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Abstract. In this paper we introduce the concept of collective tube conditions which assures

a suitable behaviour for a family of dynamical systems close to impulsive sets. Using the

collective tube conditions, we develop the theory of upper and lower semicontinuity of global

attractors for a family of impulsive dynamical systems.

1. Introduction

Perturbations are present in every aspect of the modelling of real world phenomena. Ap-

proximate measurements, data collecting, empirical laws and simplifications, for instance, are

procedures that introduce small changes in the modelled problem. Such small errors are ex-

pected, but they need to be carefully treated. Otherwise, how can we assure that the properties

obtained for the model also hold true for the real problem?

To answer this question, we need to study the continuity of such problems under small

perturbations. We will focus on the following question: what can be said about the asymptotic

behaviour of a problem (that is, the behaviour of solutions for large times t) if we make a small

perturbation of it?

Even in the case of continuous dynamical systems, this question has a very non-trivial answer

and the study of the perturbations is divided in the literature, in general, in four steps: the

upper semicontinuity, the lower semicontinuity, the topological stability and, lastly, the geometric

stability (see for instance [1, 2, 8, 9, 10, 11, 17, 18]). In this paper, we will deal mainly with the

upper semicontinuity of impulsive dynamical systems and, also, we shall give some preliminary

results on the lower semicontinuity.

We say that a family {Aη}η∈[0,1] of non-empty sets in a metric space (X, d) is upper semi-

continuous at η = 0 if

lim
η→0

dH(Aη, A0) = 0

and it is lower semicontinuous at η = 0 if

lim
η→0

dH(A0, Aη) = 0,
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where

dH(A,B) = sup
a∈A

inf
b∈B

d(a, b)

is the Hausdorff semidistance between two non-empty subsets A,B of X.

Roughly speaking, the upper semicontinuity property ensures that the solutions of the per-

turbed system do not “explode” and follow some solution of the limiting problem. The lower

semicontinuity ensures that the solutions of the perturbed system do not “implode” and the

perturbed system has, at least, the same degree of complexity that the limiting system.

If one is familiar with the theory of impulsive dynamical systems and their global attractors

(see detailed results in [3] and additional results in [4, 5, 6, 7, 12, 13, 14, 15, 16, 19, 20, 22]),

there is a natural question to ask: how can we talk about continuity under perturbations of

systems which have precisely the discontinuity as its main feature?

To answer this question we must remind that, basically, an impulsive dynamical system

is formed by a continuous dynamical system and a continuous impulsive function (or jump

function), which gives rise to a discontinuous semiflow, that is, for each initial state, the solution

has “jumps” and it is clearly discontinuous. But when we look at the whole impulsive semiflow,

if the continuous semiflow and the jump function behave continuously under perturbations,

there is no reason why the impulsive semiflow would not behave the same. Realizing this,

one can see that the study of continuity of impulsive dynamical systems is not a contradictory

statement by itself, and involves the study of perturbations of continuous semiflows as well as

the study of perturbations of the impulsive functions. This will be the main goal of this work,

that is, to study in details the upper semicontinuity of global attractors for impulsive dynamical

systems and give a first step towards the study of their lower semicontinuity.

This work begins with some basic concepts and preliminary results on impulsive dynamical

systems, presented in Section 2. This section is divided in three subsections, for an easier

reading. The first subsection is devoted to the definitions of an impulsive dynamical system and

impulsive positive trajectories. Next, we present the so-called tube conditions, which are crucial

for this theory, and finally we present the definitions and recent results on global attractors for

impulsive systems.

As we said before, the tube conditions are crucial for the development of the theory of impul-

sive systems, and we must be able to reproduce these conditions when we work with pertur-

bations. This is the main goal in Section 3, where we introduce the collective tube conditions.

Furthermore, we study the continuity of the impact time maps for a family of impulsive dy-

namical systems.

The main result of this work, namely Theorem 4.2, is presented in Section 4, where we provide

conditions that ensure the upper semicontinuity for a family of global attractors of impulsive

dynamical systems.

In Section 5, we show an application of the previous theorem in a coupled system of ODEs

with impulses. Finally, in Section 6, we give probably the first step towards the understanding
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of the lower semicontinuity for a family of global attractors of impulsive systems. We present

a result of lower semicontinuity (Theorem 6.3) in a simple case, where the critical elements of

the continuous semigroups are a finite number of equilibria.

2. Preliminaries

In this section, we present the basic definitions and results of the theory of impulsive dynami-

cal systems.

2.1. Impulsive dynamical systems.

Let (X, d) be a metric space, R+ be the set of non-negative real numbers, N be the set of

positive integers and N0 = N ∪ {0}.

Definition 2.1. A semigroup (or semiflow) inX is a family of continuous maps {π(t) : t > 0}
from X to itself, indexed on R+, satisfying the following conditions:

(i) π(0)x = x for all x ∈ X;

(ii) π(t+ s) = π(t)π(s) for all t, s ∈ R+;
1

(iii) the map R+ ×X ∋ (t, x) 7→ π(t)x is continuous.

If R+ is replaced by R in this definition, the family {π(t) : t ∈ R} is called a group (or flow)

in X.

Let {π(t) : t > 0} be a semigroup in X. For each D ⊂ X and J ⊂ R+ we define

F (D, J) =
∪
t∈J

π(t)−1D.

According to [21], a point x ∈ X is called a start event if F (x, t) = ∅ for all t > 0. A start

event is also known as an initial point, see [3, 4, 5, 6, 7, 12, 13, 15].

Definition 2.2. An impulsive dynamical system (IDS, for short) (X, π,M, I) consists of

a semigroup {π(t) : t > 0} on a metric space (X, d), a non-empty closed subset M ⊂ X such

that for every x ∈M there exists ϵx > 0 such that

F (x, (0, ϵx)) ∩M = ∅ and
∪

t∈(0,ϵx)

{π(t)x} ∩M = ∅, (2.1)

and a continuous function I : M → X (its role will be specified below).

The setM is called the impulsive set and the function I is called the impulsive function.

Remark 2.3. Condition (2.1) means that the flow of the semigroup {π(t) : t > 0} is, in some

sense, transversal to M at any point of M .

1In this paper π(t)π(s) denotes the composition π(t) ◦ π(s) and the composition sign “ ◦ ” is omitted.
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We also define

M+(x) =

(∪
t>0

π(t)x

)
∩M.

It follows immediately from the definition of M+(x) and (2.1) that if M+(x) ̸= ∅, then there

exists s > 0 such that π(s)x ∈ M and π(t)x /∈ M for 0 < t < s. Thus, we are able to define

the function ϕ : X → (0,+∞] by

ϕ(x) =

{
s, if π(s)x ∈M and π(t)x /∈M for 0 < t < s,

+∞, if M+(x) = ∅.
(2.2)

If M+(x) ̸= ∅, the value ϕ(x) represents the smallest positive time such that the positive

trajectory of x meets M , which we will call the impact time map. In this case, we say that

the point π(ϕ(x))x is the impulsive point of x.

The impulsive positive trajectory of x ∈ X by the IDS (X, π,M, I) is a map π̃(·)x defined

in an interval Jx ⊂ R+, 0 ∈ Jx, with values in X given inductively by the following rule: if

M+(x) = ∅, then π̃(t)x = π(t)x for all t ∈ R+. However, ifM
+(x) ̸= ∅ then we denote x = x+0

and we define π̃(·)x on [0, ϕ(x+0 )] by

π̃(t)x =

{
π(t)x+0 , if 0 6 t < ϕ(x+0 ),

I(π(ϕ(x+0 ))x
+
0 ), if t = ϕ(x+0 ).

Now let s0 = ϕ(x+0 ), x1 = π(s0)x
+
0 and x+1 = I(π(s0)x

+
0 ). In this case s0 < +∞ and the

process can go on, but now starting at x+1 . If M
+(x+1 ) = ∅ then we define π̃(t)x = π(t− s0)x

+
1

for s0 6 t < +∞ and we have ϕ(x+1 ) = +∞. However, if M+(x+1 ) ̸= ∅ we define π̃(·)x on

[s0, s0 + ϕ(x+1 )] by

π̃(t)x =

{
π(t− s0)x

+
1 , if s0 6 t < s0 + ϕ(x+1 ),

I(π(ϕ(x+1 ))x
+
1 ), if t = s0 + ϕ(x+1 ).

Define s1 = ϕ(x+1 ), x2 = π(s1)x
+
1 and x+2 = I(π(s1)x

+
1 ). Assume now that π̃(·)x is defined

on the interval [tn−1, tn] and that π̃(tn)x = x+n , where t0 = 0 and tn =
n−1∑
i=0

si for n ∈ N. If

M+(x+n ) = ∅, then π̃(t)x = π(t − tn)x
+
n for tn 6 t < +∞ and ϕ(x+n ) = +∞. However, if

M+(x+n ) ̸= ∅, then we define π̃(·)x on [tn, tn + ϕ(x+n )] by

π̃(t)x =

{
π(t− tn)x

+
n , if tn 6 t < tn + ϕ(x+n ),

I(π(ϕ(x+n ))x
+
n ), if t = tn + ϕ(x+n ),

and we set, inductively, sn = ϕ(x+n ), xn+1 = π(sn)x
+
n and x+n+1 = I(π(sn)x

+
n ). This process ends

after a finite number of steps if M+(x+n ) = ∅ for some n ∈ N0, or it may proceed indefinitely
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if M+(x+n ) ̸= ∅ for all n ∈ N and in this case π̃(·)x is defined in the interval [0, T (x)), where

T (x) =
+∞∑
i=0

si.

