SEMICONTINUITY OF ATTRACTORS FOR IMPULSIVE DYNAMICAL
SYSTEMS

E. M. BONOTTO!, M. C. BORTOLAN, R. COLLEGARI?, AND R. CZAJA

ABSTRACT. In this paper we introduce the concept of collective tube conditions which assures
a suitable behaviour for a family of dynamical systems close to impulsive sets. Using the
collective tube conditions, we develop the theory of upper and lower semicontinuity of global
attractors for a family of impulsive dynamical systems.

1. INTRODUCTION

Perturbations are present in every aspect of the modelling of real world phenomena. Ap-
proximate measurements, data collecting, empirical laws and simplifications, for instance, are
procedures that introduce small changes in the modelled problem. Such small errors are ex-
pected, but they need to be carefully treated. Otherwise, how can we assure that the properties
obtained for the model also hold true for the real problem?

To answer this question, we need to study the continuity of such problems under small
perturbations. We will focus on the following question: what can be said about the asymptotic
behaviour of a problem (that is, the behaviour of solutions for large times t) if we make a small
perturbation of it?

Even in the case of continuous dynamical systems, this question has a very non-trivial answer
and the study of the perturbations is divided in the literature, in general, in four steps: the
upper semicontinuity, the lower semicontinuity, the topological stability and, lastly, the geometric
stability (see for instance [1, 2, 8, 9, 10, 11, 17, 18]). In this paper, we will deal mainly with the
upper semicontinuity of impulsive dynamical systems and, also, we shall give some preliminary
results on the lower semicontinuity.

We say that a family {A,},cj01] of non-empty sets in a metric space (X, d) is upper semi-
continuous at n = 0 if

limdg(A,, Ag) =0
n—0

and it is lower semicontinuous at n = 0 if

}]ll}(l] dH(A(), Aﬂ) — 0,
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where
du(A,B) = ilelg gggd(a, b)
is the Hausdorff semidistance between two non-empty subsets A, B of X.

Roughly speaking, the upper semicontinuity property ensures that the solutions of the per-
turbed system do not “explode” and follow some solution of the limiting problem. The lower
semicontinuity ensures that the solutions of the perturbed system do not “implode” and the
perturbed system has, at least, the same degree of complexity that the limiting system.

If one is familiar with the theory of impulsive dynamical systems and their global attractors
(see detailed results in [3] and additional results in [4, 5, 6, 7, 12, 13, 14, 15, 16, 19, 20, 22]),
there is a natural question to ask: how can we talk about continuity under perturbations of
systems which have precisely the discontinuity as its main feature?

To answer this question we must remind that, basically, an impulsive dynamical system
is formed by a continuous dynamical system and a continuous impulsive function (or jump
function), which gives rise to a discontinuous semiflow, that is, for each initial state, the solution
has “jumps” and it is clearly discontinuous. But when we look at the whole impulsive semiflow,
if the continuous semiflow and the jump function behave continuously under perturbations,
there is no reason why the impulsive semiflow would not behave the same. Realizing this,
one can see that the study of continuity of impulsive dynamical systems is not a contradictory
statement by itself, and involves the study of perturbations of continuous semiflows as well as
the study of perturbations of the impulsive functions. This will be the main goal of this work,
that is, to study in details the upper semicontinuity of global attractors for impulsive dynamical
systems and give a first step towards the study of their lower semicontinuity.

This work begins with some basic concepts and preliminary results on impulsive dynamical
systems, presented in Section 2. This section is divided in three subsections, for an easier
reading. The first subsection is devoted to the definitions of an impulsive dynamical system and
impulsive positive trajectories. Next, we present the so-called tube conditions, which are crucial
for this theory, and finally we present the definitions and recent results on global attractors for
impulsive systems.

As we said before, the tube conditions are crucial for the development of the theory of impul-
sive systems, and we must be able to reproduce these conditions when we work with pertur-
bations. This is the main goal in Section 3, where we introduce the collective tube conditions.
Furthermore, we study the continuity of the impact time maps for a family of impulsive dy-
namical systems.

The main result of this work, namely Theorem 4.2, is presented in Section 4, where we provide
conditions that ensure the upper semicontinuity for a family of global attractors of impulsive
dynamical systems.

In Section 5, we show an application of the previous theorem in a coupled system of ODEs
with impulses. Finally, in Section 6, we give probably the first step towards the understanding
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of the lower semicontinuity for a family of global attractors of impulsive systems. We present
a result of lower semicontinuity (Theorem 6.3) in a simple case, where the critical elements of
the continuous semigroups are a finite number of equilibria.

2. PRELIMINARIES

In this section, we present the basic definitions and results of the theory of impulsive dynami-
cal systems.

2.1. Impulsive dynamical systems.

Let (X,d) be a metric space, R, be the set of non-negative real numbers, N be the set of
positive integers and Ny = NU {0}.

Definition 2.1. A semigroup (or semiflow) in X is a family of continuous maps {m(¢): ¢t > 0}
from X to itself, indexed on R, satisfying the following conditions:
(i) 7(0)x = x for all z € X
(ii) 7(t +s) = w(t)n(s) for all t,s € Ry;*
(iii) the map Ry x X 3 (t,z) — w(t)z is continuous.
If R, is replaced by R in this definition, the family {x(¢): ¢ € R} is called a group (or flow)
in X.

Let {m(t): t > 0} be a semigroup in X. For each D C X and J C R, we define
F(D,J)=|J=()'D.
teg
According to [21], a point x € X is called a start event if F/(z,t) = @ for all t > 0. A start

event is also known as an initial point, see [3, 4, 5, 6, 7, 12, 13, 15].

Definition 2.2. An impulsive dynamical system (IDS, for short) (X, 7, M, I) consists of
a semigroup {m(t): t > 0} on a metric space (X,d), a non-empty closed subset M C X such
that for every x € M there exists €, > 0 such that

F(z,(0,)NM=2 and | ] {r(t)z}n M =g, (2.1)

te(0,ex)

and a continuous function I: M — X (its role will be specified below).
The set M is called the impulsive set and the function I is called the impulsive function.

Remark 2.3. Condition (2.1) means that the flow of the semigroup {m(¢): ¢ > 0} is, in some
sense, transversal to M at any point of M.

'In this paper 7(t)7(s) denotes the composition 7(t) o 7(s) and the composition sign “o” is omitted.
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We also define

M*(z) = (U W(t)[)?) N M.

t>0

It follows immediately from the definition of M*(z) and (2.1) that if M*(z) # &, then there
exists s > 0 such that m(s)z € M and 7(t)x ¢ M for 0 < ¢t < s. Thus, we are able to define
the function ¢: X — (0, +00] by

o) = {s, if 7(s)x € M and 7(t)x ¢ M for 0 <t < s, (2.2)

+oo, if MT(z) =2.

If M*(x) # @, the value ¢(z) represents the smallest positive time such that the positive
trajectory of x meets M, which we will call the impact time map. In this case, we say that
the point 7(¢(x))z is the impulsive point of z.

The impulsive positive trajectory of x € X by the IDS (X, m, M, I) is a map 7(+)x defined
in an interval J, C Ry, 0 € J,, with values in X given inductively by the following rule: if
M™(z) = @, then 7(t)r = n(t)x for all t € R, . However, if M*(z) # & then we denote z = zg
and we define 7(-)x on [0, ¢(zg )] by

() = {W(t)a:f{, it 0<t <o)
I(m(¢(xg))ag), i &= dlag).

