π, π), if
un = (0,− ln 2− 1

n ), n ∈ N, then the solution of (16) is u(t, un) = (t,− ln(cos t+2e
1
n −1))

for t ∈ R, whereas if ûn = (0,− ln 2 + 1
n ), n ∈ N, then the solution of (16) is

u(t, ûn) = (t,− ln(cos t+ 2e−
1
n − 1)), t ∈ (− arccos(1− 2e−

1
n ), arccos(1− 2e−

1
n )).

Observe that un → u0, ûn → u0 in R2 and τun = ∞, τûn = arccos(1− 2e−
1
n ) for n ∈ N.

Thus, using the lower semicontinuity of τu0
, we obtain in this case

π = τu0
= lim inf

v0→u0

τv0 < lim sup
v0→u0

τv0 = ∞.

It is of interest to estimate the life time τu0
of a solution u to (10). Note that it is

typical for mathematical models of phenomena in the Applied Sciences that certain nat-
ural a priori estimates of solutions are available, for example, energy decay, conservation
of mass, etc. Below we present a technique to estimate τu0

based on such an appropriate
a priori estimate combined with a subordination condition for the nonlinearity due to
Wolf von Wahl (see [32]). This condition (see (18) below) allows to translate, or sharpen,
that natural a priori estimate into a form suitable to control the nonlinear term.

Theorem 4.2 Assume that the following a priori estimate for the solution u(t) of
(10) satisfying u(0) = u0 ∈ Xα holds in a normed space Y ⊃ Xα, that is, there exists
a function c : [0, T ) → [0,∞), 0 < T ≤ ∞, bounded on compact intervals and such that

∥u(t)∥Y ≤ c(t), t ∈ (0,min{τu0 , T}), (17)

where τu0
denotes the life time of the solution. Furthermore, assume that the following

subordination condition holds for the nonlinearity, that is, there exist a nondecreasing
function g : [0,∞) → [0,∞) and a constant θ ∈ [0, 1) such that

∥F (u(t))∥X ≤ g(∥u(t)∥Y )
(
1 + ∥u(t)∥θXα

)
, t ∈ (0, τu0

). (18)

Then we have τu0
≥ T .
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Proof. On the contrary, suppose that τu0
< T . The variation of constants formula

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)F (u(s))ds, t ∈ (0, τu0),

the subordination condition (18) and the estimates (2) yield

∥u(t)∥Xα ≤ C0e
−at ∥u0∥Xα +

∫ t

0

Cα
e−a(t−s)

(t− s)α
g(∥u(s)∥Y )

(
1 + ∥u(s)∥θXα

)
ds.

Applying the a priori estimate (17), we obtain

∥u(t)∥Xα ≤ C0 ∥u0∥Xα + Cαg
(

sup
s∈[0,τu0 ]

c(s)
)(

1 +
(
sup

s∈[0,t]

∥u(s)∥Xα

)θ)
aα−1Γ(1− α).

Thus, setting

b(u0) = C0 ∥u0∥Xα + Cαa
α−1Γ(1− α)g

(
sup

s∈[0,τu0
]

c(s)
)
,

we get

sup
τ∈[0,t]

∥u(τ)∥Xα ≤ b(u0)
(
1 +

(
sup

τ∈[0,t]

∥u(τ)∥Xα

)θ)
, t ∈ [0, τu0).

Therefore, sup
τ∈[0,t]

∥u(τ)∥Xα is estimated above by the non-negative root z0(u0) of the

algebraic equation b(u0)(1 + zθ)− z = 0. Hence we obtain

∥u(t)∥Xα ≤ z0(u0), t ∈ [0, τu0
),

which contradicts the maximality of τu0
. □

Remark 4.1 If T = ∞ in the a priori estimate (17), then the solution of (10) exists
globally in time. Moreover, the argument of the above proof shows that if T = ∞ in (17)
and the function c(t) is bounded on [0,∞) by some constant ĉ, then the solution of (10)
exists globally in time and is bounded by the non-negative root ẑ0(u0) of the algebraic

equation b̂(u0)(1 + zθ)− z = 0 with

b̂(u0) = C0 ∥u0∥Xα + Cαa
α−1Γ(1− α)g(ĉ).

We also state a simple observation to estimate the life time τu0 from above.

Proposition 4.1 Let u(t) be a solution of (10) satisfying u(0) = u0 ∈ Xα with
the life time τu0

. Assume there exists a normed space Y such that Xα is continuously
embedded into Y , and a function c̄ : [0, T ) → [0,∞), 0 < T <∞, such that lim sup

t→T−
c̄(t) =

∞ and ∥u(t)∥Y ≥ c̄(t) for t ∈ (0,min{τu0
, T}). Then we have τu0

≤ T .

For other results based on this technique, including the existence of a semigroup
of global solutions of (10) with bounded orbits of bounded sets, dissipativity of this
semigroup and the existence of its global attractor, we refer the reader to [4, Chapters 3
and 4].
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Example 4.2 In a bounded domain Ω ⊂ RN of class C2 (if N ≥ 2) consider the
Neumann boundary value problem{

ut = ∆u+ f(u), t > 0, x ∈ Ω,
∂u
∂ν = 0, x ∈ ∂Ω, u(0, x) = u0(x), x ∈ Ω,

(19)

together with the corresponding to it ODE Cauchy problem (9). For f : R → R locally
Lipschitz continuous, working in a base space X = Lp(Ω), p > N , we consider the
sectorial operator A = −∆+ I with the domain D(A) = {ϕ ∈ W 2,p(Ω): ∂ϕ

∂ν = 0 at ∂Ω}
(compare [33, Chapter 16]). Then, for a bounded subset B of W 1,p(Ω), we have

∥f(u)− f(v)∥Lp(Ω) ≤ c∥f(u)− f(v)∥L∞(Ω) ≤ c(B)∥u− v∥W 1,p(Ω), u, v ∈ B.