We shall assume throughout this paper the following global existence condition:

T (x) = +∞ for all x ∈ X. (G)

Note that π̃(0)x = x for all x ∈ X. It is simple to see that if hypothesis (G) holds then the

family {π̃(t) : t > 0} of maps satisfies an analogous property to (ii) of Definition 2.1, that is:

π̃(t+ s)x = π̃(t)π̃(s)x for all t, s ∈ R+ and x ∈ X.

Remark 2.4.

1. If there exists ξ > 0 such that ϕ(z) > ξ for all z ∈ I(M), then the condition (G) is

verified. This assumption says that there is a positive lower bound for time which the

semigroup π takes to reach M , when leaving from I(M), and it is satisfied in several

examples, for instance, when I(M) is compact and I(M) ∩M = ∅ (see [3]).

2. Some important and interesting cases are the impulsive dynamical systems in which the

impulsive trajectory is defined for all t ∈ R. In many cases we may restrict ourselves to

such systems, due to the existence of suitable isomorphisms (the reader may see [14]).

2.2. Tube conditions for impulsive dynamical systems.

In order to obtain important topological properties for impulsive systems which have coun-

terparts in continuous systems, we must ensure that the original semiflow {π(t) : t > 0} behaves

nicely near to the impulsive set M . Therefore, we define the so called “tube conditions” (see

[12] for more details).

Definition 2.5. Let {π(t) : t > 0} be a semigroup on X. A closed set S containing x ∈ X is

called a section through x if there exist λ > 0 and a closed subset L of X such that:

(a) F (L, λ) = S;

(b) F (L, [0, 2λ]) contains a neighbourhood of x;

(c) F (L, ν) ∩ F (L, ζ) = ∅ if 0 6 ν < ζ 6 2λ.

We say that the set F (L, [0, 2λ]) is a λ−tube (or simply tube) and the set L is a bar.

Lemma 2.6. If S is a section and λ > 0 is given as in the previous definition, then any

0 < µ 6 λ satisfies conditions (a), (b) and (c) above with L replaced by Lµ = F (L, λ− µ) and

λ replaced by µ.

Proof. See [15, Lemma 1.9]. �

Definition 2.7. Let (X, π,M, I) be an IDS. We say that a point x ∈ M satisfies the strong

tube condition (STC) if there exists a section S through x such that S = F (L, [0, 2λ])∩M .

Also, we say that a point x ∈ M satisfies the special strong tube condition (SSTC) if it

satisfies STC and the λ-tube F (L, [0, 2λ]) is such that F (L, [0, λ]) ∩ I(M) = ∅.



6 E. M. BONOTTO, M. C. BORTOLAN, R. COLLEGARI, AND R. CZAJA

The strong tube conditions are the key notions of the theory developed in [3, 4, 5] and also

give us both of the following results.

Theorem 2.8. Let (X, π,M, I) be an IDS such that each point of M satisfies STC. Then ϕ

is upper semicontinuous in X and it is continuous in X \M . Moreover, if there are no start

events in M and ϕ is continuous at x then x /∈M .

Proof. See [12, Theorems 3.4, 3.5, 3.8]. �
Proposition 2.9. Let (X, π,M, I) be an IDS such that I(M) ∩M = ∅ and let y ∈ M satisfy

SSTC with λ-tube F (L, [0, 2λ]). Then π̃(t)X ∩ F (L, [0, λ]) = ∅ for all t > λ.

Proof. See [3, Proposition 2.6]. �

2.3. Global attractors for impulsive dynamical systems.

In this subsection we present the definition of a global attractor for an impulsive dynamical

system and an existence result, which can be found in details in [3].

We say that a subset A of X is π̃-invariant if π̃(t)A = A for all t > 0. Also, we say that A

π̃-attracts B ⊂ X if

lim
t→+∞

dH(π̃(t)B,A) = 0.

With these concepts, we can present the definition of a global attractor for the IDS (X, π,M, I),

which was first introduced in [3].

Definition 2.10. A subset A ⊂ X is called a global attractor for the IDS (X, π,M, I) if it

satisfies the following conditions:

(i) A is precompact and A = A \M ;

(ii) A is π̃-invariant;

(iii) A π̃-attracts all bounded subsets of X.

To prove the existence of global attractors, we formulate the following:

Definition 2.11. An impulsive dynamical system (X, π,M, I) is called strongly bounded

dissipative if there exists a non-empty precompact set K in X such that K ∩M = ∅ and

π̃-absorbs all bounded subsets of X, i.e., for any bounded subset B of X there exists tB > 0

such that π̃(t)B ⊂ K for all t > tB.

With this definition, we are able to present a result on the existence of global attractors for

impulsive dynamical systems.

Theorem 2.12. Let (X, π,M, I) be a strongly bounded dissipative IDS with π̃-absorbing set

K such that I(M) ∩M = ∅, every point in M satisfies SSTC and there exists ξ > 0 such

that ϕ(z) > ξ for all z ∈ I(M). Then (X, π,M, I) has a global attractor A and we have

A = ω̃(K) \M , where ω̃(K) is the impulsive ω-limit of K, i.e.,

ω̃(K) =
∩
t>0

∪
s>t

π̃(s)K.
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To see the relation of this global attractor with its counterpart in the continuous case, we

will use the characterization via global solutions. We say that a function ψ : R → X is a global

solution of π̃ (or a π̃-global solution) if

π̃(t)ψ(s) = ψ(t+ s) for all t > 0 and s ∈ R. (2.3)

Moreover, if ψ(0) = x we say that ψ is a π̃-global solution through x. We say that ψ is

bounded if ψ(R) is a bounded subset of X.

Thus, we have the same characterization of the global attractor for the impulsive case as in

the continuous case, which is the content of the next result.

Proposition 2.13. If the IDS (X, π,M, I) has a global attractor A and I(M) ∩M = ∅ then

A = {x ∈ X : there exists a bounded global solution of π̃ through x}.

Proof. See [3, Proposition 4.3]. �

Remark 2.14. Using the proof of Proposition 2.13 (see [3, Proposition 4.3]), the bounded

global solution through x ∈ A is given by

ψ(t) =

{
π̃(t+ n)x−n, if t ∈ [−n,−n+ 1], n ∈ N,
π̃(t)x0, if t > 0,

where x0 = x and π̃(1)x−n−1 = x−n for all n ∈ N0.

For more properties of global attractors for impulsive dynamical systems we refer the reader

to [3].

3. Collective tube conditions and impact time maps

We now focus on the problem of defining suitable tube conditions for a family of impulsive

dynamical systems {(X, πη,Mη, Iη)}η∈[0,1] in such a way that the property of upper semiconti-

nuity will hold. Also, using these tube conditions, we will deal with the family of impact time

maps - recall (2.2) - generated by this family of systems.

3.1. Collective tube conditions.

In this subsection we establish some collective tube conditions for a family of impulsive dy-

namical systems {(X, πη,Mη, Iη)}η∈[0,1] so that the semiflows πη and π̃η have suitable behaviours

in their evolutions. From now on, we shall assume the following general conditions2: first, the

continuity with respect to the parameter η of the continuous semigroups πη given by

πη(t)x
η→0−→ π0(t)x uniformly for (t, x) in compact subsets of R+ ×X. (C1)

Also, we assume the continuity of the impulsive sets Mη, which is given by

dH(Mη,M0) + dH(M0,Mη)
η→0−→ 0 (C2)

2Along with condition (G) for each η ∈ [0, 1].
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and a collective continuity of the impulsive functions Iη:

given ε > 0 and w0 ∈M0 there exists δ > 0 such that if η ∈ [0, δ),

w ∈Mη and d(w,w0) < δ then d(Iη(w), I0(w0)) < ε.
(C3)

Finally, we assume that

there exists η ∈ (0, 1] such that Iη(Mη) ∩Mη = ∅ for all η ∈ [0, η). (C4)

Condition (C2) provides us a simple and useful result.

Lemma 3.1. If {ηk}k∈N ⊂ [0, 1] and {wk}k∈N ⊂ X are sequences such that ηk
k→+∞−→ 0, wk ∈Mηk

for k ∈ N and wk
k→+∞−→ w0, then w0 ∈M0.

Proof. From (C2) we have

dH(w0,M0) = inf
z∈M0

d(w0, z) 6 inf
z∈M0

(d(w0, wk) + d(wk, z)) 6 d(w0, wk) + dH(Mηk ,M0)
k→+∞−→ 0,

that is, w0 ∈M0, since M0 is closed. �

Remark 3.2. IfM0 is compact then we may replace condition (C4) by the following condition:

I0(M0) ∩M0 = ∅. (C4’)

It can be done since the relaxed condition (C4’) implies condition (C4). In fact, if there exists

a sequence ηk
k→+∞−→ 0+ with wk ∈ Iηk(Mηk)∩Mηk , we have wk = Iηk(zk) for some zk ∈Mηk . Now,

using (C2) and the compactness of M0 we may assume (taking subsequences if necessary) that

wk
k→+∞−→ w0 ∈M0 and zk

k→+∞−→ z0 ∈M0. Hence, (C3) implies that w0 = I0(z0) ∈ I0(M0)∩M0,

which contradicts (C4’).