Now let so = ¢(xg), 11 = 7(so)zg and xf = I(m(so)xd). In this case sy < 400 and the
process can go on, but now starting at z;. If M (z]) = @ then we define 7(t)z = 7(t — s¢)x]
for so < t < 400 and we have ¢(z]) = +oo. However, if M*(x]) # @ we define 7(-)x on
[50, 50 + ¢(21)] by

. m(t — so)x], if s <t <so+o(xy),
7(t)r = _
I(m(g(x]))ay), if t=so0+d(z)).
Define s; = ¢(af), 2o = w(s1)x] and 25 = I(7(s1)z]). Assume now that 7(-)z is defined
n—1
on the interval [t, 1,t,] and that 7(¢,)x = x;}, where t, = 0 and ¢, = Zsi for n € N. If
i=0

M*(z}) = @, then 7(t)x = w(t — t,)x} for t, <t < +oo and ¢(x;}7) = +oo. However, if
M™*(z}) # @, then we define 7(-)x on [t,, t, + ¢(z;})] by
. 7wt —ty)xt, if b, <t <t,+ o(x}),
7(t)r =
I(m(¢(zy))ay), it =ty + dlay),

and we set, inductively, s, = ¢(z}}), Tp11 = m(s,)z;b and 2, | = I(7(s,)x;}). This process ends
after a finite number of steps if M (z;7) = @ for some n € Ny, or it may proceed indefinitely
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if M*(x) # @ for all n € N and in this case 7(-)x is defined in the interval [0,7(z)), where
+oo

T(x) = Z Si.

i=0
We shall assume throughout this paper the following global existence condition:

T(x) = +oo for all z € X. (G)

Note that 7(0)x = x for all x € X. It is simple to see that if hypothesis (G) holds then the
family {7(t): t > 0} of maps satisfies an analogous property to (ii) of Definition 2.1, that is:

7(t+s)x =7(t)w(s)x forall t,s € Ry and z € X.

Remark 2.4.

1. If there exists & > 0 such that ¢(z) > £ for all z € I(M), then the condition (G) is
verified. This assumption says that there is a positive lower bound for time which the
semigroup 7 takes to reach M, when leaving from (M), and it is satisfied in several
examples, for instance, when I(M) is compact and (M) N M = & (see [3]).

2. Some important and interesting cases are the impulsive dynamical systems in which the
impulsive trajectory is defined for all ¢t € R. In many cases we may restrict ourselves to
such systems, due to the existence of suitable isomorphisms (the reader may see [14]).

2.2. Tube conditions for impulsive dynamical systems.

In order to obtain important topological properties for impulsive systems which have coun-
terparts in continuous systems, we must ensure that the original semiflow {7 (¢): ¢t > 0} behaves
nicely near to the impulsive set M. Therefore, we define the so called “tube conditions” (see
[12] for more details).

Definition 2.5. Let {m(¢): ¢t > 0} be a semigroup on X. A closed set S containing z € X is
called a section through x if there exist A > 0 and a closed subset L of X such that:
(a) F(L,\) = 5;
(b) F(L,[0,2)\]) contains a neighbourhood of x;
(c) F(L,v)NF(L,()=2if 0 <v < (<2
We say that the set F'(L,[0,2)\]) is a A—tube (or simply tube) and the set L is a bar.

Lemma 2.6. If S is a section and N\ > 0 is given as in the previous definition, then any
0 < p < X satisfies conditions (a), (b) and (c) above with L replaced by L, = F(L, X — u) and
A replaced by .

Proof. See [15, Lemma 1.9]. O

Definition 2.7. Let (X, 7, M, I) be an IDS. We say that a point x € M satisfies the strong
tube condition (STC) if there exists a section S through z such that S = F(L, [0,2\]) N M.
Also, we say that a point x € M satisfies the special strong tube condition (SSTC) if it
satisfies STC and the A-tube F'(L,[0,2)]) is such that F(L,[0,\]) N I(M) = @.
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The strong tube conditions are the key notions of the theory developed in [3, 4, 5] and also
give us both of the following results.

Theorem 2.8. Let (X, m, M,I) be an IDS such that each point of M satisfies STC. Then ¢
is upper semicontinuous in X and it is continuous in X \ M. Moreover, if there are no start
events in M and ¢ is continuous at x then x ¢ M.

Proof. See [12, Theorems 3.4, 3.5, 3.8]. O

Proposition 2.9. Let (X, 7, M,I) be an IDS such that I(M)NM = @& and let y € M satisfy
SSTC with A-tube F(L,[0,2)]). Then 7(t)X N F(L,[0,\]) = @ for all t > \.

Proof. See [3, Proposition 2.6]. O
2.3. Global attractors for impulsive dynamical systems.

In this subsection we present the definition of a global attractor for an impulsive dynamical
system and an existence result, which can be found in details in [3].
We say that a subset A of X is 7-invariant if 7(¢)A = A for all t > 0. Also, we say that A
m-attracts B C X if
t£+moo dg(7(t)B,A) = 0.

With these concepts, we can present the definition of a global attractor for the IDS (X, m, M, I),
which was first introduced in [3].

Definition 2.10. A subset A C X is called a global attractor for the IDS (X, m, M, I) if it
satisfies the following conditions:
(i) A is precompact and A = A\ M;
(ii) A is 7-invariant;
(iii) A 7-attracts all bounded subsets of X.

To prove the existence of global attractors, we formulate the following:

Definition 2.11. An impulsive dynamical system (X, m, M, ) is called strongly bounded
dissipative if there exists a non-empty precompact set K in X such that K " M = @ and
m-absorbs all bounded subsets of X, i.e., for any bounded subset B of X there exists tg > 0
such that 7(t)B C K for all t > tp.

With this definition, we are able to present a result on the existence of global attractors for
impulsive dynamical systems.

Theorem 2.12. Let (X, 7, M,I) be a strongly bounded dissipative IDS with 7-absorbing set
K such that I(M) N M = &, every point in M satisfies SSTC and there ezists & > 0 such
that ¢(z) = € for all z € I(M). Then (X,m,M,I) has a global attractor A and we have
A=a0(K)\ M, where (K) is the impulsive w-limit of K, i.e.,

oK) =J#(s)K.

t>0 s>t
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To see the relation of this global attractor with its counterpart in the continuous case, we
will use the characterization via global solutions. We say that a function ¢: R — X is a global
solution of 7 (or a 7-global solution) if

7T(t)(s) =Y(t+s) for all t > 0 and s € R. (2.3)

Moreover, if ¥(0) = x we say that 1 is a 7-global solution through z. We say that v is
bounded if ¥(R) is a bounded subset of X.

Thus, we have the same characterization of the global attractor for the impulsive case as in
the continuous case, which is the content of the next result.

Proposition 2.13. If the IDS (X, 7, M, I) has a global attractor A and I(M) N M = & then
A = {x € X: there exists a bounded global solution of T through z}.

Proof. See [3, Proposition 4.3]. O

Remark 2.14. Using the proof of Proposition 2.13 (see [3, Proposition 4.3]), the bounded
global solution through x € A is given by
T(t+n)r_,, ifte[-n,—n+1], neN,
U(t) =19 . .
7'['(1;)1‘0’ lft 2 O7
where zo = z and 7(1)x_,_; = x_,, for all n € Nj.

For more properties of global attractors for impulsive dynamical systems we refer the reader

to [3].
3. COLLECTIVE TUBE CONDITIONS AND IMPACT TIME MAPS

We now focus on the problem of defining suitable tube conditions for a family of impulsive
dynamical systems {(X,m,, M, I,)) },epo,q) in such a way that the property of upper semiconti-
nuity will hold. Also, using these tube conditions, we will deal with the family of impact time
maps - recall (2.2) - generated by this family of systems.

3.1. Collective tube conditions.

In this subsection we establish some collective tube conditions for a family of impulsive dy-
namical systems { (X, m,, M, I)) }5c[0,1] so that the semiflows 7, and 7, have suitable behaviours
in their evolutions. From now on, we shall assume the following general conditions?: first, the
continuity with respect to the parameter 7 of the continuous semigroups m, given by

7, () s mo(t)x uniformly for (¢,2) in compact subsets of R, x X. (C1)

Also, we assume the continuity of the impulsive sets M,, which is given by

n—0

dH(M,?,Mo) —|—dH(M0,Mn) — 0 (C2)

2Along with condition (G) for each 7 € [0,1].
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and a collective continuity of the impulsive functions I,;:
given £ > 0 and wy € My there exists § > 0 such that if n € [0, ), G
3
w € M, and d(w,wg) < ¢ then d(I,(w), Io(wy)) < e. (©3)

Finally, we assume that
there exists 77 € (0,1] such that I,,(M,) N M, =& forall n € [0,7). (C4)

Condition (C2) provides us a simple and useful result.

Lemma 3.1. If {n }ren C [0, 1] and {wg tren C X are sequences such that ny hoteo 0, wy, € M,,

for k € N and wy, hotge wy, then wg € M.