By Corollary 2.1 local Xα solutions to (19) exist for any α ∈ [ 12 , 1) since X
1
2 = D(A

1
2 ) =

W 1,p(Ω) (see [33, Theorem 16.10]) and W 1,p(Ω) is continuously embedded into L∞(Ω).
Furthermore, we have

∥f(u)∥Lp(Ω) ≤ c∥f(u)∥L∞(Ω) ≤ g(∥u∥L∞(Ω))(1 + ∥u∥W 1,p(Ω))

with some nondecreasing function g : [0,∞) → [0,∞). For α ∈ ( 12 , 1) the moments
inequality

∥u∥
X

1
2
≤ c ∥u∥1−

1
2α

X ∥u∥
1
2α

Xα , u ∈ Xα,

and the embedding L∞(Ω) ⊂ Lp(Ω) = X imply the subordination condition (18).
This, together with an a priori estimate in L∞(Ω), allows to estimate the life time

τu0
of solutions or extend the local solution globally in time (see Theorem 4.2 and Re-

mark 4.1).

5 Grow-up Solutions

An interesting class of solutions that are global in time consists of the so-called grow-up
solutions. Although these solutions exist globally, they have unbounded norms (usually
the L∞−norm) when time t tends to infinity. As a prototype example of this type of
behavior, consider the following 1-D problem:{

ut = uxx + γu, t > 0, x ∈ (0, π),

u(t, 0) = u(t, π) = 0, t > 0, u(0, x) = u0(x), x ∈ [0, π],
(20)

with γ > 1. For u0(x) = sinx, the problem (20) has an explicit solution of the form

u(t, x) = sinxe(γ−1)t, (t, x) ∈ [0,∞)× [0, π],

which grows up. We extend the analysis of the problem (20). The key point is the
relation between the coefficient γ and the squares of natural numbers. Assume that
γ ∈ ((n − 1)2, n2) for some n ∈ N and consider explicit solutions of the above problem
corresponding to the initial data u0(x) = sin(kx), k ∈ N, having the form u(t, x) =

sin(kx)e(γ−k2)t. When k ≤ n− 1, these are the grow-up solutions. Conversely, if k ≥ n,
then these solutions will decay to zero as t → ∞. Therefore, for the problem (20) with
a large positive number γ, we have simultaneous existence of grow-up solutions and
solutions decaying to zero.
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Moreover, if we let γ = n2, n ∈ N, we have also a stationary solution u(t, x) = sin(nx).

The solutions which grow up seem not to form a very large subclass of all the solutions.
Anyway, generalizing the latter example, we return to the semilinear Neumann problem
(19) under the assumptions of Example 4.2 having local in time solutions corresponding
to the initial data u0 ∈ Xα ⊂ W 1,p(Ω) with α > 1

2 , p > N . Following the idea known
from the Hartman-Wintner theorem (see e.g. [11,14,16]), we are able to verify the global
existence of a solution of (19) due to the corresponding properties of solutions to (9).
The main assumption is the divergence of an integral∫ ∞

a

ds

f(s)
= ∞. (21)

Lemma 5.1 Let f : R → R be a locally Lipschitz function and assume that
f([a,∞)) ⊂ (0,∞) and condition (21) hold for some a ∈ R. Then all the local solu-
tions to (19), as described above, corresponding to the initial data u0 having values in
the interval [inf u0, supu0] ⊂ [a,∞), possess an a priori estimate in L∞(Ω) by the corre-
sponding solutions of (9). Moreover, each such solution u(t, u0) can be extended globally
in time and is a grow-up solution.

Proof. First, note that due to the assumption (21), solutions y(t) = y(t, y0) to the
ODE Cauchy problem (9) with y0 ≥ a exist for all t ≥ 0. Indeed, we have

t =

∫ y(t)

y0

ds

f(s)
as long as y(t) exists. (22)

Suppose contrary to the claim that y does not exist for all t ≥ 0. Thus there must be
a finite τ > 0 and a sequence tn → τ such that y(tn) → ∞ as n→ ∞. From (21) and (22),
we get τ = ∞, which gives a contradiction. For u0 such that [inf u0, supu0] ⊂ [a,∞),
a simple comparison argument of Proposition 3.1 and global existence of y yield

y(t, inf
x∈Ω

u0(x)) ≤ u(t, x) ≤ y(t, sup
x∈Ω

u0(x)), t ∈ [0, τu0
), x ∈ Ω. (23)

Since the left-hand side of (23) is increasing to ∞ and is greater than or equal to
inf
x∈Ω

u0(x) ≥ a and both sides are globally defined in time, it yields the L∞(Ω) a pri-

ori estimate for the solution of (19). Hence u is global in time by Theorem 4.2 via the
subordination condition. □

Remark 5.1 A result similar to Lemma 5.1 holds if f((−∞, a]) ⊂ (−∞, 0) and∫ a

−∞

ds

f(s)
= −∞

hold for some a ∈ R. Then all solutions u(t, u0) to (19) with the initial data u0 having
values in [inf u0, supu0] ⊂ (−∞, a] can be extended globally in time and are grow-up
solutions.

Remaining inside the framework of (19), following [1], consider the Neumann problem{
ut = ∆u+ bu+ g(u), t > 0, x ∈ Ω,
∂u
∂ν = 0 on ∂Ω, u(0, x) = u0(x),

(24)
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with b > 0 and g being a bounded C1 function (|g| ≤M). As a consequence of the con-
siderations of Example 4.2, local solutions to (24) exist in the phase space D((−∆N ,p)

α)
with α > 1

2 , p > N and p ≥ 2. Moreover, for the nonlinearity f(s) := bs+g(s), s ∈ R, the
condition (21) is satisfied with a = M+ε

b , ε > 0 and, consequently, all solutions fulfilling

the condition inf
x∈Ω

u0(x) ≥ M+ε
b are extended globally in time and are grow-up solutions.