In the sequel, we introduce a more specific collective tube condition to assure that the semi-

group {πη(t) : t > 0} behaves nicely near to its associated impulsive set Mη when η → 0.

Definition 3.3. Let {(X, πη,Mη, Iη)}η∈[0,1] be a family of impulsive dynamical systems. We

say that a point w0 ∈ M0 satisfies the collective strong tube condition (C-STC) if given

a sequence {ηk}k∈N ⊂ [0, 1] such that ηk
k→+∞−→ 0 and a sequence of points wk ∈ Mηk , k ∈ N,

with wk
k→+∞−→ w0, there exists λ0 > 0 such that for each 0 < λ 6 λ0 one can find δ = δ(λ) > 0

such that F0(L0, [0, 2λ]) is a λ-tube through w0 with section S0 = F0(L0, [0, 2λ])∩M0 such that

B(w0, δ) ⊂ F0(L0, [0, 2λ]) and there exists k0 ∈ N such that ηk < η for k > k0 (η comes from

(C4)) and we have a λ-tube Fηk(Lk, [0, 2λ]) through wk with section Sk = Fηk(Lk, [0, 2λ])∩Mηk

satisfying B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]) for k > k0.

Definition 3.4. If, additionally, F0(L0, [0, λ])∩ I0(M0) = ∅ and Fηk(Lk, [0, λ])∩ Iηk(Mηk) = ∅
for all k > k0 in Definition 3.3, then we say that w0 ∈ M0 satisfies the collective special

strong tube condition (C-SSTC).

To illustrate the previous concepts, we present a simple example.
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Example 3.5. Consider the family of impulsive differential equations{
ẋ = −(1 + η)x, η ∈ [0, 1],

Iη : Mη → R,

where Mη = {z + η : z ∈ N} and Iη(z) = z + η − 1
2
for all z ∈Mη and η ∈ [0, 1].

Note that πη(t)x = xe−(1+η)t for all x ∈ R, t > 0 and η ∈ [0, 1], and conditions (C1)-(C4) are

satisfied. Moreover, each point in M0 satisfies C-SSTC. In fact, let w0 ∈ M0, {ηk}k∈N ⊂ [0, 1]

be such that ηk
k→+∞−→ 0 and {wk}k∈N ⊂ R be such that wk ∈Mηk and wk

k→+∞−→ w0. Let η0 = 0,

0 < λ0 < ln( 2w0

2w0−1
), 0 < λ 6 λ0 and set Lk = {wke

−(1+ηk)λ} for k ∈ N0. Note that there

exists k0 ∈ N such that ηk <
1
2
for k > k0, Fηk(Lk, [0, 2λ]) = [wke

−(1+ηk)λ, wke
(1+ηk)λ] is a λ-tube

through wk, Fηk(Lk, [0, 2λ])∩Mηk = {wk} and Fηk(Lk, [0, λ])∩ Iηk(Mηk) = ∅ for all k > k0 and

k = 0.

Furthermore, for 0 < δ < w0(1− e−λ) we have B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]) for all k > k0 and

k = 0, which proves the claim.

From Definition 3.3 we have the following straightforward result.

Lemma 3.6. Assume that w0 ∈M0 satisfies C-STC. If a sequence {ηk}k∈N ⊂ [0, 1] is such that

ηk
k→+∞−→ 0 and wk ∈Mηk , k ∈ N, is a sequence of points with wk

k→+∞−→ w0, then there exists an

integer k1 > k0 such that B(w0,
δ
2
) ⊂ B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]) for all k > k1.

Lemma 3.7. Let (X, π0,M0, I0) be an IDS such that X is locally compact and {π0(t) : t ∈ R}
is a group. Assume that w0 ∈ M0 satisfies STC with a λ-tube. Then it also satisfies STC with

a compact λ-tube.

Proof. Since w0 satisfies STC there exist a tube F0(L0, [0, 2λ]) through w0 with section S0 =

F0(L0, [0, 2λ]) ∩M0 and δ > 0 such that B(w0, δ) ⊂ F0(L0, [0, 2λ]).

By the local compactness of X one can obtain ϵ > 0 such that B(w0, ϵ) is compact. Now, let

us define

S0 = S0 ∩B(w0, ϵ) and L0 = π0(λ)S0.

Note that S0 and L0 are compact sets and F0(L0, λ) = S0.

We claim that there is γ > 0 such that B(w0, γ) ⊂ F0(L0, [0, 2λ]). Suppose to the contrary

that there is a sequence {zk}k∈N ⊂ X such that zk
k→+∞−→ w0 and zk /∈ F0(L0, [0, 2λ]) for all

k ∈ N. Since zk
k→+∞−→ w0 there is an integer k0 > 0 such that zk ∈ B(w0, δ) for all k > k0. On

the other hand, we have B(w0, δ) ⊂ F0(L0, [0, 2λ]), which implies that there are vk ∈ S0 and

sk ∈ [−λ, λ] such that

π0(sk)vk = zk for all k > k0.

We may assume that sk
k→+∞−→ s0 ∈ [−λ, λ]. Then

vk = π0(−sk)zk
k→+∞−→ π0(−s0)w0



10 E. M. BONOTTO, M. C. BORTOLAN, R. COLLEGARI, AND R. CZAJA

with π0(−s0)w0 ∈ S0, because S0 is closed. But, by the tube condition, π0([−λ, λ])w0 ∩M0 =

{w0}, which shows that s0 = 0. Hence,

vk
k→+∞−→ w0.

Thus there is k1 > k0 such that vk ∈ S0 ∩B(w0, ϵ) = S0 for all k > k1. Consequently,

zk = π0(sk)vk ∈ F0(L0, [0, 2λ]) for all k > k1,

which is a contradiction. This shows the claim.

It is not difficult to see that F0(L0, µ) ∩ F0(L0, ν) = ∅ for 0 6 µ < ν 6 2λ and S0 =

F0(L0, [0, 2λ]) ∩M0. Hence, w0 ∈ M0 satisfies STC with the tube F0(L0, [0, 2λ]) through w0

with S0 and L0 compact sets.

In order to see the compactness of the tube, let {wk}k∈N be a sequence in F0(L0, [0, 2λ]).

Then there are αk ∈ [−λ, λ] and bk ∈ S0 such that π0(αk)bk = wk for all k ∈ N. We may

assume that αk
k→+∞−→ α0 ∈ [−λ, λ] and bk

k→+∞−→ b0 ∈ S0. Then we have

wk
k→+∞−→ π0(α0)b0 ∈ F0(L0, [0, 2λ])

which concludes the proof. �

In the next result, we present sufficient conditions to obtain C-STC in locally compact spaces.

Theorem 3.8. Let {(X, πη,Mη, Iη)}η∈[0,1] be a family of impulsive dynamical systems such that

X is locally compact and {πη(t) : t ∈ R} is a group for each η ∈ [0, 1]. Assume that condition

(C1) holds uniformly for (t, x) in compact subsets of R ×X. Also, assume that the following

conditions hold:

(i) w0 ∈M0 satisfies STC with respect to the group π0;

(ii) there are β > 0, δ0 > 0 and η0 > 0 such that for 0 6 η 6 η0 we have Bη = B(w0, δ0) ∩
Mη ̸= ∅,

πη ((−β, 0) ∪ (0, β))Bη ∩Mη = ∅

and

πη([−β, β])z ∩Mη ̸= ∅ for all z ∈ B(w0, δ0).

Then w0 satisfies C-STC.

Proof. Let {ηk}k∈N ⊂ [0, 1] be such that ηk
k→+∞−→ 0 and {wk}k∈N ⊂ X be such that wk ∈Mηk and

wk
k→+∞−→ w0. By assumption there is a λ0-tube through w0 with 0 < λ0 < β. Let 0 < λ 6 λ0.

By Lemma 2.6 let F0(L0, [0, 2λ]) be a λ-tube through w0 with section S0 = F0(L0, [0, 2λ])∩M0.

We may assume that F0(L0, [0, 2λ]) is compact taking in account Lemma 3.7. Moreover, there

exists δ1 ∈ (0, δ0) such that B(w0, δ1) ⊂ F0(L0, [0, 2λ]), where δ0 comes from condition (ii). Let

k1 ∈ N be such that wk ∈ B(w0, δ1) for all k > k1.
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Define Sk = Mηk ∩ B(w0, δ1) ⊂ Bηk for all k > k1. Note that Sk is compact and wk ∈ Sk for

all k > k1. Using Lemma 3.1 and the compactness of F0(L0, [0, 2λ]) we conclude that

dH(Sk, S0)
k→+∞−→ 0. (3.1)

Now, we define Lk = πηk(λ)Sk for all k > k1. In the sequel, we shall show that Fηk(Lk, [0, 2λ])

is a λ-tube through wk for k sufficiently large.

Note that Lk is compact and

Fηk(Lk, λ) = πηk(−λ)Lk = Sk for all k > k1.