Proof. From (C2) we have

A (wo, Mo) = inf d(wp,2) < inf (d(wo, wy) +d(wy, 2)) < d(wo, wy) + dpg (My,, Mo) =50,
z 0 z 0

that is, wg € My, since M, is closed. O

Remark 3.2. If M is compact then we may replace condition (C4) by the following condition:
Iy(My) N My = @. (C4)

It can be done since the relaxed condition (C4’) implies condition (C4). In fact, if there exists

a sequence 7y, " —=5° 0+ with wy, € L, (M, )NM,,,

using (C2) and the compactness of My we may assume (taking subsequences if necessary) that
wy, g wy € My and z, gmare 20 € My. Hence, (C3) implies that wy = Iy(29) € Io(My) N My,
which contradicts (C4’).

we have wy, = I, (2;,) for some zj, € M,, . Now,

In the sequel, we introduce a more specific collective tube condition to assure that the semi-
group {m,(t): t > 0} behaves nicely near to its associated impulsive set M, when n — 0.

Definition 3.3. Let {(X,m,, M,, I,)},cp,1 be a family of impulsive dynamical systems. We
say that a point wy € M, satisfies the collective strong tube condition (C-STC) if given
a sequence {nx}ren C [0, 1] such that ny "2 0 and a sequence of points w, € M,,, k € N,
with wy, e wp, there exists A\g > 0 such that for each 0 < A < A\ one can find 6 = §(\) > 0
such that Fy(Lo, [0,2)]) is a A-tube through wy with section Sy = Fy(Lg, [0, 2A]) N My such that
B(wo, d) C Fo(Lo, [0,2)]) and there exists ky € N such that n, < 7 for k > ko (77 comes from
(C4)) and we have a A-tube F,, (Ly, [0, 2)]) through wy, with section Sy = F,, (L, [0,2)\]) N M,,
satisfying B(wy, ) C F,, (L, [0,2)]) for k > k.

Definition 3.4. If, additionally, Fy(Lo, [0, A]) N Io(My) = @ and F,, (L, [0, A]) N 1, (M,,) = @
for all £ > ko in Definition 3.3, then we say that wy € M, satisfies the collective special
strong tube condition (C-SSTC).

To illustrate the previous concepts, we present a simple example.
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Example 3.5. Consider the family of impulsive differential equations

37:_(1"‘77)37; ne [071]7
I,: M,, — R,

where M, = {z+n: z € N} and [,(z) = z+n — 1 for all z € M, and 5 € [0, 1].

Note that m,(t)x = ze~ 1! for all x € R, t > 0 and 5 € [0, 1], and conditions (C1)-(C4) are
satisfied. Moreover, each point in M satisfies C-SSTC. In fact, let wy € Moy, {nk}ren C [0, 1]
be such that 7 "21° 0 and {wi }ren C R be such that wy, € M,, and wy, e wp. Let ng =0,
0< X\ < ln(ﬁszl), 0 < A< N and set L = {wpe” A} for k € Ny. Note that there
exists ko € N such that n;, < 1 for k > ko, F, (L, [0, 2)]) = [wre™ T2 . eHmA] s a \-tube
through wy, F,, (L, [0,2X]) N M,, = {wi} and F,, (Ly, [0,\]) N L, (M,,) = @ for all k > ko and
k= 0.

Furthermore, for 0 < § < wy(1 —e™*) we have B(wy,d) C F,, (L, [0,2]]) for all k > ko and
k = 0, which proves the claim.

From Definition 3.3 we have the following straightforward result.

Lemma 3.6. Assume that wy € My satisfies C-STC. If a sequence {ny}ren C [0, 1] is such that

Mk 250 and wi € M, , k €N, is a sequence of points with wy, e wy, then there exists an

integer ki > ko such that B(wo, $) C B(wy, 8) C F, (L, [0,2)]) for all k > k.

Lemma 3.7. Let (X, my, Moy, Iy) be an IDS such that X is locally compact and {mo(t): t € R}
1s a group. Assume that wy € My satisfies STC with a A-tube. Then it also satisfies STC with
a compact \-tube.

Proof. Since wy satisfies STC there exist a tube Fy(Lo, [0,2)\]) through wy with section Sy =
Fo(Lo, [0,2\]) N My and 6 > 0 such that B(wy,d) C Fy(Lo, [0,2]).

By the local compactness of X one can obtain € > 0 such that B(wy, €) is compact. Now, let
us define

So = SoN B(wp,e) and Ly = mo(A)Sp.
Note that Sy and Ly are compact sets and Fy(Lo, A) = Sp.

We claim that there is v > 0 such that B(wg,7y) C Fy(Lo,[0,2A]). Suppose to the contrary
that there is a sequence {z;}ren C X such that z "2 wo and 2, ¢ Fy(Lo,[0,27]) for all
k € N. Since z oo wy there is an integer ko > 0 such that z, € B(wy, ) for all & > kg. On
the other hand, we have B(wg,d) C Fy(Lo,[0,2)]), which implies that there are v, € Sy and
sk € [\, A] such that

mo(sk)vk = 2z for all k> k.

We may assume that s, "—-5° so € [—A, A]. Then

Vi — Wo(—Sk)Zk ki)OO ’/To(—SQ)U)O
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with mo(—s¢)wy € Sp, because Sy is closed. But, by the tube condition, mo([—A, \|)we N My =
{wp}, which shows that sy = 0. Hence,

k—+00
V. — Wp.

Thus there is k; > kg such that v, € Sy N B(wy,€) = Sy for all k > k;. Consequently,
2 = mo(sp)vr € Fo(Lo,[0,2)]) for all k> ki,

which is a contradiction. This shows the claim.

It is not difficult to see that Fy(Lo, ) N Fo(Lo,v) = @ for 0 < p < v < 2X and Sy =
Fo(Lo, [0,2M]) N My. Hence, wy € M, satisfies STC with the tube Fy(Lo, [0,2A]) through wy
with 8o and £y compact sets.

In order to see the compactness of the tube, let {wy}ren be a sequence in Fy(Ly, [0, 2)]).
Then there are oy € [—\, A\ and b, € Sy such that mo(ay)br, = wy for all k& € N. We may

assume that ay, ot ap € [, \] and by, e by € Sy. Then we have
Mimase mo(an)bo € Fo(Lo, [0,2A])
which concludes the proof. 0
In the next result, we present sufficient conditions to obtain C-STC in locally compact spaces.

Theorem 3.8. Let {(X, 7, My, I)) }nepon) be a family of impulsive dynamical systems such that
X is locally compact and {m,(t): t € R} is a group for each n € [0,1]. Assume that condition
(C1) holds uniformly for (t,x) in compact subsets of R x X. Also, assume that the following
conditions hold:
(i) wo € My satisfies STC with respect to the group mo;
(ii) there are B > 0, 69 > 0 and ny > 0 such that for 0 < n < ny we have B,, = B(wy, dy) N
M, + 2,
™ ((=6,0)U(0,5)) BN M, = &

and
m([=8,B))2 N M, # @ for all =& B(wy,d).

Then wq satisfies C-STC.

Proof. Let {ny}ren C [0, 1] be such that n F2H° 0 and {wi }ken C X be such that wy € M,, and
Wy ot wy. By assumption there is a A\p-tube through wy with 0 < A\g < 8. Let 0 < A < .
By Lemma 2.6 let F(Lo, [0,2]]) be a A\-tube through wy with section Sy = Fy(Lo, [0, 2A]) N M.
We may assume that Fy(Lo, [0,2]]) is compact taking in account Lemma 3.7. Moreover, there
exists d; € (0, d) such that B(wy,d1) C Fo(Lg, [0,2A]), where &y comes from condition (ii). Let
k1 € N be such that wy, € B(wy, d,) for all k > k.
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Define Sy = M,, N B(wy, 1) C B,, for all k > k1. Note that S, is compact and wy, € Sy for
all k > k;. Using Lemma 3.1 and the compactness of Fy(Lo, [0,2)]) we conclude that

i (Sk, So) =55° 0. (3.1)

Now, we define Ly = m,, (A)S}, for all k > k;. In the sequel, we shall show that F,, (Ly, [0, 2)])
is a A-tube through wy, for k sufficiently large.
Note that Lj is compact and

Ey (L, A) =y (=N Ly = Sy, for all k > k.