Moreover, none of the solutions of (24) blows up.

We further observe that a faster than linear growth of nonlinearity does not exclude
the existence of the grow-up solutions. Consider, namely, problem (19) with the nonlin-
earity

f(s) = s ln s for s > 1 and f(s) = 0 for s ≤ 1. (25)

Evidently, condition (21) is now satisfied with a = e, the base of the natural logarithm.
Hence, whenever infx∈Ω u0(x) ≥ e, the corresponding solution of (19), (25) exists globally
in time and grows up. The phenomenon of grow-up is thus not limited to the equations
in which nonlinear terms are sub-linear.

It is easy to find more complicated parabolic equations (with gradient-dependent non-
linearity) having grow-up solutions. Consider, for example, the 1-D Neumann problem{

ut = uxx + u3x + 1 ≡ (uxx − u) + u+ u3x + 1, t > 0, x ∈ (0, 1),

ux = 0 for x = 0, 1, u(0, x) = u0(x), x ∈ [0, 1],
(26)

admitting, in particular, the x-independent solutions of the ODE z′(t) = 1.

We will consider problem (26) in the phase space H
3
2+ε

N (0, 1) with ε ∈ (0, 14 ). Indeed,

when noting the embeddings H
3
2 (0, 1) ⊂ W 1,6(0, 1) and H

3
2+ε(0, 1) ⊂ W 1,∞(0, 1), the

main component of the nonlinearity will satisfy

∥(ϕx)3∥L2(0,1) = ∥ϕx∥3L6(0,1) ≤ c∥ϕ∥3W 1,6(0,1) ≤ c′∥ϕ∥3
H

3
2
+ε(0,1)

,

∥(ϕx)3 − (ψx)
3∥L2(0,1) ≤ ∥((ϕx)− (ψx))(ϕ

2
x + ϕxψx + ψ2

x)∥L2(0,1)

≤ c′(∥ϕ∥
H

3
2
+ε(0,1)

, ∥ψ∥
H

3
2
+ε(0,1)

)∥ϕ− ψ∥
H

3
2
+ε(0,1)

,

and, consequently, the whole nonlinearity f(u) = (u+u3x+1) defines a Lipschitz continu-

ous on bounded sets Nemytskii operator acting from H
3
2+ε

N (0, 1) into L2(0, 1). Moreover,
note that the operator (−uxx + u) with a Neumann boundary condition is sectorial and
positive in L2(0, 1). Thus, Corollary 2.1 establishes the local existence of solutions.

Note also that after changing the unknown function to u(t, x) = u(t, x)− t, the new
unknown will satisfy the problem{

ut = uxx + u3x, t > 0, x ∈ (0, 1),

ux = 0 for x = 0, 1, u(0, x) = u0(x), x ∈ [0, 1].
(27)

Despite the violation of the sub-quadratic growth condition (see the Appendix) in
(26), the derivative v := ux is bounded and fulfills the maximum principle since it solves{

vt = vxx + 3v2vx, t > 0, x ∈ (0, 1)

v = 0 for x = 0, 1, v(0, x) = u0x(x), x ∈ [0, 1].
(28)
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We will justify shortly the last claim. Multiplying the first equation in (28) by
v2k−1, k = 1, 2, . . ., and integrating, we obtain

1

2k

d

dt

∫ 1

0

v2kdx = −2k − 1

k2

∫ 1

0

[(vk)x]
2dx ≤ −π2 2k − 1

k2

∫ 1

0

v2kdx,

where we used the fact that the function vk = (ux)
k, vanishing at x = 0, 1, fulfills the

Poincaré inequality. Solving the differential inequality and taking the 2k-roots, we get

∥ux(t, ·)∥L2k(0,1) ≤ ∥u0x∥L2k(0,1) exp
(
−π2 2k − 1

k2
t
)
.

Letting k → ∞, we obtain

∥ux(t, ·)∥L∞(0,1) ≤ ∥u0x∥L∞(0,1). (29)

Note that the sub-quadratic growth condition (cp. (41)) is not violated in the case of
equation (28) for the derivative ux. Having already the last estimate, we return to (26)
and multiply the first equation by u, obtaining

1

2

d

dt

∫ 1

0

u2dx = −
∫ 1

0

u2xdx+

∫ 1

0

(u3x + 1)udx ≤ (∥ux∥3L∞(0,1) + 1)∥u∥L2(0,1),

and, consequently,

∥u(t, ·)∥L2(0,1) ≤ ∥u0∥L2(0,1) + (∥u0x∥3L∞(0,1) + 1)t. (30)

As a result of the a priori estimates (29) and (30), the local solutions to (26) will be
extended globally in time due to the following subordination condition:

∥u+ u3x + 1∥L2(0,1) ≤ ∥u0∥L2(0,1) + (∥u0x∥3L∞(0,1) + 1)(t+ 1).

As a consequence of the above considerations, we get the existence of grow-up solu-
tions for at least one of the problems (26) or (27). Indeed, for the arbitrary initial data

u0 ∈ H
3
2+ε(0, 1) with ε > 0, there exist global in time solutions to both these problems.

But the difference of their global solutions, u(t, u0) and ū(t, u0), corresponding to the
initial data u0, is equal to t. Consequently, at least one of them must grow up as t→ ∞.

The phenomenon of solutions that grow up can be also viewed in another way. Un-
boundedness of a norm, as t → ∞, will be seen as a convergence ’to an equilibrium at
infinity’ (see e.g. [3]). The authors introduce there a modification of the notion of a global
attractor replacing it with their maximal attractor for a semigroup {S(t) : t ≥ 0} gener-
ated by the equation (10) on a Banach space E (cp. [3, Definition 1.2]).