Moreover, Fηk(Lk, [0, 2λ]) ∩Mηk = Sk for all k > k1. In fact, fix k > k1. If z ∈ Sk then

z ∈ Mηk and πηk(λ)z ∈ Lk, that is, z ∈ Fηk(Lk, [0, 2λ]) ∩ Mηk . On the other hand, if z ∈
Fηk(Lk, [0, 2λ]) ∩Mηk then there is sk ∈ [0, 2λ] such that πηk(sk)z ∈ Lk = πηk(λ)Sk, that is,

πηk(sk − λ)z ∈ Sk. We claim that sk = λ. Indeed, if sk ̸= λ then by the definition of Sk,

condition (ii) and by the fact that πηk(λ− sk)πηk(sk − λ)z = z ∈Mηk we have

|λ− sk| > β,

which is a contradiction, since λ < β and sk ∈ [0, 2λ]. Consequently, sk = λ and z ∈ Sk.

We still have to show items (b) and (c) from Definition 2.5. To this end, we present some

assertions.

Assertion 1: There are δ ∈ (0, δ1) and k2 > k1 such that B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]) for all

k > k2.

Indeed, suppose to the contrary that there are km
m→+∞−→ +∞, δm

m→+∞−→ 0+, zm ∈ B(wkm , δm)

and zm /∈ Fηkm
(Lkm , [0, 2λ]) for all m ∈ N. We may assume that km > k1 and δm ∈ (0, δ1) for

all m ∈ N. As wkm
m→+∞−→ w0 and δm

m→+∞−→ 0+, there is m0 ∈ N such that zm ∈ B(w0, δ1) for

all m > m0. Condition (ii) ensures the existence of αm ∈ [−β, β] such that

πηkm (αm)zm ∈Mηkm
for all m > m0. (3.2)

We may assume that αm
m→+∞−→ α ∈ [−β, β]. Then as m→ +∞ in (3.2) we obtain

π0(α)w0 ∈M0,

which shows that α = 0, since π0((0, λ])w0∩M0 = ∅ and F0(w0, (0, λ])∩M0 = ∅. Consequently,

λ+ αm ∈ [0, 2λ] and πηkm (αm)zm ∈ Skm for m sufficiently large. This shows that

πηkm (λ+ αm)zm ∈ Lkm ,

hence zm ∈ Fηkm
(Lkm , [0, 2λ]) for m sufficiently large, which is a contradiction and proves

Assertion 1.

Assertion 2: There exists k0 > k2 such that Fηk(Lk, ν)∩Fηk(Lk, µ) = ∅ for all 0 6 ν < µ 6 2λ

and k > k0.
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Again, we suppose to the contrary that there exist km
m→+∞−→ +∞, 0 6 νm < µm 6 2λ and

zm ∈ Fηkm
(Lkm , νm) ∩ Fηkm

(Lkm , µm) for all m ∈ N. Then we have

πηkm (νm)zm ∈ Lkm and πηkm (µm)zm ∈ Lkm for all m ∈ N,

which implies that

πηkm (νm − λ)zm ∈ Skm and πηkm (µm − λ)zm ∈ Skm for all m ∈ N.

Since πηkm (νm−λ)zm ∈ Bηkm
and πηkm (µm−νm)πηkm (νm−λ)zm ∈Mηkm

, it follows by condition

(ii) that

|µm − νm| > β for all m ∈ N. (3.3)

By (3.1) and (3.3), we may assume that πηkm (νm−λ)zm
m→+∞−→ a ∈ S0, πηkm (µm−λ)zm

m→+∞−→
b ∈ S0, νm

m→+∞−→ ν ∈ [0, 2λ] and µm
m→+∞−→ µ ∈ [0, 2λ] with ν ̸= µ. Then we get

π0(λ− ν)a = lim
m→+∞

zm = π0(λ− µ)b,

hence F0(L0, ν) ∩ F0(L0, µ) ̸= ∅, which is a contradiction.

In conclusion, w0 satisfies C-STC and it proves the theorem. �

Corollary 3.9. Under the assumptions of Theorem 3.8 assume additionally that I0(M0) is

closed, dH(Iη(Mη), I0(M0))
η→0−→ 0 and w0 ∈M0 satisfies SSTC. Then w0 satisfies C-SSTC.

Proof. Since, in particular, w0 ∈M0 satisfies STC, it follows from Theorem 3.8 that w0 satisfies

C-STC. Moreover, since w0 ∈ M0 satisfies SSTC, Lemmas 2.6 and 3.7 used in the proof of

Theorem 3.8 allow us to consider F0(L0, [0, 2λ]) compact with F0(L0, [0, λ]) ∩ I0(M0) = ∅.

Continuing the argument of the proof of Theorem 3.8 we are left to show that there exists

k0 > k0 such that

Fηk(Lk, [0, λ]) ∩ Iηk(Mηk) = ∅ for k > k0.

Suppose to the contrary that there exists zn ∈ Fηkn
(Lkn , [0, λ])∩ Iηkn (Mkn), n ∈ N. Then there

exists sn ∈ [0, λ], which we may assume to converge to s0 ∈ [0, λ], such that πηkn (sn − λ)zn ∈
Fηkn

(Lkn , λ) = Skn . Using (3.1) and compactness of S0, by taking subsequences if necessary, we

may assume that

πηkn (sn − λ)zn
n→+∞−→ y0 ∈ S0.

Therefore, by (C1) we have

zn = πηkn (λ− sn)πηkn (sn − λ)zn
n→+∞−→ π0(λ− s0)y0 = z0.

Thus, we obtain z0 ∈ F0(L0, [0, λ]). On the other hand, since zn ∈ Iηkn (Mηkn
), n ∈ N, and

dH(Iη(Mη), I0(M0))
η→0−→ 0, we find a sequence {xn}n∈N in I0(M0), which converges to z0. By

the closedness of I0(M0) we get z0 ∈ I0(M0). This contradiction ends the proof. �
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3.2. Collective continuity of impact time maps.

As defined previously in (2.2), we consider the impact time map ϕη : (0,+∞] → X, for each

η ∈ [0, 1], given by

ϕη(x) =

{
s, if πη(s)x ∈Mη and πη(t)x /∈Mη for 0 < t < s,

+∞, if M+
η (x) = ∅,

where

M+
η (x) =

(∪
t>0

πη(t)x

)
∩Mη.

In the next lines, we discuss the behaviour of the family {ϕη}η∈[0,1].

Lemma 3.10. Let x0 ∈ X \M0 and {xk}k∈N ⊂ X be a sequence such that xk
k→+∞−→ x0. Let

{ηk}k∈N ⊂ [0, 1] be a sequence such that ηk
k→+∞−→ 0, then lim inf

k→+∞
ϕηk(xk) > ϕ0(x0).

Proof. Suppose, contrary to the claim, that there exist subsequences {ηkj}j∈N and {xkj}j∈N of

{ηk}k∈N and {xk}k∈N, respectively, such that ϕηkj
(xkj)

j→+∞−→ t < ϕ0(x0). Thus we know that

πηkj (ϕηkj
(xkj))xkj ∈Mηkj

, j ∈ N, and by Lemma 3.1 and (C1) we have

πηkj (ϕηkj
(xkj))xkj

j→+∞−→ π0(t)x0 ∈M0,

that is, ϕ0(x0) 6 t, which gives a contradiction. �

Lemma 3.11. Let x0 ∈ X and {xk}k∈N ⊂ X be a sequence such that xk
k→+∞−→ x0. Assume that

every point from M0 satisfies C-STC. If {ηk}k∈N ⊂ [0, 1] is a sequence such that ηk
k→+∞−→ 0,

then lim sup
k→+∞

ϕηk(xk) 6 ϕ0(x0).

Proof. It is enough to consider ϕ0(x0) < +∞. Since π0(ϕ0(x0))x0 ∈ M0, condition (C2)

implies that there is a subsequence of {ηk}k∈N, which we denote the same, and a sequence

{wk}k∈N ⊂ X, with wk ∈ Mηk , such that wk
k→+∞−→ π0(ϕ0(x0))x0. By C-STC, there exist

λ < ϕ0(x0), δ = δ(λ) > 0 and k0 ∈ N such that

B(π0(ϕ0(x0))x0, δ) ⊂ F0(L0, [0, 2λ]) and B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]), k > k0,

where Fηk(Lk, [0, 2λ]) is a λ-tube through wk with section Sk = Fηk(Lk, [0, 2λ]) ∩ Mηk and

F0(L0, [0, 2λ]) is a λ-tube through π0(ϕ0(x0))x0 with section S0 = F0(L0, [0, 2λ]) ∩M0.

By Lemma 3.6 there exists k1 > k0 such that

B
(
π0(ϕ0(x0))x0,

δ
2

)
⊂ B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]), k > k1,

and condition (C1) implies that

πηk(ϕ0(x0))xk
k→+∞−→ π0(ϕ0(x0))x0.
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Consequently, there exists an integer k2 > k1 such that

πηk(ϕ0(x0))xk ∈ B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]), k > k2.

Without loss of generality we can distinguish two cases.

Case 1: πηk(ϕ0(x0))xk ∈ Fηk(Lk, (λ, 2λ]) for all k > k2.