Moreover, F,, (L, [0,2\]) N M,, = Sy for all k& > k. In fact, fix k > ky. If z € Si then
z € M,, and 7, (\)z € Ly, that is, z € F,, (L, [0,2X]) N M,,. On the other hand, if z €
F,.(Lg, [0,2X]) N M,, then there is s, € [0,2)] such that m,, (sy)z € Ly = m,, (\)Sk, that is,
T (S — A)z € Sp. We claim that s, = A. Indeed, if s, # A then by the definition of Sy,
condition (ii) and by the fact that m,, (A — si)m, (s — A\)z = z € M,, we have

|A_Sk| 257

which is a contradiction, since A < 8 and s; € [0,2)\]. Consequently, s, = A and z € S.

We still have to show items (b) and (c) from Definition 2.5. To this end, we present some
assertions.

Assertion 1: There are § € (0,6;) and ky > k; such that B(wg,d) C F,, (L, [0,22]) for all
k > ko.

Indeed, suppose to the contrary that there are k,, jipmare +00, O, fmarey 0%, z,, € B(wg,,, 0m)
and z,, ¢ F,, (Ly,,[0,2)]) for all m € N. We may assume that k,, > k; and 6, € (0,0;) for
all m € N. As wy,, Mo wo and 0, Mmoo 07, there is Ty € N such that z,, € B(wy,d;) for
all m > my. Condition (ii) ensures the existence of «, € [0, 3] such that

T, () 2m € My, for all m > my. (3.2)
We may assume that a;, [emareys [—f, 8]. Then as m — +o0 in (3.2) we obtain
7T0(OZ)UJQ c Mo,

which shows that oo = 0, since 7 ((0, A])woNMy = @ and Fy(wy, (0, \])NMy = @. Consequently,
A+ am € 10,2)] and 7, (Qum)2m € Sk, for m sufficiently large. This shows that

Tr”ikm (>‘ + am)zm S Lkm,

hence z, € F,, (L,,[0,2)]) for m sufficiently large, which is a contradiction and proves
Assertion 1.

Assertion 2: There exists kg > ko such that F), (L, v)NF,, (L, p) = @ forall 0 <v < p < 2)
and k£ > k.
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Again, we suppose to the contrary that there exist k,, (mares 400, 0 < vy < Uy, < 2\ and

Zm € Fy, (L, Vi) N Fy, (Li,,, pim) for all m € N. Then we have
Ty, (Vm)2Zm € Ly, and 7, (fim)2m € Ly, for all m € N,
which implies that
T, (Vm = A)2m € Sk,, and  my, (fm — A)2m € Sk, for all m € N.

Since my,  (Vm —A)zm € By, and my, (i — Vi )T, (Vm—A)2m € My, , it follows by condition
(i) that
|t — V| = B forall meN. (3.3)

By (3.1) and (3.3), we may assume that m, (v —A)zp, 25 e S, T, (Han —A) Zm fmarey

be Sy, v =571 € [0,2A] and fi,, "I e [0,2A] with v # p. Then we get

oA —v)a= lm =z, =mo(A— pu)b,

m—-+00

hence Fo(Lo,v) N Fy(Lg, 1) # @, which is a contradiction.
In conclusion, wy satisfies C-STC and it proves the theorem. O

Corollary 3.9. Under the assumptions of Theorem 3.8 assume additionally that Io(My) is
closed, dg(1,(M,), Io(Mo)) 280 and wy € My satisfies SSTC. Then wq satisfies C-SSTC.

Proof. Since, in particular, wg € M, satisfies STC, it follows from Theorem 3.8 that w satisfies
C-STC. Moreover, since wg € M, satisfies SSTC, Lemmas 2.6 and 3.7 used in the proof of
Theorem 3.8 allow us to consider Fy(Ly,[0,2A]) compact with Fy(Lo, [0,A]) N 1o(My) = @.
Continuing the argument of the proof of Theorem 3.8 we are left to show that there exists
ko > ko such that

F (L, [0,A]) N I, (M, ) = @ for k = k.
Suppose to the contrary that there exists z, € F, (L,,[0,A]) N L, (M,), n € N. Then there
exists s, € [0, A], which we may assume to converge to so € [0, A], such that m, (s, — )z, €

F,. (Lg,,\) = Sk,. Using (3.1) and compactness of Sy, by taking subsequences if necessary, we
may assume that

T, (Sn — A)2n fmary Yo € Sp.

Therefore, by (C1) we have

Zn = Ty, (A= 5n>7Tnkn (80— A)zn nge To(A — 50)Yo = %o

Thus, we obtain 2y € Fy(Lo,[0,]]). On the other hand, since z, € I, (M

Nkn

), n € N, and

du (L,(M,), In(My)) 1280, we find a sequence {Zn}nen in 1y(Mp), which converges to zp. By
the closedness of Iy(My) we get zy € Io(Mp). This contradiction ends the proof. O
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3.2. Collective continuity of impact time maps.

As defined previously in (2.2), we consider the impact time map ¢, : (0, +oo] — X, for each
n € [0, 1], given by

b (2) s, if 7, (s)z € M, and m,(t)x ¢ M, for 0 <t < s,
€Tr) =
! too, it M}(z) =,

where
M (z) = (U ﬂn(t)x> N M,.

In the next lines, we discuss the behaviour of the family {¢;},epo.11-

k—-+oco

Lemma 3.10. Let zp € X \ My and {zx}ren C X be a sequence such that x “~— xy. Let
{nk}ren C [0, 1] be a sequence such that ny "2H00, then llim inf ¢, (z1) = ¢o(x0).
—+00

Proof. Suppose, contrary to the claim, that there exist subsequences {n; }jen and {xy; }jen of
{n}ren and {z }ren, respectively, such that gbnkj (7)) 2 < ¢o(xp). Thus we know that
T, (czﬁnkj (wr;))zn; € My, ., j €N, and by Lemma 3.1 and (C1) we have

oo
7T77kj (¢77k]- (xk’j)>$kj ]1> 7To(t)xo € M07

that is, ¢g(zo) < t, which gives a contradiction. O

Lemma 3.11. Let g € X and {xg}ren C X be a sequence such that xy, gmay To. Assume that

k—+o00

every point from My satisfies C-STC. If {nx}ren C [0,1] is a sequence such that n, — 0,
then lim sup ¢y, (zx) < ¢o(xo).

k—+o00
Proof. It is enough to consider ¢o(zg) < +oo. Since mo(¢o(zo))re € My, condition (C2)
implies that there is a subsequence of {ny}ren, which we denote the same, and a sequence

{wptken € X, with w, € M,,, such that wy ey mo(¢o(z0))xo. By C-STC, there exist
A < ¢o(xg), 0 = 5(A) > 0 and ko € N such that

B(mo(¢o(20))w0,0) C Fo(Lo,[0,2A]) and  B(wg,d) C Fy, (Lk, [0,2]]), k > ko,

where F), (L, [0,2]]) is a A-tube through wy with section S, = F,, (Ly, [0,2A]) N M,, and
Fy(Lo, [0,2)]) is a A-tube through mo(¢o(xg))ze with section Sy = Fo(Lo, [0,2A]) N M.
By Lemma 3.6 there exists k; > kg such that

B (mo(¢o(0))z0, 3) C B(wy,8) C Fy, (L, [0,2)]), k > ki,

and condition (C1) implies that

T (G0 (w0)) 2, guary 7o(Po(z0)) 0.
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Consequently, there exists an integer ky > k1 such that
T, (00(20))zk € B(wg, §) C Fy, (L, [0,2X]), k = k.
Without loss of generality we can distinguish two cases.

Case 1: m,, (¢o(x0))xi € F,, (Li, (X, 2X]) for all k& > k.
In this case, there is o € (A, 2A] such that

T () Ty, (0 (o) )2k = T (s + Po(20)) ) € L.

Thus,
Tnk(Oék + ¢0(I0) — )\)l‘k c FUk(‘Lk? )\) =5, C M’?k? k> ko, (34)
and hence ¢, () < ag + ¢o(xo) — A for all k > ks.
k—+4o00

We may assume without loss of generality that ag, — ag € [A, 2A]. We assert that ag = A.

In fact, since
T (% + o(20) — Ak gty To(o + do(w0) — A) o,
it follows by (3.4) and Lemma 3.1 that mo(cg + ¢o(z0) — N)xo = mo(ag — N)mo(Po(z0))z0 € Mp.