Definition 5.1 A closed set U ⊂ E is called a maximal attractor if S(t)U = U for
all t ≥ 0, dist(S(t)K,U) → 0 as t → ∞, for any bounded set K ⊂ E, and there is no
proper closed subset U ′ ⊂ U having the above two properties.

Such maximal attractor can, however, be unbounded and not unique. Moreover, the
existence of the semigroup excludes the blow-up of solutions starting from E. Also, the
growth condition of the nonlinearity imposed there (in the case of the Hilbert space H) is
rather restrictive (see [3, Property IV, p. 89]): ∥F (u)∥H ≤ ε∥u∥H +C for some ε, C > 0.
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The non-compact global attractors for slowly non-dissipative scalar reaction-diffusion
equations of the form{

ut = uxx + bu+ g(x, u, ux), t > 0, x ∈ (0, π),

ux = 0 for x = 0, π, u(0, x) = u0(x),
(31)

were also investigated in [1, 22]. It turns out that a noncompact global attractor U can
be decomposed as

U = Ec ∪ E∞ ∪H,
where Ec denotes the set of bounded hyperbolic equilibria of (31), E∞ is the set of ’equilib-
ria at infinity’ and H consists of heteroclinic connections between equilibria. A thorough
study of this structure, using the zero number properties of solutions, was carried out
in [23], where we refer the reader for details.

6 Blow-up Solutions

The blow-up of solutions in a finite time is a frequent form of behavior for evolution
equations, taking its origins from the simple problem

y′(t) = y2(t), y(0) = y0,

with a stationary zero solution and other solutions of the explicit form y(t) = 1
y−1
0 −t

for y0 ̸= 0. Evidently, this fraction becomes unbounded in a finite time τy0
= y−1

0

provided that y0 > 0. Thus, when using the notation of Section 2, the phase space
Xα = R decomposes into open Xα

B = (0,∞), closed Xα
D = (−∞, 0] and empty Xα

G.
Detecting the blow-up solutions of more complicated equations and characterizing the
decomposition of the phase space is, in general, much harder. Without explicit formulas
for solutions, the best available tools are the comparison techniques, which eventually
provide us sufficient conditions for justifying the occurrence of blow-up. However, the
assumptions on nonlinear terms allowing to use the comparison techniques are limited
to particular equations only and cannot be applied to most cases.

A similar type of behavior is observed for semilinear parabolic equations of the form

ut = ∆u+ f(u,∇u), (32)

though in that case there are more reasons for the finite life time of solutions. A simpler
possibility is that the L∞(Ω)−norm of the solution grows to infinity in a finite time
(cp. Proposition 4.1). We can also face the phenomenon of the gradient blow-up. Recall
that a gradient blow-up occurs when the solution u stays L∞ bounded but it does not
exist globally in time because some of the derivatives of u blow-up in a finite time. Let
us shed some more light on the background of this case.

It is not easy to formulate a sufficient condition for the blow-up of the gradient of
a solution; see, however, [7, 24, 29] and Proposition 6.1. Easier is to find hypotheses
allowing to limit its growth. In a bounded domain Ω ⊂ RN with ∂Ω ∈ C2, consider the
homogeneous Dirichlet boundary value problem for (32), assuming that f(0,∇u) = 0

and
∣∣∣∂f∂u ∣∣∣ ≤ L1,

∣∣∣ ∂f
∂uxi

∣∣∣ ≤ L∇, with certain positive constants L1, L∇.

Multiplying equation (32) by ∆u and integrating over Ω, we obtain

− 1

2

d

dt

∫
Ω

|∇u|2dx =

∫
Ω

(∆u)2dx+

∫
Ω

f(u,∇u)∆udx, (33)
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and further∫
Ω

f(u,∇u)∆udx =

∫
∂Ω

f(u,∇u)∂u
∂ν
dS −

∫
Ω

∑
i

(∂f
∂u
uxi

+
∑
j

∂f

∂uxj

uxixj

)
uxi

dx,

where the boundary integral vanishes due to the assumption f(0,∇u) = 0. Then the
boundedness of the derivatives of f and the Cauchy inequality imply that∣∣∣∣∫

Ω

f(u,∇u)∆udx
∣∣∣∣ ≤ L1

∫
Ω

|∇u|2dx+ L∇

∫
Ω

∑
i,j

(
ε|uxixj

|2 + 1

4ε
|uxi |2

)
dx (34)

with an arbitrary ε > 0. Note that
∑
i,j

∥ϕxixj
∥2L2(Ω) = ∥∆ϕ∥2L2(Ω) for ϕ ∈ H2

0 (Ω) (see

e.g. [10, (9.34)]). Combining (33) and (34), we choose a sufficiently small ε > 0 to obtain

d

dt

∫
Ω

|∇u|2dx ≤ C(L1, L∇)

∫
Ω

|∇u|2dx

and, consequently, an exponential bound for the spatial gradient of the solution.
As we discuss in the Appendix, for L∞ bounded solutions, even the sub-quadratic

growth of f(u,∇u) with respect to the gradient is allowed, not leading to their blow-up.
But a higher than quadratic growth of f(u,∇u) with respect to ∇u leads, in general,
to the blow-up of the spatial derivatives of the solution. Using the technique of sub-
solutions, such form of behavior was studied in [7], where several examples of equations
allowing the gradient blow-up were constructed. Different methods were used in [29] to
formulate a sufficient condition for the gradient blow-up for a model Dirichlet problem{

ut = ∆u+ |∇u|p, t > 0, x ∈ Ω,

u(t, x) = g(t, x), t > 0, x ∈ ∂Ω, u(0, x) = u0(x), x ∈ Ω,
(35)

with g ∈ C([0, T ] × ∂Ω) for all T > 0, and u0 ∈ C1(Ω) fulfilling the compatibility
condition u0(x) = g(0, x) on ∂Ω.