In this case, there is αk ∈ (λ, 2λ] such that

πηk(αk)πηk(ϕ0(x0))xk = πηk(αk + ϕ0(x0))xk ∈ Lk.

Thus,

πηk(αk + ϕ0(x0)− λ)xk ∈ Fηk(Lk, λ) = Sk ⊂Mηk , k > k2, (3.4)

and hence ϕηk(xk) 6 αk + ϕ0(x0)− λ for all k > k2.

We may assume without loss of generality that αk
k→+∞−→ α0 ∈ [λ, 2λ]. We assert that α0 = λ.

In fact, since

πηk(αk + ϕ0(x0)− λ)xk
k→+∞−→ π0(α0 + ϕ0(x0)− λ)x0,

it follows by (3.4) and Lemma 3.1 that π0(α0 + ϕ0(x0)− λ)x0 = π0(α0 − λ)π0(ϕ0(x0))x0 ∈M0.

Since π0((0, λ])π0(ϕ0(x0))x0 ∩M0 = ∅, we see that α0 = λ. In conclusion, we get

lim sup
k→+∞

ϕηk(xk) 6 lim sup
k→+∞

(αk + ϕ0(x0)− λ) = ϕ0(x0).

Case 2: πηk(ϕ0(x0))xk ∈ Fηk(Lk, [0, λ]) for all k > k2.

In this case, there is βk ∈ [0, λ] such that

πηk(ϕ0(x0) + βk)xk ∈ Lk, k > k2.

Thus,

πηk(ϕ0(x0) + βk − λ)xk ∈ Fηk(Lk, λ) = Sk ⊂Mηk , k > k2,

which implies that ϕηk(xk) 6 ϕ0(x0) + βk − λ for all k > k2. Assuming that βk
k→+∞−→ β0 ∈ [0, λ]

we obtain by (C1) and Lemma 3.1 that

π0(ϕ0(x0) + β0 − λ)x0 ∈M0,

that is, ϕ0(x0) 6 ϕ0(x0) + β0 − λ. If β0 ̸= λ we get a contradiction. Hence, β0 = λ and

lim sup
k→+∞

ϕηk(xk) 6 lim sup
k→+∞

(ϕ0(x0) + βk − λ) = ϕ0(x0),

which ends the proof. �

In conclusion, by Lemmas 3.10 and 3.11, we have the following theorem.

Theorem 3.12. Assume that every point ofM0 satisfies C-STC. Let x0 ∈ X\M0 and {xk}k∈N ⊂
X be a sequence such that xk

k→+∞−→ x0. If {ηk}k∈N ⊂ [0, 1] is a sequence such that ηk
k→+∞−→ 0,

then lim
k→+∞

ϕηk(xk) = ϕ0(x0), i.e., the function

[0, 1]×X ∋ (η, x) 7→ ϕη(x) ∈ (0,+∞]
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is continuous in {0} ×X \M0.

In the proof of Lemma 3.11 we used the lower semicontinuity at zero of the family {Mη}η∈[0,1]
of impulsive sets assumed in (C2). A simple example shows that without this assumption, the

conclusion of the above lemma may not be true.

Example 3.13. Consider the semigroup

πη(t)x = −t+ x, t > 0, x ∈ X = R, η ∈ [0, 1],

the impulsive sets

M0 = {0, 2}, Mη = {η}, η ∈ (0, 1],

and the impulsive function Iη(z) = −1 for z ∈Mη, η ∈ [0, 1].

Then, conditions (C1), (C3) and (C4) are satisfied. Furthermore, C-STC holds for each

point in M0. Note that we have

dH(Mη,M0)
η→0−→ 0 and dH(M0,Mη)

η→0−→ 2.

Setting xk = x0 = 3, k ∈ N, for any sequence {ηk}k∈N ⊂ (0, 1] with ηk
k→+∞−→ 0 we get

lim sup
k→+∞

ϕηk(xk) = 3 > 1 = ϕ0(x0).

3.3. Continuity of the impulsive semiflows π̃η at η = 0.

With Theorem 3.12 in hand, we are able to obtain a convergence result for the family

{(X, πη,Mη, Iη)}η∈[0,1]. Its proof follows the lines of the proofs of [3, Lemma 3.6] and [20,

Lemma 2.3], but we include it for the sake of completeness.

Proposition 3.14. Let x0 ∈ X \M0, {xk}k∈N ⊂ X and {ηk}k∈N ⊂ [0, 1] be sequences such that

xk
k→+∞−→ x0 and ηk

k→+∞−→ 0. Assume that each point of M0 satisfies C-STC. Given t > 0 there

exists a sequence {εk}k∈N ⊂ R such that εk
k→+∞−→ 0 and

π̃ηk(t+ εk)xk
k→+∞−→ π̃0(t)x0.

Proof. If ϕ0(x0) = +∞, it follows from Theorem 3.12 that for a given t ∈ [0,+∞) there exists

k ∈ N such that ϕηk(xk) > t for all k > k. Consequently, for k > k, π̃ηk(t)xk = πηk(t)xk, and

the result follows by (C1) setting εk = 0 for k ∈ N.
Now, let us assume that ϕ0(x0) < +∞. By Theorem 3.12 we may assume that ϕηk(xk) < +∞

for all k ∈ N.

Case 1: 0 6 t < ϕ0(x0).

By Theorem 3.12 there exists k1 ∈ N such that t < ϕηk(xk) for all k > k1. Then π̃ηk(t)xk =

πηk(t)xk for all k > k1 and taking εk = 0, k ∈ N, we have by (C1)

π̃ηk(t+ εk)xk = πηk(t)xk
k→+∞−→ π0(t)x0 = π̃0(t)x0.

Case 2: t = ϕ0(x0).
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Note that π̃0(t)x0 = π̃0(ϕ0(x0))x0 = (x0)
+
1 . Thus by (C1)

(xk)1 = πηk(ϕηk(xk))xk
k→+∞−→ π0(ϕ0(x0))x0 = (x0)1.

Using (C3) we have

(xk)
+
1 = Iηk((xk)1)

k→+∞−→ I0((x0)1) = (x0)
+
1 .

By Theorem 3.12, if we define εk = ϕηk(xk)− ϕ0(x0) = ϕηk(xk)− t, then {εk}k∈N is a sequence

of real numbers such that εk
k→+∞−→ 0. Hence, we get

π̃ηk(t+ εk)xk = π̃ηk(ϕηk(xk))xk = (xk)
+
1

k→+∞−→ (x0)
+
1 = π̃0(t)x0.

Case 3: t > ϕ0(x0).

In this case there exists m ∈ N such that t =
m−1∑
i=0

ϕ0((x0)
+
i ) + t′ with 0 6 t′ < ϕ0((x0)

+
m).

Since ϕηk(xk)
k→+∞−→ ϕ0(x0), we have by (C1) the following convergence

(xk)1 = πηk(ϕηk(xk))xk
k→+∞−→ π0(ϕ0(x0))x0 = (x0)1.

Using (C3) and (C4) we have

(xk)
+
1 = Iηk((xk)1)

k→+∞−→ I0((x0)1) = (x0)
+
1 /∈M0.

Since ϕηk((xk)
+
1 )

k→+∞−→ ϕ0((x0)
+
1 ) by Theorem 3.12, we get again by (C1)

(xk)2 = πηk(ϕηk((xk)
+
1 ))(xk)

+
1

k→+∞−→ π0(ϕ0((x0)
+
1 ))(x0)

+
1 = (x0)2.

Continuing with this process, we obtain

(xk)i = πηk(ϕηk((xk)
+
i−1))(xk)

+
i−1

k→+∞−→ (x0)i and (xk)
+
i = Iηk((xk)i)

k→+∞−→ (x0)
+
i , i = 1, . . . ,m.

Thus we get
m−1∑
i=0

ϕηk((xk)
+
i )

k→+∞−→
m−1∑
i=0

ϕ0((x0)
+
i ). Set tk =

m−1∑
i=0

ϕηk((xk)
+
i ) and define the se-

quence {εk}k∈N ⊂ R by εk = tk + t′ − t, k ∈ N. Note that εk
k→+∞−→ 0 and t + εk = tk + t′ > 0.

Then, since t′ < ϕηk((xk)
+
m) for large k, we get by (C1)

π̃ηk(t+ εk)xk = πηk(t
′)(xk)

+
m

k→+∞−→ π0(t
′)(x0)

+
m = π̃0(t)x0,

which proves the result. �

Remark 3.15. If t ̸=
m−1∑
i=0

ϕ0((x0)
+
i ) for every m ∈ N, then we can take εk = 0, k ∈ N, in the

above lemma.

Theorem 3.12 also allows us to obtain the following result.

Proposition 3.16. Let x0 ∈ X \M0, {xk}k∈N ⊂ X and {ηk}k∈N ⊂ [0, 1] be sequences such

that xk
k→+∞−→ x0 and ηk

k→+∞−→ 0. Assume that each point of M0 satisfies C-STC. Then, given

αk
k→+∞−→ 0 with αk > 0 for all k ∈ N, we have π̃ηk(αk)xk

k→+∞−→ x0.
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Proof. Since x0 /∈M0, it follows by Theorem 3.12 that ϕηk(xk)
k→+∞−→ ϕ0(x0). Then there exists

k ∈ N such that αk < ϕηk(xk) for all k > k, and by (C1) we have

π̃ηk(αk)xk = πηk(αk)xk
k→+∞−→ π0(0)x0 = x0,

which concludes the proof. �

Using Propositions 3.14 and 3.16, we can state the next result.