Since mo((0, \))mo(Po(xo))z0 N My = &, we see that oy = A. In conclusion, we get

lim sup ¢, (z5) < limsup(ay, + ¢o(x0) — A) = Po(20).

k—+o0 k—+o0

Case 2: m,, (¢o(wo))x) € F,, (L, [0, A]) for all k > k.
In this case, there is 5y € [0, \] such that

T (G0(20) + Br)wr € Li, k= ko.

Thus,
T (0(w0) + B — Ny € (L, N) = S € M,,, k > ko,

which implies that ¢,, (zx) < ¢o(xo) + B — A for all k > ko. Assuming that S "2 By € 0, A]
we obtain by (C1) and Lemma 3.1 that

mo(¢o(wo) + Bo — A)zo € My,
that is, ¢o(zo) < do(x0) + Bo — A. If By # X\ we get a contradiction. Hence, Sy = A and

lim sup ¢y, (vx) < hkm sup(¢o(zo) + B — A) = ¢o(z0),

k—+o00 —+o00

which ends the proof. O

In conclusion, by Lemmas 3.10 and 3.11, we have the following theorem.

Theorem 3.12. Assume that every point of My satisfies C-STC. Let xg € X\ My and {x }ren C
X be a sequence such that xy, Fodgo xo. If {ntren C [0, 1] is a sequence such that ny, gy 0,

then lim ¢, () = ¢o(x0), i.e., the function
k—+o0

0,1] x X 3 (n,2) = ¢p(z) € (0, +00]
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is continuous in {0} x X \ M.

In the proof of Lemma 3.11 we used the lower semicontinuity at zero of the family { M, },co.1]
of impulsive sets assumed in (C2). A simple example shows that without this assumption, the
conclusion of the above lemma may not be true.

Example 3.13. Consider the semigroup
mt)r=—t+z,t>20, z€ X =R, nel01],

the impulsive sets
MO = {072}7 Mﬁ = {77}7 ne (07 1]7
and the impulsive function [, (z) = —1 for z € M,, n € [0,1].
Then, conditions (C1), (C3) and (C4) are satisfied. Furthermore, C-STC holds for each
point in M,. Note that we have

dH(Mn; Mo) ﬂ) 0 and dH(M(),Mn) ﬂ 2.
Setting zx = xo = 3, k € N, for any sequence {n }ren C (0, 1] with g P20 we get

limsup ¢y, (zx) =3 > 1 = ¢o(x0).

k—+o0

3.3. Continuity of the impulsive semiflows 7, at n = 0.

With Theorem 3.12 in hand, we are able to obtain a convergence result for the family
{(X, 7y, My, 1) }nepo,yy- Its proof follows the lines of the proofs of [3, Lemma 3.6] and [20,
Lemma 2.3], but we include it for the sake of completeness.

Proposition 3.14. Let o € X \ My, {zk}ren C X and {ni}tren C [0, 1] be sequences such that
T pmary xo and ny "2 0. Assume that each point of My satisfies C-STC. Given t > 0 there
exists a sequence {ex}ren C R such that ey, F2H00 and

T (E+ E0)n =52 7o () 0.

Proof. 1f ¢o(zo) = 400, it follows from Theorem 3.12 that for a given t € [0, 4+00) there exists
k € N such that ¢,, (z;) >t for all k > k. Consequently, for k > k, 7, (t)z), = m,, (t)z), and
the result follows by (C1) setting ¢, = 0 for k € N.

Now, let us assume that ¢o(zo) < +00. By Theorem 3.12 we may assume that ¢,, (z;) < 400
for all k£ € N.

Case 1: 0 <t < ¢p(xp).
By Theorem 3.12 there exists k1 € N such that ¢t < On, (1) for all k > k1. Then T (D) =
T () for all k > k; and taking e, = 0, k € N, we have by (C1)

~ k o) ~
T, (t + €)= mp (L) g 25 700 (t) w0 = 7o (t) 2o

Case 2: t = ¢g(x).
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Note that ﬁo(t)xo = ﬁo(ﬁf)o(l‘o))(lfo = ((L’Q)i_ Thus by (Cl)

(@)1 = Ty (D () ) "5 70(o(o) o = (o)1
Using (C3) we have
(@)F = Ly ((20)1) =55 Io((wo)1) = (o)

By Theorem 3.12, if we define ¢, = ¢y, (x) — ¢o(z0) = ¢n, () — t, then {ex }ren is a sequence

of real numbers such that e gmaz o} Hence, we get

T (t + €)% = Ty (S (1)) = (20)] "7 (o)} = Folt)ao-

Case 3: t > ¢g(z0).

m—1

In this case there exists m € N such that ¢ = Z Bo((z0)]) + ' with 0 < ¢/ < ¢o((z0)}).
1=0

Since ¢y, (v) jmary ®o(zo), we have by (C1) the following convergence

(@)1 = Ty (D () ) 5 mo(o(0) )0 = (o)1

Using (C3) and (C4) we have

(2)] = Lo ((2a)1) =5 Do((20)1) = (20)] ¢ Mo.
Since ¢y, ((xx)]) "— gmas 2 #0((20)7) by Theorem 3.12, we get again by (C1)

()2 = Ty (D (@) (@) 557 m0(d0((20)1)) (0)T = (w0)e.

Continuing with this process, we obtain

k o] k 00 .
()i = Topy (D (@) 20)) ()i "= (wo); and (xk)-*zfnk((fck)') S (o) i =1, m.
m—1 m—1
Thus we get Z G ((zr)F gmare Z do((z0)]). Set tg = Z Gy, ((z1)7) and define the se-
=0 =0 =0

quence {egtren C R by e =t +t' —t, kK € N. Note that ¢, oo

Then, since t' < ¢, ((zx)}) for large k, we get by (C1)

Oandt+5k—tk+t' 0

Tt + )z = 0 () (1)1, "55° mo () (o), = To(t) o,

which proves the result. O

m—1

Remark 3.15. If t # Z do((z0);") for every m € N, then we can take e, = 0, k € N, in the

1=0
above lemma.

Theorem 3.12 also allows us to obtain the following result.

Proposition 3.16. Let o € X \ My, {xp}treny C X and {nx}ren C [0,1] be sequences such
that xy, gmare xo and My F2E0 0. Assume that each point of My satisfies C-STC. Then, given

k—+o00

ay, F2E0 0 with ap =0 for all k € N, we have 7, (o) 2 2.
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Proof. Since zy ¢ My, it follows by Theorem 3.12 that ¢,, (xx) gmary ¢o(z0). Then there exists
k € N such that oy, < ¢y, (7y) for all k >k, and by (C1) we have

- k
o () ap = T () g 5 (0) a0 = o,

which concludes the proof. 0
Using Propositions 3.14 and 3.16, we can state the next result.

Corollary 3.17. Under the assumptions of Proposition 3.14, there exists a sequence {ex }ren C

0, +00) such that e, "25°0 and T (t + €1) ety 7o (t)xo.

k—+o00

Proof. By Proposition 3.14 there exists a sequence {&}ren C R such that & "— 0 and
T (4 i), guar e 7o(t)zo € My. Thus from Proposition 3.16 we have

k—+o00

T (84 &+ (&) 2k = T, (|ER]) T (F + &) "= To(t) 20

and the claim follows by setting e, = & + |&|, & € N. OJ

4. UPPER SEMICONTINUITY OF GLOBAL ATTRACTORS

In the sequel, we deal with the upper semicontinuity at zero of a family {.A,},cj0,1) of global
attractors of a family of impulsive dynamical systems {(X,m,, M,, I;)}nci0,1. Our goal is to
establish sufficient conditions to show the upper semicontinuity at zero of {Ay},c(0,1]-

Lemma 4.1. Let { A, },ci01] be a family of non-empty subsets of X such that Ay is precompact.
Then { Ay, }yep,1) 95 upper semicontinuous atn = 0 if and only if given a sequence {ny}ren C [0,1]
such that n oo 0 and a sequence {xp}ren C X with x, € A,, for all k € N, there ezists
a convergent subsequence of {xy Yren with limit in Ag.

Proof. Suppose first that {A,},c(0,1) is not upper semicontinuous at = 0. Hence, there exist

sequences {n }ren C [0,1], {zx}ren C€ X and € > 0 such that 7 F2E00, € A, and
dp(xg, Ag) = € for all k € N.