Denoting by λ1 > 0 the first positive eigenvalue of −∆ in H1
0 (Ω), with the corre-

sponding normalized eigenfunction ϕ1 > 0, we recall (see [29, Theorem 2.1]) the following
result.

Proposition 6.1 When p > 2, then there exists a positive k0 = k0(Ω, p, g) such that

if
∫
Ω
u0(x)ϕ1(x)dx > k0, then the gradient blow-up for solution of (35) occurs.

Certain generalizations of the above-mentioned result can be found in [29, Theorem 2.2].
There exists quite a large literature devoted to the occurrence of blow-up (see e.g.

[24], [26] for more references). Several properties including blow-up sets, blow-up rates
and profiles characterizing closer this phenomenon have already been investigated, at
least for the basic model problem{

ut −∆u = λu+ u|u|p−1, t > 0, x ∈ Ω,

u = 0 on ∂Ω, u(0, x) = u0(x), x ∈ Ω,

with p > 1 and λ ∈ R, in a bounded regular domain Ω ⊂ RN . Popular are also the
studies of a more general problem (see [30]){

ut −∆u = up + g(t, x, u,∇u), t > 0, x ∈ Ω ⊂ RN ,

u = 0 on ∂Ω, u(0, x) = u0(x), x ∈ Ω,
(36)
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with C1 nonlinearity g satisfying g(t, x, 0, 0) ≥ 0, the latter requirement being connected
with the non-negativity of solutions. The solutions of (36) are searched in the set

X := {0 ≤ ϕ ∈ C1(Ω): ϕ,∇ϕ ∈ L∞(Ω), ϕ = 0 on ∂Ω}

subject to the norm ∥ϕ∥X = ∥ϕ∥L∞(Ω) + ∥∇ϕ∥L∞(Ω). Further developments concerning
the blow-up of solutions can be found in the recent monograph [24].

7 Local Attractors and Lyapunov Functions

As regards the solutions which exist globally in time, it is interesting to investigate their
long-time behavior. For solutions which stay bounded, one may try to find out sets
they approach. Conversely, having a given subset of the phase space, one may look for
solutions which are attracted by this set. This inspires the introduction of the following
notion.

Definition 7.1 Let {S(t) : t ≥ 0} be a semigroup on a metric space (M,d). The
basin of attraction of a set A ⊂M is defined as

Ω(A) = {u0 ∈M : lim
t→∞

dist(S(t)u0, A) = 0},

where dist(S(t)u0, A) = infv∈A d(S(t)u0, v).

Remark 7.1 It is easy to see that the basins of attraction of the two disjoint compact
sets need to be disjoint. In particular, the basins of attraction of two separate stationary
points are disjoint. Indeed, let A1 and A2, A1 ∩ A2 = ∅, be two disjoint compact
sets with their basins of attraction Ω(A1) and Ω(A2), respectively, and suppose that
u0 ∈ Ω(A1)∩Ω(A2). Then, taking successive subsequences, we find v ∈ A1, w ∈ A2, and
a sequence tn → ∞ such that S(tn)u0 → v and S(tn)u0 → w. Consequently, v = w by
the uniqueness of the limit, which is not possible.

A special role in dynamical systems is played by compact invariant subsets of the
phase space. The simplest ones are stationary points or periodic orbits. Some of them
may attract their neighborhoods.

Definition 7.2 A compact set A ⊂M is said to be an attractor (or a local attractor)
for a semigroup {S(t) : t ≥ 0} on M if it is invariant and attracts an open neighborhood
U of itself.

Note that if A is an attractor, then Ω(A) ⊃ U and A becomes a global attractor
provided that it attracts each bounded subset of M . Moreover, if A is an attractor, then
its basin of attraction Ω(A) is an open subset of M . We recall next a sufficient condition
for the existence of an attractor, the result being taken from [27, Section 2.3.5].

Proposition 7.1 Let {S(t) : t ≥ 0} be a semigroup on M ⊂ X, where X is a com-
plete metric space. Assume there are a compact set K ⊂ M and a neighborhood U of
K in M having the property that K attracts all bounded sets in U . Then the semigroup
{S(t) : t ≥ 0} has an attractor A = ω(K) ⊂ K, where ω(K) is the ω−limit set of K.

The following result justifies the existence of an attractor for asymptotically compact
semigroups (cp. Definition 2.5).
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Proposition 7.2 Assume that there exists a bounded closed set A ⊂M that attracts
a neighborhood of itself. If the semigroup {S(t) : t ≥ 0} on M is asymptotically compact,
then there exists an attractor A ⊂ A.

Remark 7.2 It is easy to observe that a finite sum of attractors is an attractor itself.
Indeed, if A1,A2 are two attractors, then their sum is evidently compact and invariant.
Moreover, the sum of the neighborhoods of A1 and A2 will be attracted by A1 ∪ A2.

Consequently, if there is a finite number of attractors in the system, we can always
consider only their sum as a common attractor.

Solutions of some parabolic equations have a natural tendency to approach a station-
ary solution (see e.g. [13,21,34]), which is the simplest local attractor. Below we observe
that if a global solution to a semilinear sectorial equation is convergent, then it must
tend to an equilibrium.

Proposition 7.3 Let Assumption 2.1 hold and assume that u(t, u0) is a global Xα

solution of (1) and there exists v ∈ Xα such that lim
t→∞

u(t, u0) = v in Xα. Then v is

a stationary solution of (1), that is, v ∈ X1 ⊂ Xα and Av = F (v).

Proof. By (11), for any 0 < T < τv, we have u(T, u(t, u0)) → u(T, v) as t→ ∞. On
the other hand, by assumption, u(T, u(t, u0)) = u(T + t, u0) converges to v as t → ∞.
Thus u(T, v) = v for any 0 < T < τv, so v is a stationary solution of (1). □

Therefore, under Assumption 2.1, the following alternative holds: either the solution
u of (1) converges to a single stationary solution v or the solution u is not convergent
in Xα as t → ∞. In the second case, other forms of behavior are possible: the solution
may grow up, blow up in a finite time, or eventually approach an attractor having more
complicated structure (not reduced to a single equilibrium).