Corollary 3.17. Under the assumptions of Proposition 3.14, there exists a sequence {εk}k∈N ⊂
[0,+∞) such that εk

k→+∞−→ 0 and π̃ηk(t+ εk)xk
k→+∞−→ π̃0(t)x0.

Proof. By Proposition 3.14 there exists a sequence {ξk}k∈N ⊂ R such that ξk
k→+∞−→ 0 and

π̃ηk(t+ ξk)xk
k→+∞−→ π̃0(t)x0 /∈M0. Thus from Proposition 3.16 we have

π̃ηk(t+ ξk + |ξk|)xk = π̃ηk(|ξk|)π̃ηk(t+ ξk)xk
k→+∞−→ π̃0(t)x0

and the claim follows by setting εk = ξk + |ξk|, k ∈ N. �

4. Upper semicontinuity of global attractors

In the sequel, we deal with the upper semicontinuity at zero of a family {Aη}η∈[0,1] of global
attractors of a family of impulsive dynamical systems {(X, πη,Mη, Iη)}η∈[0,1]. Our goal is to

establish sufficient conditions to show the upper semicontinuity at zero of {Aη}η∈[0,1].

Lemma 4.1. Let {Aη}η∈[0,1] be a family of non-empty subsets of X such that A0 is precompact.

Then {Aη}η∈[0,1] is upper semicontinuous at η = 0 if and only if given a sequence {ηk}k∈N ⊂ [0, 1]

such that ηk
k→+∞−→ 0 and a sequence {xk}k∈N ⊂ X with xk ∈ Aηk for all k ∈ N, there exists

a convergent subsequence of {xk}k∈N with limit in A0.

Proof. Suppose first that {Aη}η∈[0,1] is not upper semicontinuous at η = 0. Hence, there exist

sequences {ηk}k∈N ⊂ [0, 1], {xk}k∈N ⊂ X and ϵ > 0 such that ηk
k→+∞−→ 0, xk ∈ Aηk and

dH(xk,A0) > ϵ for all k ∈ N.

Therefore, {xk}k∈N has no convergent subsequence with limit in A0, which is a contradiction.

Conversely, if {Aη}η∈[0,1] is upper semicontinuous at η = 0, {ηk}k∈N ⊂ [0, 1] and {xk}k∈N ⊂ X

are sequences with ηk
k→+∞−→ 0 and xk ∈ Aηk , then

dH(xk,A0) 6 dH(Aηk ,A0)
k→+∞−→ 0,

and thus {xk}k∈N has a convergent subsequence with limit in A0, by the precompactness of

A0. �

Now we present the main result of this work.
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Theorem 4.2. Let (X, πη,Mη, Iη) be an impulsive dynamical system with a global attractor

Aη, for each η ∈ [0, 1], and assume that each point of M0 satisfies C-SSTC. Assume also

that
∪

η∈[0,1]Aη is precompact in X. Then the family of global attractors {Aη}η∈[0,1] is upper

semicontinuous at η = 0.

Proof. Let {ηk}k∈N ⊂ [0, 1] be a sequence such that ηk
k→+∞−→ 0 and {xk}k∈N ⊂ X be a sequence

with xk ∈ Aηk for all k ∈ N. Since
∪

η∈[0,1]Aη is precompact in X, then there are x0 ∈ X

and a subsequence of {xk}k∈N, which we continue denoting by the same notation, such that

xk
k→+∞−→ x0 and ηk < η for all k ∈ N, where η comes from condition (C4). We need to prove

that x0 ∈ A0.

Let ψk : R → X, k ∈ N, be a bounded global solution through xk ∈ Aηk given by

ψk(t) =

{
π̃ηk(t+m)(xk)−m, if t ∈ [−m,−m+ 1], m ∈ N,
π̃ηk(t)xk, if t > 0,

where {(xk)−m}m∈N ⊂ Aηk is a sequence such that π̃ηk(1)(xk)−m = (xk)−m+1 for all m ∈ N,
with (xk)0 = xk.

By the compactness of
∪

η∈[0,1]Aη, we may assume that for each m ∈ N0 there is (x0)−m ∈∪
η∈[0,1]Aη such that

(xk)−m
k→+∞−→ (x0)−m, m ∈ N0.

Moreover, there exists ξ > 0 such that ϕ0(z) > ξ for all z ∈ I0

(
M0 ∩

∪
η∈[0,1]Aη

)
, see Remark

2.4.

Case 1: x0 /∈M0.

Subcase 1.1: Suppose there exists a subsequence {mj}j∈N ⊂ N0 such that mj+1 > mj and

(x0)−mj
/∈M0 for all j ∈ N, where m1 = 0.

By Corollary 3.17, for each j ∈ N, there is {βj
k}k∈N ⊂ [0,+∞) such that βj

k

k→+∞−→ 0 and

π̃ηk(mj+1 −mj + βj
k)(xk)−mj+1

k→+∞−→ π̃0(mj+1 −mj)(x0)−mj+1
.

Since π̃ηk(mj+1 − mj)(xk)−mj+1
= (xk)−mj

, k, j ∈ N, using Proposition 3.16 we get for each

j ∈ N
π̃ηk(mj+1 −mj + βj

k)(xk)−mj+1
= π̃ηk(β

j
k)(xk)−mj

k→+∞−→ (x0)−mj
.

Thus, for each j ∈ N we obtain

π̃0(mj+1 −mj)(x0)−mj+1
= (x0)−mj

.

We define

ψ0(t) =

{
π̃0(t+mj+1)(x0)−mj+1

, if t ∈ [−mj+1,−mj], j ∈ N,
π̃0(t)x0, if t > 0.
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Note that ψ0 is a global solution of π̃0 through x0. Now, let us show that ψ0(R) ⊂
∪

η∈[0,1]Aη.

In fact, let s ∈ R and observe that if s > 0, then ψ0(s) = π̃0(s)x0. By Corollary 3.17, there is

a sequence {γk}k∈N ⊂ [0,+∞) such that γk
k→+∞−→ 0 and

π̃ηk(s+ γk)xk
k→+∞−→ π̃0(s)x0.

Since π̃ηk(s + γk)xk ∈ Aηk for all k ∈ N, we have ψ0(s) ∈
∪

η∈[0,1]Aη. On the other hand,

suppose that s ∈ [−mj+1,−mj] for some j ∈ N. Thus, we have ψ0(s) = π̃0(s+mj+1)(x0)−mj+1
.

By Corollary 3.17, there is a sequence {θjk}k∈N ⊂ [0,+∞) such that θjk
k→+∞−→ 0 and

π̃ηk(s+mj+1 + θjk)(xk)−mj+1

k→+∞−→ π̃0(s+mj+1)(x0)−mj+1
,

which implies that ψ0(s) ∈
∪

η∈[0,1]Aη. Hence, ψ0 is a bounded global solution of π̃0 through

x0, that is, x0 ∈ A0 by Proposition 2.13.

Subcase 1.2: Suppose there exists m0 ∈ N such that (x0)−m ∈M0 for all m > m0.

Since (xk)−m
k→+∞−→ (x0)−m ∈ M0 for all m > m0, taking a subsequence if necessary, we may

assume that

ϕηk((xk)−m)
k→+∞−→ 0 for all m > m0.

Indeed, fixing m > m0 it follows by (C2) that there exists a subsequence of {ηk}k∈N, which we

denote the same, and a sequence {wk}k∈N ⊂ X, wk ∈ Mηk , such that wk
k→+∞−→ (x0)−m. By the

C-SSTC and Lemma 3.6, there exist λ, δ > 0 and k1 ∈ N such that

B(wk, δ) ⊂ Fηk(Lk, [0, 2λ]) for all k > k1,

where Fηk(Lk, [0, 2λ]) is a λ-tube through wk with section Sk = Fηk(Lk, [0, 2λ]) ∩ Mηk and

F0(L0, [0, 2λ]) is a λ-tube through (x0)−m with section S0 = F0(L0, [0, 2λ])∩M0. Moreover, we

have

Fηk(Lk, [0, λ]) ∩ I(Mηk) = ∅ and B
(
(x0)−m,

δ
2

)
⊂ F0(L0, [0, 2λ]) ∩B(wk, δ), k > k1.

Hence, there is k2 > k1 such that (xk)−m ∈ B(wk, δ) for all k > k2. Since through (xk)−m

passes a bounded global solution of π̃ηk , Proposition 2.9 implies that (xk)−m ∈ Fηk(Lk, (λ, 2λ])

for k > k2 and, consequently, there is αk ∈ (λ, 2λ], k > k2, such that πηk(αk)(xk)−m ∈ Lk.

Then we have

πηk(αk − λ)(xk)−m ∈ Fηk(Lk, λ) = Sk ⊂Mηk for all k > k2.

We may assume that αk
k→+∞−→ α0 ∈ [λ, 2λ] and obtain from (C1) and Lemma 3.1

πηk(αk − λ)(xk)−m
k→+∞−→ π0(α0 − λ)(x0)−m ∈M0.