Therefore, {x }ren has no convergent subsequence with limit in Ay, which is a contradiction.
Conversely, if {A;},cp0,1) is upper semicontinuous at 7 = 0, {nx}ren C [0,1] and {zp}reny C X

are sequences with 7 F21° 0 and z € A,,, then
k——+o00
A (2k, Ag) < di(A,,, Ao) =570,

and thus {z;}ren has a convergent subsequence with limit in Ay, by the precompactness of

Ap. O

Now we present the main result of this work.
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Theorem 4.2. Let (X, m,, M,,I,) be an impulsive dynamical system with a global attractor
A, for each 77 € [0,1], and assume that each point of My satisfies C-SSTC. Assume also

that Uq76 0.1]
semicontinuous at n = 0.

A, is precompact in X. Then the family of global attractors {A,}ycioq s upper

Proof. Let {nx}ren C [0,1] be a sequence such that 7 P20 and {zr}ren C X be a sequence
with z € A, for all k € N. Since |J, A
and a subsequence of {xy}ren, which we continue denoting by the same notation, such that

» 1s precompact in X, then there are o € X

Ty oo xo and 7 < 7 for all k£ € N, where 77 comes from condition (C4). We need to prove
that zo € A,.
Let ¢¥5: R — X, k € N, be a bounded global solution through z; € A,, given by

T (t+m)(2g) =, ifte[—m,—m+1], meN,
Yi(t) =4 _ :
T, (D) 2k, if t >0,

where {(zx)—m}men C A, is a sequence such that 7, (1)(zx)—m = (k)—ms1 for all m € N,
with (xk)o = Tk.

By the compactness of |, ¢, Ay, we may assume that for each m € Ny there is (20)-m €
U, 017 Ay such that

(1) —m "= (20)—m, m € No.

Moreover, there exists £ > 0 such that ¢o(z) > ¢ for all z € I (MO N Une[o 1] ) see Remark
2.4.

Case 1: xy ¢ M,.

Subcase 1.1: Suppose there exists a subsequence {m;};en C Ny such that m;.; > m; and
(20)—m,; & My for all j € N, where m; = 0.
By Corollary 3.17, for each j € N, there is {Bi}keN C [0, +00) such that Bi "242° ) and

~ ] k—+ ~
T (M1 = 1105+ B (1) sy =5 To(Myn = 1105) (20) mys -

Since 7, (mjr1 — M) (Tk)-m,; ., = (Tr)-m,, k,j € N, using Proposition 3.16 we get for each
JjEeN
~ yi ~ 7 k—+00
T (M1 — My + Bk)(xk)—mj+l = Ty, (Bk)(xk)—m] — (xo)—mg
Thus, for each j € N we obtain
To(mjsr —m;)(20) —m,py = (Z0)-m,
We define

w (t) . ﬁ'g(t + ijrl)(a:O)me_la lft c [—ij, —m]’], j & N,
0 =
’ﬁ'o(t)i‘o, if ¢ 2 0.
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Note that v is a global solution of 7y through 5. Now, let us show that ¢(R) C Une[O,I] A,.
In fact, let s € R and observe that if s > 0, then 1y(s) = 7o(s)xo. By Corollary 3.17, there is
a sequence {vxtren C [0,400) such that P21 0 and

~ k 00 ~
T (8 + Vi) Tk A 7o (8)xo.

Since 7y, (s + vk)zx € Ay, for all k € N, we have ¢o(s) € U, Ay On the other hand,
suppose that s € [—=m;11, —m;| for some j € N. Thus, we have ¢y(s) = 7o(s + m;41)(xo)

By Corollary 3.17, there is a sequence {8} }ren C [0, +00) such that 67 *22° 0 and

—mjq1-

~ i k—4o00 ~
T (8 + M1+ ) (01) -y "= To(5 4+ M511)(%0) -my 15
which implies that ¢y(s) € Une[O,l] A,. Hence, 1 is a bounded global solution of 7y through
T, that is, zg € Ay by Proposition 2.13.
Subcase 1.2: Suppose there exists mg € N such that (zg)_,, € My for all m > m,.
Since (zx)_m i (o) —m € My for all m > my, taking a subsequence if necessary, we may
assume that

Oy, ((T) =) "2 0 for all m > my.

Indeed, fixing m > my it follows by (C2) that there exists a subsequence of {1y }xen, which we
denote the same, and a sequence {wy}ren C X, wy € M,, , such that wy, oo (x0)—m- By the
C-SSTC and Lemma 3.6, there exist A, > 0 and k; € N such that

B(wy,0) C F,, (Lk, [0,2X]) for all k > ky,

where F), (L, [0,2]]) is a A-tube through wy with section S, = F,, (Ly, [0,2A]) N M,, and
Fy(Lo, [0,2)]) is a A-tube through (zg)_,, with section Sy = Fy(Lo, [0,2A]) N My. Moreover, we
have

E (Li, [0,A])) N I(M,,) =@ and B ((%9)—m. ) C Fo(Lo, [0,2X]) N B(wg, 8), k > ki.

Hence, there is ko > ki such that (zx)_, € B(wyg,d) for all k& > ky. Since through (zx)—_m
passes a bounded global solution of 7,,, Proposition 2.9 implies that (zx)_, € F,, (Lk, (A, 2X])
for k > ko and, consequently, there is oy, € (A, 2], k > kg, such that m,, (o) (Tk)—m € Ly.
Then we have

Wnk(C(k — )\)(l‘k),m € Fﬂk<Lk7 )\) =5, C Mﬁk for all k > ks.
We may assume that oy, “=5° ap € [\, 2)] and obtain from (C1) and Lemma 3.1
o (e — N (@) - "=5° 7o (g — A)(20)—m € M.

Since mo((0, A]) (o) —m N My = @, it follows that ay = A. Hence, since 0 < ¢, ((z5)—m) < i — A

for all & > ko, we get ¢y, ((z£)—m) "2 0 which concludes the assertion.
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Fix 0 < f < min{¢, 1} and define (yx)—m = 7, (8)(2k)—m € A,, for all £ € N and m > my.
Fix m > mg and note that by (C1) we have

wi = T (G ((25) ) (@) - =57 70(0)(20) - = (w0) m = wp € My | A,
n€0,1]

Since wy, € M,,, k € N, we obtain from (C3)
L (wy) "5 Io(wo) ¢ M.

Hence, by Theorem 3.12 we have

S (L (w1)) "5 o (I (wy).

Since ¢o(Io(wo)) = & > B, we get ¢y, (I, (wx)) > B for k sufficiently large. Thus, for k
sufficiently large we have

(Y1) —m = T (B) (@) —m = Tope (B — Py (28) =) )T (D (1) = )) (1)

= %Uk (6 - (bﬁk((xk)—m))jﬁk (wk) = Ty (ﬂ - (bnk((xk)—m))‘[nk (wk)
Using (C1) we get

() —m "5 70 (B) Io((20) —m) = Fo(B)Io((%0)—m) = (40)—m ¢ Mo.

Note that (yx)-m € Ay, and 7, (1)(Yr)—m = (Yr)—m+1 for all K € N and m > my + 1. Since
the points (yx)_m belong to the bounded global solution vy, through =, € A,, as (yx)—m =
r(—m + B) for m > mgy, we may repeat the same construction carried out in Case 1 using
the sequence {(yo)—m,} with m; = 0 and m; = mo +j — 2, j > 2, where (yp)o = o, to obtain
a bounded global solution of 7y through zy. Hence, we see that zy € Aj.

Case 2: zg € M,.