In literature, a common description of the behavior of dynamical systems generated
by parabolic equations or systems was given using the notion of the Lyapunov function,
see e.g. [12, 18, 34]. In the last two references, the semilinear and even fully nonlinear
problems in one space dimension were analyzed within that approach. In Chapter 5
of [2], the connection of the existence of a global attractor and the Lyapunov function
was described in the case of the so-called gradient semigroups.

Definition 7.3 A semigroup {S(t) : t ≥ 0} on a metric space (M,d) is called gradient
if there exists a continuous function V : M → R such that V (S(t)u0) is non-increasing
along the trajectories of u0 ∈M and, whenever V (S(t)u0) = V (u0) for all t ≥ 0, u0 must
be an equilibrium.

Note that in the above definition we do not require that V is bounded from below.

Remark 7.3 A semigroup {S(t) : t ≥ 0} on a metric space (M,d) is gradient if there
exists a continuous function V : M → R such that

V̇ (v) := lim sup
t→0+

V (S(t)v)− V (v)

t
≤ 0, v ∈M,

and for any u0 ∈ M if V (v) = V (u0), v ∈ γ+(u0), then u0 ∈ E , where γ+(u0) =
{S(t)u0 : t ≥ 0} and E denotes the set of equilibria in M . A function V having these
properties or, equivalently, those from Definition 7.3, is called a Lyapunov function.
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The following LaSalle’s Invariance Principle holds, for the proof, see [15, Theorem 4.3.4].

Theorem 7.1 Let {S(t) : t ≥ 0} be a gradient semigroup on a metric space M . If
the positive orbit γ+(u0) = {S(t)u0 : t ≥ 0} of u0 ∈ M is a subset of a compact set K
contained in M , then ω(u0) ⊂ E is a nonempty compact invariant subset of M , which
attracts u0, and dist(S(t)u0,S) → 0 as t→ ∞, where S is the maximal invariant subset
of {v ∈M : V̇ (v) = 0}.

We apply LaSalle’s Invariance Principle to the sectorial equation (1) (see [6]).

Corollary 7.1 Consider the problem (1) under Assumptions 2.1 and 2.2 and let
{S(t) : t ≥ 0} be the semigroup of Xα solutions on M = Xα

D ∪Xα
G, where we assume Xα

D

to be nonempty (see Definition 2.2). Assume also that there exists a continuous function
V : Xα

D → R such that

V̇ (v) := lim sup
t→0+

V (S(t)v)− V (v)

t
≤ 0, v ∈ Xα

D,

and for any u0 ∈ Xα
D if V (v) = V (u0), v ∈ γ+(u0), then u0 ∈ E. Then, for any u0 ∈ Xα

D,
the set clXα γ+(u0) is a compact subset of Xα

D and, by LaSalle’s Invariance Principle,
we obtain ω(u0) ⊂ E. Thus the solutions u(t, u0) of (1) starting from u0 ∈ Xα

D approach
the set of equilibria E of (1).

Proof. Since Xα
D is positively invariant under the semigroup {S(t) : t ≥ 0}, we may

consider it only in the metric space Xα
D (with a metric inherited from Xα).

We first show that clXα γ+(u0) is a subset of Xα
D for any u0 ∈ Xα

D. Indeed, note that
B = γ+(u0) is a bounded subset of Xα

D. Let v ∈ clXα γ+(u0). Then there exists tn ≥ 0
such that S(tn)u0 → v in Xα. Since ∥u(t, S(tn)u0)∥Xα = ∥u(t+ tn, u0)∥Xα ≤ RB for all
t ≥ 0 and u(t, S(tn)u0) → u(t, v) in Xα for all t ∈ [0, τv) (see Theorem 4.1), it follows
that the solution starting from v has an Xα norm bounded by RB , hence v ∈ Xα

D.
Observe also that the boundedness of B in Xα implies that S(t)B with t > 0 is

bounded in Xα+ε for α + ε < 1. By Assumption 2.2, Xα+ε is compactly embedded in
Xα, which yields the compactness of clXα S(t)γ+(u0) for any t > 0. Finally, we have

clXα γ+(u0) = clXα

⋃
s∈[0,1]

S(s)u0 ∪ clXα S(1)γ+(u0),

which proves the compactness of clXα γ+(u0). □

Remark 7.4 A particularly complete description of Lyapunov functions is possible
in one space dimension (see [18,34,35]). For a general quasi-linear problem of the type{

ut = a(x, u, ux)uxx + b(x, u, ux),

αiux(t, i) + ψi(u(t, i)) = 0, t > 0, i = 0, 1, u(0, x) = u0(x),

considered for (t, x) ∈ [0,∞)× [0, 1] with a, b, ψi ∈ C3, one constructs a pair of functions
ρ,Φ(x, ξ, η) as in [35, Chapter 2, Theorem 1.1]. Then, after multiplying the first equation
by ρ(u, u, ux)ut, they generate a Lyapunov function V through the relations

d

dt

∫ 1

0

Φ(x, u, ux)dx = −
∫ 1

0

ρ(x, u, ux)u
2
tdx, V (u) =

∫ 1

0

Φ(x, u, ux)dx.
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It is especially easy to indicate a Lyapunov function for the problem (24). Namely,

V (u) =

∫
Ω

(|∇u|2 − bu2 − 2G(u))dx with G(u) =

∫ u

0

g(s)dx,

is a Lyapunov function for (24) on Xα = D((−∆N ,p)
α) with α > 1

2 and p > N and
p ≥ 2. Considering constant functions un ≡ n, n ∈ N, we see that V (un) → −∞ as
n → ∞. Hence V is not bounded from below. For (24), we have Xα = Xα

D ∪ Xα
G and

the resolvent of −∆N ,p is compact for a sufficiently regular domain Ω. Thus, if the set
of equilibria E of (24) is nonempty, then by Corollary 7.1, for any u0 ∈ Xα

D we have
ω(u0) ⊂ E , whereas for u0 ∈ Xα

G the solutions become unbounded in an infinite time.