Since π0((0, λ])(x0)−m∩M0 = ∅, it follows that α0 = λ. Hence, since 0 < ϕηk((xk)−m) 6 αk−λ
for all k > k2, we get ϕηk((xk)−m)

k→+∞−→ 0 which concludes the assertion.
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Fix 0 < β < min{ξ, 1} and define (yk)−m = π̃ηk(β)(xk)−m ∈ Aηk for all k ∈ N and m > m0.

Fix m > m0 and note that by (C1) we have

wk := πηk(ϕηk((xk)−m))(xk)−m
k→+∞−→ π0(0)(x0)−m = (x0)−m := w0 ∈M0 ∩

∪
η∈[0,1]

Aη.

Since wk ∈Mηk , k ∈ N, we obtain from (C3)

Iηk(wk)
k→+∞−→ I0(w0) /∈M0.

Hence, by Theorem 3.12 we have

ϕηk(Iηk(wk))
k→+∞−→ ϕ0(I0(w0)).

Since ϕ0(I0(w0)) > ξ > β, we get ϕηk(Iηk(wk)) > β for k sufficiently large. Thus, for k

sufficiently large we have

(yk)−m = π̃ηk(β)(xk)−m = π̃ηk(β − ϕηk((xk)−m))π̃ηk(ϕηk((xk)−m))(xk)−m

= π̃ηk(β − ϕηk((xk)−m))Iηk(wk) = πηk(β − ϕηk((xk)−m))Iηk(wk).

Using (C1) we get

(yk)−m
k→+∞−→ π0(β)I0((x0)−m) = π̃0(β)I0((x0)−m) := (y0)−m /∈M0.

Note that (yk)−m ∈ Aηk and π̃ηk(1)(yk)−m = (yk)−m+1 for all k ∈ N and m > m0 + 1. Since

the points (yk)−m belong to the bounded global solution ψk through xk ∈ Aηk as (yk)−m =

ψk(−m + β) for m > m0, we may repeat the same construction carried out in Case 1 using

the sequence {(y0)−mj
} with m1 = 0 and mj = m0 + j − 2, j > 2, where (y0)0 = x0, to obtain

a bounded global solution of π̃0 through x0. Hence, we see that x0 ∈ A0.

Case 2: x0 ∈M0.

Since xk
k→+∞−→ x0 ∈ M0, repeating the argument of Subcase 1.2 we may assume that

ϕηk(xk)
k→+∞−→ 0. We may also suppose that 0 < ϕηk(xk) <

ξ
4
for all k ∈ N. Since there is

εx0 > 0 such that F0(x0, (0, εx0)) ∩M0 = ∅, we take m ∈ N such that 1
m
< min{εx0 ,

ξ
4
}. We

fix m > m. To simplify the notation, we set wk := ψk(− 1
m
) ∈ Aηk for all k ∈ N. Taking

a subsequence, if necessary, let ym ∈
∪

η∈[0,1] Aη be the limit of {wk}k∈N. Below we will show

that

there exists k3 ∈ N such that ϕηk(wk) >
1
m

for k > k3. (4.1)

Indeed, suppose to the contrary that, up to a choice of a subsequence, we have

ϕηk(wk) 6 1
m

for all k ∈ N. (4.2)

Since {ϕηk(wk)}k∈N is bounded by (4.2) and wk
k→+∞−→ ym, we may assume using (C1) that

zk := πηk(ϕηk(wk))wk
k→+∞−→ z.
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Since zk ∈Mηk , we see from Lemma 3.1 that z ∈M0. Then by (C3) we have

vk := π̃ηk(ϕηk(wk))wk = Iηk(zk)
k→+∞−→ I0(z) ∈ I0

M0 ∩
∪

η∈[0,1]

Aη

 .

Since ϕ0(I0(z)) > ξ, by Theorem 3.12 we know that ϕηk(vk) >
ξ
2
> 1

m
for k sufficiently large.

Hence, for k sufficiently large, we have

πηk
(
ϕηk(xk) +

1
m
− ϕηk(wk)

)
vk = πηk(ϕηk(xk))πηk

(
1
m
− ϕηk(wk)

)
vk

= πηk(ϕηk(xk))π̃ηk(
1
m
)wk = πηk(ϕηk(xk))xk ∈Mηk ,

which is a contradiction, since

ϕηk(xk) +
1
m
− ϕηk(wk) < ϕηk(xk) +

1
m
< ξ

4
+ 1

m
< ξ

2
.

Hence, (4.1) holds and

πηk
(

1
m

)
wk = π̃ηk

(
1
m

)
wk = π̃ηk

(
1
m

)
ψk(− 1

m
) = xk /∈Mηk , k > k3.

As k → +∞, we get by (C1)

π0
(

1
m

)
ym = x0 ∈M0, m > m. (4.3)

Thus, we have ym /∈ M0 for m > m, since 1
m
< εx0 . Since wk ∈ Aηk and wk

k→+∞−→ ym /∈ M0,

by the proof of Case 1 we can construct a bounded global solution of π̃0 through ym, hence

ym ∈ A0 for all m > m. Thus {ym}m∈N has a convergent subsequence, which converges to x0
by (4.3). In particular x0 ∈ A0, which ends the proof. �

Remark 4.3. In Theorem 4.2, we assumed that the global attractors exist for each η ∈ [0, 1].

It is clear that this assumption is not required to prove upper semicontinuity at zero. We just

need that the global attractors exist for all η 6 η0, for some 0 < η0 6 1. However, we can

always rescale the parameter η to obtain the required assumption for all η ∈ [0, 1].

5. Application

Consider the following system of impulsive ODEs:
ẋ = −x, x(0) = x0,

ẏ = −y, y(0) = y0,

I0 : M0 → I0(M0),

(5.1)

where M0 = {(x, y) ∈ R2 : x2 + y2 = 1} and the function I0 : M0 → I0(M0) is given as follows:

given (x, y) ∈M0 we consider the line segment Γ(x,y) that connects the points (x, y) and (3, y).

The point I0(x, y) is the point in the intersection Γ(x,y) ∩ {(x, y) ∈ R2 : x2 + y2 = 9}. Note that
I0(M0) ⊂ {(x, y) ∈ R2 : x2 + y2 = 9}. In [3, Example 4.8] the authors show that system (5.1)

possesses a global attractor given by A0 = {(0, 0)} ∪ {(x, 0) : x ∈ (1, 3]}.
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Let f, g : R2 → R be C1 maps, and assume that there exist α1, β1 > 0 and α2, β2 ∈ R such

that

xf(x, y) 6 α1x
2 + α2 and yg(x, y) 6 β1y

2 + β2 for all (x, y) ∈ R2. (5.2)

Now, consider the following autonomous perturbed system of coupled ODEs:
ẋ = −x+ ηf(x, y), η ∈ [0, 1],

ẏ = −y + ηg(x, y),

(x(0), y(0)) = (x0, y0).

(5.3)

For each η ∈ [0, 1], let {πη(t) : t ∈ R} be the flow associated to the system (5.3). By the

continuous dependence on initial data and parameters, we have

πη(t)(x, y)
η→0−→ π0(t)(x, y)

uniformly for (t, (x, y)) in compact subsets of R× R2.

Now, we define Mη = {(x, y) ∈ R2 : x2 + y2 = (1 + η)2}, η ∈ [0, 1]. Note that Mη =

H−1((1 + η)2), where H : R2 → R is given by H(x, y) = x2 + y2. Let

Gη(x, y) = (−x+ ηf(x, y),−y + ηg(x, y)), (x, y) ∈ R2 and η ∈ [0, 1].

Observe that there exists η ∈ (0, 1] such that

∇H(x, y) ·Gη(x, y) < 0 for all (x, y) ∈Mη and η ∈ [0, η]. (5.4)

Thus, given p = (x, y) ∈Mη, with η ∈ [0, η], there is ϵηp > 0 such that

Fη(p, (0, ϵ
η
p)) ∩Mη = ∅ and πη((0, ϵ

η
p))p ∩Mη = ∅.

Hence, rescaling the parameter η if necessary, we consider Mη as an impulsive set for each

η ∈ [0, 1].

Let Iη : Mη → R2 be an impulsive function defined as follows: given (x, y) ∈Mη we consider

the line segment Γη
(x,y) that connects the points (x, y) and (3 + η, y). The point Iη(x, y) is the

point in the intersection Γη
(x,y)∩{(x, y) ∈ R2 : x2+y2 = (3+η)2}. Note that Iη(Mη) ⊂ {(x, y) ∈

R2 : x2 + y2 = (3 + η)2}.
Thus, we have the following properties:

dH(Mη,M0) + dH(M0,Mη)
η→0−→ 0,

given ϵ > 0 and (x0, y0) ∈M0 there exists δ > 0 such that

d(Iη(x, y), I0(x0, y0)) < ϵ if η ∈ [0, δ), (x, y) ∈Mη and d((x, y), (x0, y0)) < δ,

and lastly

Iη(Mη) ∩Mη = ∅ for all η ∈ [0, 1].
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Therefore, we obtain the following system
ẋ = −x+ ηf(x, y), η ∈ [0, 1],

ẏ = −y + ηg(x, y),

(x(0), y(0)) = (x0, y0),

Iη : Mη → Iη(Mη),

(5.5)

which defines a family of impulsive dynamical systems {(R2, πη,Mη, Iη)}η∈[0,1] that satisfies

conditions (G), (C1)-(C4), where (C1) is satisfied uniformly for (t, x) in compact subsets of

R× R2. Also, each point of M0 satisfies C-SSTC as we can see in the next lemma.