Since i, imary r9 € My, repeating the argument of Subcase 1.2 we may assume that
On, (1) P20, We may also suppose that 0 < ¢, (z;) < % for all k& € N. Since there is
€z, > 0 such that Fy(zo, (0,£,,)) N My = &, we take m € N such that = < min{e,,, %} We
fix m > m. To simplify the notation, we set wy, := ¢p(—1) € A,, for all k € N. Taking
a subsequence, if necessary, let y,, € UnE[O,l] A, be the limit of {wy}ren. Below we will show

that
there exists k3 € N such that ¢,, (wy) > % for k > k. (4.1)

Indeed, suppose to the contrary that, up to a choice of a subsequence, we have

dny(wi) < + for all k € N. (4.2)

Since {¢, (wi) }ren is bounded by (4.2) and wy, gmare Ym, We may assume using (C1) that

k—4o00

2k = Wﬁk(¢nk(wk>>wk — Z
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Since zj, € M,,, we see from Lemma 3.1 that z € M. Then by (C3) we have

Uk = T, (& (wie) Jwi = Iy, (2k) e Io(z) € Io | Mo U Ay
nel0,1]

Since ¢o(o(2)) = &, by Theorem 3.12 we know that ¢,, (vg) > % > L for k sufficiently large.
Hence, for k sufficiently large, we have

Ty, (¢77k (mk) + # - ¢le (wk)) Vg = Ty, (¢77k (xk))ﬂmc (% - ¢77k (wk)) Uk
= Ty, (¢77k (xk))ﬁ-nk(%>wk = Ty, (¢nk (xk»xk S Mnk’
which is a contradiction, since
G (k) + 75 — b (wr) < Py (ap) + 5 <
Hence, (4.1) holds and
T, (%) Wy = Ty, (%) Wy, = Ty, (%) @Z)k(_%) = Tk ¢ me k= ks.

As k — +o0o, we get by (C1)

+ =<

o
DO [

3=

o (%) Ym = xg € My, m > M. (4.3)

Thus, we have y,, ¢ My for m > m, since % < €4, Since wy, € A, and wy, koo Ym & My,
by the proof of Case 1 we can construct a bounded global solution of 7y through v,,, hence
Ym € Ap for all m > m. Thus {y, }men has a convergent subsequence, which converges to
by (4.3). In particular zoy € Ay, which ends the proof. O

Remark 4.3. In Theorem 4.2, we assumed that the global attractors exist for each n € [0, 1].
It is clear that this assumption is not required to prove upper semicontinuity at zero. We just
need that the global attractors exist for all n < 7, for some 0 < 79 < 1. However, we can
always rescale the parameter 1 to obtain the required assumption for all € [0, 1].

5. APPLICATION
Consider the following system of impulsive ODEs:

T = -, .T(O) = Zo,

¥ = —y, y(0) = yo, (5.1)
[()Z M() — Io(M()),

where My = {(z,y) € R*: 2* + y* = 1} and the function Iy: My — Io(My) is given as follows:
given (x,y) € My we consider the line segment I'(, ;) that connects the points (z,y) and (3,y).
The point Io(z,y) is the point in the intersection I'(, ) N {(z,y) € R?*: 2% +y* = 9}. Note that
Io(My) C {(x,y) € R?*: 22 + y* = 9}. In [3, Example 4.8] the authors show that system (5.1)
possesses a global attractor given by Ay = {(0,0)} U {(x,0): = € (1, 3]}.
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Let f,g: R?> = R be C' maps, and assume that there exist oy, 31 > 0 and s, 32 € R such
that
vf(z,y) <ax? +ay and yg(z,y) < fry* + Bo for all (x,y) € R%. (5.2)

Now, consider the following autonomous perturbed system of coupled ODEs:

i:_$+nf($vy)7 ne [071]7
y=—y+ng(z,y), (5.3)
(2(0),9(0)) = (z0, vo)-

For each n € [0,1], let {m,(t): t € R} be the flow associated to the system (5.3). By the
continuous dependence on initial data and parameters, we have

0 (8) (2, ) =5 7o) ()

uniformly for (¢, (z,)) in compact subsets of R x R.
Now, we define M, = {(z,y) € R*: 2 + y* = (1 + n)*}, n € [0,1]. Note that M, =
H7Y((1+n)?), where H: R? — R is given by H(z,y) = 2> + y*. Let

Gy(z,y) = (—=z +nf(2,y), =y +ng(z,y)), (x,y) € R® and n € [0, 1].
Observe that there exists 77 € (0, 1] such that
VH(z,y) Gy(z,y) <0 forall (z,y) € M, andn € [0,7)]. (5.4)
Thus, given p = (z,y) € M,, with n € [0,7], there is €] > 0 such that
Fyp, (0,6)) N M, =2 and m,((0,¢]))pN M, = 2.

Hence, rescaling the parameter n if necessary, we consider M, as an impulsive set for each
n € [0,1].

Let I,,: M,, — R? be an impulsive function defined as follows: given (z,y) € M, we consider
the line segment F?Ly) that connects the points (z,y) and (3 +7n,y). The point I,(z,y) is the
point in the intersection I'!, ' N{(z,y) € R?: 224+ y* = (34n)?}. Note that I,(M,) C {(z,y) €
R?: 22 +y? = (3+1)?}.

Thus, we have the following properties:

n—0
dH(Mm M()) + dH(M(), Mn) — O,
given € > 0 and (zg,yo) € My there exists § > 0 such that
d(1,(x,y), Lo(zo,y0)) < €if n €[0,0), (z,y) € M, and d((z,y), (zo,y0)) < 9,

and lastly
I,(M,) N M, = @ for all n € [0,1].



SEMICONTINUITY OF ATTRACTORS FOR IMPULSIVE DYNAMICAL SYSTEMS 23

Therefore, we obtain the following system

(&= —a+nf,y), nelo],
y=—y+ng(z,y),

(2(0),9(0)) = (0, v0),

\]773 M, — I,(M,),

(5.5)

which defines a family of impulsive dynamical systems {(R?, m,, M, I,)},ep0,1] that satisfies
conditions (G), (C1)-(C4), where (C1) is satisfied uniformly for (¢,z) in compact subsets of
R x R2. Also, each point of M; satisfies C-SSTC as we can see in the next lemma.

Lemma 5.1. Fach point of My satisfies C-SSTC.

Proof. Tt is easy to see that each point of M, satisfies SSTC. Fix (zg,y0) € My. Let us show
that there are v > 0, 69 > 0 and 7y > 0 such that for 0 < n < 7y we have:

(@) B((zo,Y0),00) N M, # &;

(b) m,((—=~,0) U (0,7))(z,y) " M, = @ for all (z,y) € B((xo,¥o),d) N M,

(€) it (2,) € B((z0.y0):do) then m,([—,7))(x. ) N M, # 2.
In fact, it is clear that given §; > 0 there is 7j; > 0 such that B((zo,0),61) N M, # & for all
0<n<n.

In order to show (b), suppose to the contrary that there are sequences {n;}tren C (0,7,),

{56 hen © R\{0}, {8k ren C (0, +00) and (2, yx) € B((20, y0), dk) N M, such that g, “~F5° 0,
Sk oo 0, 0, — P21 0 and T (Sk) (Tr, Y) € M, for all k € N. Note that

=+

(xkvyk) —>oo ($0ay0) € MO-

For each k € N, define the mapping ®;: R — R by ®4(t) = H(m,, (t)(zx, yx)), t € R. Note that
®1.(0) = Pp(sg) = (1 4+ m)? k € N. We may assume without loss of generality that s, > 0 for
all k& € N. Using the Mean Value Theorem we conclude that there is 5, € (0, sg) such that

VH (my, (56)(@k, Yk)) - Gy (T, (k) (2k, yi)) = 0 for all k € N.

When k£ — +o0 we get
VH (z0,Yo) - Go(zo, yo) = 0,
which contradicts (5.4). Hence, there are v, > 0, 6, € (0,6;) and 7, € (0,7,) satisfying
conditions (a) and (b).
Now, let us suppose to the contrary that there exist sequences {nx tren C (0,75) and (ay, by) €

k——+o00 k——+o00

B((xo, yo),02)) such that ne "= 0, (ak, bx) "— (0,%0) and
T ([—71, 1)) (ak, b)) N M, = @ for all ke N. (5.6)
We choose ¢ € (0, 1) such that

H(mo(v1) (w0, 0)) < (1 — 19)2 and  H(mo(—1)(z0, %0)) > (1 + 79)2-
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Then there is kg > 0 such that
H(my, (m1)(ag, by)) < (1 — 19)2, H (7, (=) (ag, b)) > (1 + 19)2, m. <0 forall k > k.

By continuity there is s, € [—71,71] such that H(m,, (sk)(ax, br)) = (1 + n;)? for all k > ky,
which contradicts (5.6). Hence, one may choose v = 71, d € (0,82) and 1y € (0,7,) satisfying
conditions (a), (b) and (c).

It is not difficult to see that dg(1,(M,), lo(M)) 228°0. Therefore, the result follows by
Corollary 3.9. O

The next result concerns the existence of global attractors for the system (5.5).