8 Concluding Remarks

In summary, the picture sketched in this paper in the case of a semilinear parabolic prob-
lem, or even its generalization in the form of the abstract sectorial Cauchy problem (1)
under Assumption 2.1, reveals that, typically, we have three potential forms of behavior
of solutions as specified in Definition 2.2.

Considering a particular example of an abstract semilinear Cauchy problem (1), we
first need to check which a priori estimates are available for its solutions in order to use
them eventually in the subordination condition (see Theorem 4.2). More precisely, we
shall find the strongest a priori estimate. In case this a priori estimate is too weak to
guarantee the global in time extendibility of the local solutions, via the subordination
condition (18), we need to find regions of the phase space (e.g. for small initial data) in
which the existing a priori estimates are sufficient to extend solutions globally.

Furthermore, the stationary, time independent solutions should be detected and their
(linearized) stability be determined. Local attractors will be next constructed for the
stable stationary points, together with their basins of attraction.

For many dissipative equations, we can show the existence of a global attractor, that
is, a compact maximal invariant subset of the phase space which attracts all bounded
subsets. In the ideal situation, we will be even able to determine the structure of this
object. However, generally, we should expect that some solutions run away to infinity.
Some of them may grow up still being defined globally in time, whereas the rest of the
phase space will be occupied by locally existing solutions, which blow up in a finite time.

The coexistence of at least two behavior types of solutions leads to the corresponding
separation of the phase space, which is hard to be characterized in general. Moreover,
most of the above procedures, while formally possible, still remain rather only theoretical
for many practical problems arising from the Applied Sciences since, for instance, we
cannot precisely locate all the stationary points or periodic solutions.

Nevertheless, the questions raised above should be addressed. In particular situations,
they have already gained positive feedback. For example, the asymptotics of equations
possessing grow-up solutions was described in terms of non-compact attractors for slowly
non-dissipative reaction-diffusion equations. For specific equations, the profiles of blow-
up solutions were determined via comparison techniques. We have also shown that the
existence of a Lyapunov function for a general semilinear evolution equation with a main
sectorial operator having compact resolvent guarantees the attraction of each bounded
solution by the set of stationary solutions.
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A Reaction-Diffusion Neumann Boundary Problem

We place here some auxiliary results that are connected with the applications presented
in the paper, but do not belong to its main topic. They concern the existence of smooth
solutions and their global extendibility in time to the reaction-diffusion Neumann bound-
ary problem with gradient-dependent nonlinearity of the form{

ut = ∆u+ f(u,∇u), t > 0, x ∈ Ω,
∂u
∂ν = 0 on ∂Ω, u(0, x) = u0(x), x ∈ Ω.

(37)

We start with sketching out the proof of existence of a smooth solution having bounded
first derivatives ∇u. We will construct a local mild solution to (37) in the sense of [4,15]

in the base space D((−∆N ,p)
1
2 ) ⊂W 1,p(Ω) with p > N (here ∆N ,p denotes the Neumann

Laplacian in Lp(Ω)). The following proposition extends the result from [33, Section 11.10
(5)].

Proposition A.1 Assume that f : R×RN → R is a C1 function and let p > N and
Ω be a bounded domain in RN with the boundary ∂Ω of class C1 if N ≥ 2. Then the
Nemytskii operator u 7→ f(u,∇u) acts from W 2,p(Ω) into W 1,p(Ω), and

∥f(u,∇u)∥W 1,p(Ω) ≤ q(∥u∥W 2,p(Ω)), u ∈W 2,p(Ω), (38)

with some non-decreasing function q. Moreover, if f is a C2 function, then that Nemytskii
operator is Lipschitz continuous on the bounded subsets B of W 2,p(Ω), i.e.,

∥f(u,∇u)− f(v,∇v)∥W 1,p(Ω) ≤ C(B)∥u− v∥W 2,p(Ω), u, v ∈ B.

Proof. The key point for the first claim is the inclusion W 2,p(Ω) ⊂ C1(Ω), which
holds since p > N . To shorten the calculation, we will show the estimate for one compo-
nent of the W 1,p(Ω) norm only. We note that the argument (u,∇u) of f and its partial
derivatives is varying in a compact subset of RN+1, provided that ∥u∥W 2,p(Ω) is bounded.

Also, the norms ∥ ∂u
∂xj

∥L∞(Ω) are bounded, so that we have an estimate

∥ ∂

∂xj
f(u,∇u)∥Lp(Ω) ≤ c(∥u∥W 2,p(Ω)).

The proof of the second statement follows from (38) for the first derivatives of f and the
fact that W 1,p(Ω) is a Banach algebra. □

The above proposition almost immediately translates into the local existence result;
we only need to verify that the composite function f(u,∇u) ∈ D((−∆N ,p)

1
2 ) whenever

u varies in D(−∆N ,p), p > N . To this end, let us recall the characterization of the
fractional power spaces connected with the Neumann Laplacian considered on Lp(Ω).
Considering fractional powers up to the exponent θ = 1, we will assume that ∂Ω ∈ C2 if
N ≥ 2. Using the description in [33, pp. 474, 554], for 1 < p <∞, we have

D((−∆N ,p)
θ) =

{
W 2θ,p(Ω) for 0 ≤ θ < 1

2 + 1
2p ,

W 2θ,p
N (Ω) if 1

2 + 1
2p < θ < 3

2 + 1
2p ,

where we denote W s,p
N (Ω) := {ϕ ∈ W s,p(Ω): ∂ϕ

∂ν = 0 at ∂Ω}. Proposition A.1 together
with the above characterization imply that the Nemytskii operator u 7→ f(u,∇u) from

D(−∆N ,p) into D((−∆N ,p)
1
2 ) is a Lipschitz continuous mapping on the bounded subsets

of D(−∆N ,p). By the semigroup approach (see [4, 5, 15]), we obtain the local solutions.
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Proposition A.2 Let u0 ∈ D(−∆N ,p) and f : R×RN → R be C2. Then there exists
a unique local in time mild solution u to (37) having the following regularity properties:

u ∈ C([0, τ);D(−∆N ,p)) ∩ C((0, τ);D((−∆N ,p)
3
2 ), ut ∈ C((0, τ);D((−∆N ,p)

3
2−ε)),

with arbitrary ε > 0.