Lemma 5.2. There is ny € (0,1) such that system (5.5) has a global attractor A, for each
ne [07 TIO]

Proof. Indeed, let g = max{ay, 3} and 0 < 7, < min{ag ', 1} be such that 0 < M <1

—nao
for all € [0,7],]. Let B be a bounded set in R2. For (zg,y0) € B, let us denote m,(t)(zo, yo) =
(2, (t),yy(t)), t € R. Then, using (5.2), we get

& lw(0) 3P

2 () () + Yy () (2)
= 2y (1) (=2 (8) + 0f (2 (), Yn(£))) + Y (8) (=0 (1) + 19 (2o (£), 9 () (O-T)
< (1 — ag) (2, (1), y () + (|| + [Ba).

Hence, we obtain

21— + |B2]) o1
" 2 < 2_—2(1—nao)t n(|az] 1 — e—2(—nao)t
|7 () (@0, yo)|” < [ (20, 90)[ e T o o (1—e ) (5.8)

< (o, yo)[Pe™* 770" 1, £ > 0, n € [0,75]-
Since B is bounded, we find Tz > 0 such that
T, (t)(z,y)| <5 forall (z,y)e B and t=>1Ts.
Note that if (x,y) € I,,(M,) and n € [0,7,], then
17, () (2, 9)|* < |(2, )| Pe 20700 11 < (B34 n)2+1<25 forallt>0.
Thus, we conclude that
[T, (t)(z,y)] <5 forall (z,y)e B, t>Tp and n€0,7,).

The set K,, = B((0,0),5) \ M, 7,-absorbs all bounded subsets of R? for each n € [0,7,].
Note that there exists 0 < 7y < 7, such that every point of M, satisfies SSTC for n € [0, 7.
Indeed, suppose to the contrary that there are sequences 7 F2H0 0 and wy, € M,, such that wy,

does not satisfy SSTC. By (C2) and the compactness of My, we may assume that wy gmare wo
with wy € M,. However, since wy satisfies C-SSTC by Lemma 5.1, we see that w;, € M,,
satisfies SSTC for large k, a contradiction.
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Hence, by Theorem 2.12 the system (X, m,, M, I,) admits a global attractor A, such that
-An C Kna ne [07770]' O
Note in the proof of Lemma 5.2 that U, ¢, An C B((0,0),5), that is, (U, [ . A» IS precom-

pact in R?. Thus, by the previous results and Theorem 4.2 we have the following conclusion.

Theorem 5.3. The family of global attractors {Ay}ycpmo of (5.5) is upper semicontinuous at
n=0.

6. LOWER SEMICONTINUITY

In this section, we provide a first step in the study of lower semicontinuity for global attractors
of impulsive dynamical systems. Such topic is far too extensive to be discussed here in details,
with examples and applications. We will describe the theoretic foundation to the study and
present a result of lower semicontinuity in a particular case. To this end, let (X, m, M, I) be an
impulsive dynamical system.

If we recall the concept of a 7-global solution (see (2.3)), we will define a 7-backwards
solution through x € X as a function ¢: (—o0,0] — X satisfying ¢(0) = x and

7(t)Y(s) =(t+s) for all t > 0 and s < 0 such that t + s < 0.
Given an m-invariant subset = of X, we define the unstable set of = by
W"(Z) ={y € X: there is a T-backwards solution 1) through y
such that dg (¢ (t), Z) ==° 0}.
We also define the J-unstable set of = by
Wi(Z2) ={y € Os(Z): there exists a 7-backward solution ¢ through y
such that () € Os(Z) for all t < 0 and dg (¥(t),E) == 0},
for 0 > 0 sufficiently small, where Os5(Z) = {2z € X: ;Ielg d(z,x) < d}.

A point y* € X is called an equilibrium point for 7 if 7(¢)y* = y* for all t > 0. With an
equilibrium point y* for 7, we can construct a 7-global bounded solution ¥* by setting

Y*(t) =y* for all t € R.

Such a solution is called a stationary solution of 7 and we often say that the point y* is
a stationary solution of 7.

Remark 6.1. It is clear that, with assumptions (2.1), if y* is a stationary point of 7, then
y* ¢ M. Thus 7(t)y* = 7(t)y*, t > 0, and hence y* is an equilibrium point for the continuous
semigroup {7 (t): ¢ > 0}. Also, since M is closed, the behaviour of 7 in a suitable small
neighbourhood of y* is qualitatively no different from the behaviour of 7.

First we give an equivalent condition for the lower semicontinuity at n = 0 of a family

{A Hoeo-
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Lemma 6.2. Let {A,},cp,1] be a family of non-empty subsets of X such that Ay is precompact.
Then {Ap}nepo,) is lower semicontinuous at 1 = 0 if and only if given xy € Ao and {n}ren C
[0, 1] with ny oo 0, there exist a subsequence {my,}jen and {x;}jen C X with x; € Ank]- for
all 7 € N such that x; Ui xo.

Proof. Suppose that {A,},ci01) is not lower semicontinuous at 7 = 0. Hence, there exists

a sequence {ng tren C [0, 1] with ng oo 0, € > 0 and a sequence 2, € Ay, k € N, such that
du(z, Ay ) =€, keN.

Since A is precompact, we may assume that zj k_)—+>oo 20 € IO. Hence, there cannot exist

a subsequence {n, }jen and {z;}en with ; € A,, for all j € N such that x; 7218 2, which
g ), W

is a contradiction. Conversely, if {A,},cp,1) is lower semicontinuous at n = 0, zy € Ay and

{nebren C [0,1] with 7, "255° 0, then there exists a subsequence {nk, }jen such that

dH<.A0,A77kj> < %, 7 €N.
Thus, there exists a sequence {z;}jen with z; € Ay, for all j € N such that z; T2 . O

Now, we consider a family of impulsive dynamical systems {(X,m,, M,, I)) },cp0,1] satisfying
(G), (C1)-(C4) and assume that each point of M, satisfies C-STC. We set &, as the set of all
stationary solutions of {m,(¢): t > 0}. Hence, it coincides with the set of stationary solution of
7.

The following result provides sufficient conditions for the lower semicontinuity at n = 0 of
a family of global attractors.

Theorem 6.3. With the above conditions, assume that (X, m,, M,, I,) has a global attractor
A,, for each n € [0,1]. Additionally, assume that:

(a) there exists p € N such that {y;",...,ys"} C&,, for each n € [0,1];
(b) there exists 0 > 0 such that the family {W3(y;") }yejo.1) is lower semicontinuous atn = 0,
forallj=1,...,p;
(c) Ao = Uj_, W(y;").
Then the family of global attractors {Ay}neioq) s lower semicontinuous at n = 0.

k—4o00

Proof. Let ug € Ay and {n;,}ren C (0,1] be a sequence such that 1, —+ 0. First we suppose
that ugp € Ap. Then uy € W4(y*") for some r € {1,...,p}. Thus, there exists a 7y-global
solution 1, through ug such that 1, (t) = *°, and let 7 > 0 be such that iy, (—7) €
Wi (5 ).

By item (b), taking a subsequence if necessary, there exist u,” € W(y, ") such that

o kotpo Vuo(—7) and a 7, -global solution ¥™) through u, " such that

P (0) 2 g (—7).
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Since 1, (—7) ¢ M, it follows by Corollary 3.17 that there is a sequence {ay }reny C R4 such

that ay, hotgo 0 and
k—+oco ~

T (7 4 ) M(0) "= 7o (7)hug (—7) = o,
with 7, (T + a)v ™ (0) = 7, (7 + apu,” € Ay,

k

It remains the case where uy € Ay \ Ag. Given e > 0 there is u/ € Aj such that d(v’, ug) < 55
and since v’ € Ay, it follows by the previous case that there are z;, € A,, and ko € N such that

d(zy, ') < § for all k > ko.
Hence, for k > ko we have d(zy, 1) < € and the proof is complete. O

Using Remark 6.1, this result might be applied, for instance, when the continuous semigroups
{my(t): t > 0} are differentiable in X (or at least in a small neighbourhood of {J, ¢y, A;) and
the equilibrium points of {my(t): ¢ > 0} are all hyperbolic, that is, the spectrum o(D,my(1)) of
the derivative D,mo(1) is disjoint from the unit circle S in C.
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