Following [20], we will now recall an a priori estimate of solutions to (37) leading to
the global in time extendibility of the local solutions. Consider the Neumann semilinear
problem (37) in a bounded domain Ω ⊂ RN with ∂Ω of class C2 if N ≥ 2, where the
function f : R× RN → R is C2 and satisfies the following growth restriction:

f(v, q)v ≤ c0|q|2 + c1v
2 + c2, v ∈ R, q ∈ RN (39)

with non-negative constants c0, c1, c2. Then, for classical solutions of (37) having con-
tinuous in [0, T ] × Ω spatial derivatives ∇u, the following a priori estimate in L∞(Ω) is
valid:

max
(t,x)∈[0,T ]×Ω

|u(t, x)| ≤ κeλT max{
√
c2; max

x∈Ω
|u0(x)|}, (40)

where κ, λ > 0 are constants dependent only on c0, c1 and the domain Ω. The proof of
that estimate can be found in [20, Ch. V, Theorem 7.3].

Having an a priori L∞(Ω) estimate as in (40) for all classical solutions to (37) under
the assumption (39), we can thus eliminate the possibility of the blow-up in that case
whenever f grows less than quadratically with respect to ∇u. Indeed, assume that the
sub-quadratic growth condition with respect to the gradient is satisfied (compare [20,
Chapter I, (3.31)]):

|f(u,∇u)| ≤ c(|u|)(1 + |∇u|2−ε), |D1f(u,∇u)| ≤ c(|u|)(1 + |∇u|2−ε),

|Di+1f(u,∇u)| ≤ c(|u|)(1 + |∇u|1−ε), i = 1, ..., N,
(41)

where c : R+ → R+ is a non-decreasing function and ε ∈ (0, 1).

Note first that whenever (2−ε)p−N
(2−δ)p−N < θ(2 − ε), where 0 < δ < ε and 0 < θ < 1, the

Nirenberg-Gagliardo type estimate

∥ϕ∥W 1,(2−ε)p(Ω) ≤ c∥ϕ∥θW 2−δ,p(Ω)∥ϕ∥
1−θ
L∞(Ω)

holds. Further, since (2−ε)p−N
(2−δ)p−N < 1, we can also assume that θ(2− ε) < 1. Thus we get

∥f(u,∇u)∥Lp(Ω) ≤ c(∥u∥L∞(Ω))∥1 + |∇u|2−ε∥Lp(Ω)

≤ c(∥u∥L∞(Ω))
(
|Ω|+ ∥u∥2−ε

W 1,(2−ε)p(Ω)

)
≤ c′(∥u∥L∞(Ω))

(
1 + ∥u∥θ(2−ε)

W 2,p(Ω)

)
.

We further consider the components of the norm ∥f(u,∇u)∥W 1,p(Ω):

∥ ∂

∂xj
f(u,∇u)∥Lp(Ω) ≤ ∥D1f

∂u

∂xj
∥Lp(Ω) +

N∑
i=1

∥Di+1f
∂2u

∂xj∂xi
∥Lp(Ω). (42)

We will estimate the second component in (42), the first one can be treated analogously.
Using the Hölder inequality (with 1

r + 1
s = 1) and (41), we obtain

∥Di+1f
∂2u

∂xj∂xi
∥Lp(Ω) ≤ ∥Di+1f(u,∇u)∥Lpr(Ω)∥

∂2u

∂xj∂xi
∥Lps(Ω)

≤ c′(∥u∥L∞(Ω))
(
1 + ∥∇u∥1−ε

L(1−ε)pr(Ω)

)
∥u∥W 2,ps(Ω).
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The last estimate, by the Nirenberg-Gagliardo type inequalities

∥ϕ∥W 1,(1−ε)pr(Ω) ≤ c∥ϕ∥θW 3−δ,p(Ω)∥ϕ∥
1−θ
L∞(Ω), ∥ϕ∥W 2,ps(Ω) ≤ c̄∥ϕ∥θW 3−δ,p(Ω)∥ϕ∥

1−θ
L∞(Ω),

extends to

∥Di+1f
∂2u

∂xj∂xi
∥Lp(Ω) ≤ C(∥u∥L∞(Ω))

(
1 + ∥u∥θ+(1−ε)θ

W 3−δ,p(Ω)
),

where we need to fulfill two conditions

1− N

(1− ε)pr
< θ

(
3− δ − N

p

)
and 2− N

ps
< θ

(
3− δ − N

p

)
,

or, jointly, 3− ε− N
p <

(
θ + (1− ε)θ

)(
3− δ − N

p

)
. Note that, for a given ε ∈ (0, 1) and

0 < δ < ε, the sum (θ + (1 − ε)θ) will be made strictly less than 1. We thus obtained
a subordination type condition

∥f(u,∇u)∥W 1,p(Ω) ≤ c(∥u∥L∞(Ω))
(
1 + ∥u∥θ+(1−ε)θ

W 3−δ,p(Ω)

)
allowing to extend a local solution to (37), varying in the phase spaceW 3−δ,p

N (Ω) globally
in time (see Theorem 4.2 and [4, Section 4.3] for details).
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