Lemma 5.1. Each point of M0 satisfies C-SSTC.

Proof. It is easy to see that each point of M0 satisfies SSTC. Fix (x0, y0) ∈ M0. Let us show

that there are γ > 0, δ0 > 0 and η0 > 0 such that for 0 6 η 6 η0 we have:

(a) B((x0, y0), δ0) ∩Mη ̸= ∅;

(b) πη((−γ, 0) ∪ (0, γ))(x, y) ∩Mη = ∅ for all (x, y) ∈ B((x0, y0), δ0) ∩Mη;

(c) if (x, y) ∈ B((x0, y0), δ0) then πη([−γ, γ])(x, y) ∩Mη ̸= ∅.

In fact, it is clear that given δ1 > 0 there is η1 > 0 such that B((x0, y0), δ1) ∩Mη ̸= ∅ for all

0 6 η 6 η1.

In order to show (b), suppose to the contrary that there are sequences {ηk}k∈N ⊂ (0, η1),

{sk}k∈N ⊂ R\{0}, {δk}k∈N ⊂ (0,+∞) and (xk, yk) ∈ B((x0, y0), δk)∩Mηk such that ηk
k→+∞−→ 0,

sk
k→+∞−→ 0, δk

k→+∞−→ 0 and πηk(sk)(xk, yk) ∈Mηk for all k ∈ N. Note that

(xk, yk)
k→+∞−→ (x0, y0) ∈M0.

For each k ∈ N, define the mapping Φk : R → R by Φk(t) = H(πηk(t)(xk, yk)), t ∈ R. Note that
Φk(0) = Φk(sk) = (1 + ηk)

2, k ∈ N. We may assume without loss of generality that sk > 0 for

all k ∈ N. Using the Mean Value Theorem we conclude that there is sk ∈ (0, sk) such that

∇H(πηk(sk)(xk, yk)) ·Gηk(πηk(sk)(xk, yk)) = 0 for all k ∈ N.

When k → +∞ we get

∇H(x0, y0) ·G0(x0, y0) = 0,

which contradicts (5.4). Hence, there are γ1 > 0, δ2 ∈ (0, δ1) and η2 ∈ (0, η1) satisfying

conditions (a) and (b).

Now, let us suppose to the contrary that there exist sequences {ηk}k∈N ⊂ (0, η2) and (ak, bk) ∈
B((x0, y0), δ2)) such that ηk

k→+∞−→ 0, (ak, bk)
k→+∞−→ (x0, y0) and

πηk([−γ1, γ1])(ak, bk) ∩Mηk = ∅ for all k ∈ N. (5.6)

We choose ϑ ∈ (0, 1) such that

H(π0(γ1)(x0, y0)) < (1− ϑ)2 and H(π0(−γ1)(x0, y0)) > (1 + ϑ)2.
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Then there is k0 > 0 such that

H(πηk(γ1)(ak, bk)) < (1− ϑ)2, H(πηk(−γ1)(ak, bk)) > (1 + ϑ)2, ηk < ϑ for all k > k0.

By continuity there is sk ∈ [−γ1, γ1] such that H(πηk(sk)(ak, bk)) = (1 + ηk)
2 for all k > k0,

which contradicts (5.6). Hence, one may choose γ = γ1, δ0 ∈ (0, δ2) and η0 ∈ (0, η2) satisfying

conditions (a), (b) and (c).

It is not difficult to see that dH(Iη(Mη), I0(M0))
η→0−→ 0. Therefore, the result follows by

Corollary 3.9. �

The next result concerns the existence of global attractors for the system (5.5).

Lemma 5.2. There is η0 ∈ (0, 1) such that system (5.5) has a global attractor Aη for each

η ∈ [0, η0].

Proof. Indeed, let α0 = max{α1, β1} and 0 < η0 < min{α−1
0 , 1} be such that 0 6 η(|α2|+|β2|)

1−ηα0
6 1

for all η ∈ [0, η0]. Let B be a bounded set in R2. For (x0, y0) ∈ B, let us denote πη(t)(x0, y0) =

(xη(t), yη(t)), t ∈ R. Then, using (5.2), we get

1

2

d

dt
|(xη(t), yη(t))|2 = x′η(t)xη(t) + y′η(t)yη(t)

= xη(t)(−xη(t) + ηf(xη(t), yη(t))) + yη(t)(−yη(t) + ηg(xη(t), yη(t)))

6 −(1− α0η)|(xη(t), yη(t))|2 + η(|α2|+ |β2|).

(5.7)

Hence, we obtain

|πη(t)(x0, y0)|2 6 |(x0, y0)|2e−2(1−ηα0)t +
η(|α2|+ |β2|)

1− ηα0

(
1− e−2(1−ηα0)t

)
6 |(x0, y0)|2e−2(1−ηα0)t + 1, t > 0, η ∈ [0, η0].

(5.8)

Since B is bounded, we find TB > 0 such that

|πη(t)(x, y)| 6 5 for all (x, y) ∈ B and t > TB.

Note that if (x, y) ∈ Iη(Mη) and η ∈ [0, η0], then

|πη(t)(x, y)|2 6 |(x, y)|2e−2(1−ηα0)t + 1 6 (3 + η)2 + 1 6 25 for all t > 0.

Thus, we conclude that

|π̃η(t)(x, y)| 6 5 for all (x, y) ∈ B, t > TB and η ∈ [0, η0].

The set Kη = B((0, 0), 5) \Mη π̃η-absorbs all bounded subsets of R2 for each η ∈ [0, η0].

Note that there exists 0 < η0 6 η0 such that every point of Mη satisfies SSTC for η ∈ [0, η0].

Indeed, suppose to the contrary that there are sequences ηk
k→+∞−→ 0 and wk ∈Mηk such that wk

does not satisfy SSTC. By (C2) and the compactness of M0, we may assume that wk
k→+∞−→ w0

with w0 ∈ M0. However, since w0 satisfies C-SSTC by Lemma 5.1, we see that wk ∈ Mηk

satisfies SSTC for large k, a contradiction.
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Hence, by Theorem 2.12 the system (X, πη,Mη, Iη) admits a global attractor Aη such that

Aη ⊂ Kη, η ∈ [0, η0]. �

Note in the proof of Lemma 5.2 that
∪

η∈[0,η0] Aη ⊂ B((0, 0), 5), that is,
∪

η∈[0,η0]Aη is precom-

pact in R2. Thus, by the previous results and Theorem 4.2 we have the following conclusion.

Theorem 5.3. The family of global attractors {Aη}η∈[0,η0] of (5.5) is upper semicontinuous at

η = 0.

6. Lower semicontinuity

In this section, we provide a first step in the study of lower semicontinuity for global attractors

of impulsive dynamical systems. Such topic is far too extensive to be discussed here in details,

with examples and applications. We will describe the theoretic foundation to the study and

present a result of lower semicontinuity in a particular case. To this end, let (X, π,M, I) be an

impulsive dynamical system.

If we recall the concept of a π̃-global solution (see (2.3)), we will define a π̃-backwards

solution through x ∈ X as a function ψ : (−∞, 0] → X satisfying ψ(0) = x and

π̃(t)ψ(s) = ψ(t+ s) for all t > 0 and s 6 0 such that t+ s 6 0.

Given an π̃-invariant subset Ξ of X, we define the unstable set of Ξ by

W u(Ξ) = {y ∈ X : there is a π̃-backwards solution ψ through y

such that dH(ψ(t),Ξ)
t→−∞−→ 0}.

We also define the δ-unstable set of Ξ by

W u
δ (Ξ) = {y ∈ Oδ(Ξ) : there exists a π̃-backward solution ψ through y

such that ψ(t) ∈ Oδ(Ξ) for all t 6 0 and dH(ψ(t),Ξ)
t→−∞−→ 0},

for δ > 0 sufficiently small, where Oδ(Ξ) = {z ∈ X : inf
x∈Ξ

d(z, x) < δ}.
A point y∗ ∈ X is called an equilibrium point for π̃ if π̃(t)y∗ = y∗ for all t > 0. With an

equilibrium point y∗ for π̃, we can construct a π̃-global bounded solution ψ∗ by setting

ψ∗(t) = y∗ for all t ∈ R.

Such a solution is called a stationary solution of π̃ and we often say that the point y∗ is

a stationary solution of π̃.

Remark 6.1. It is clear that, with assumptions (2.1), if y∗ is a stationary point of π̃, then

y∗ /∈ M . Thus π̃(t)y∗ = π(t)y∗, t > 0, and hence y∗ is an equilibrium point for the continuous

semigroup {π(t) : t > 0}. Also, since M is closed, the behaviour of π̃ in a suitable small

neighbourhood of y∗ is qualitatively no different from the behaviour of π.

First we give an equivalent condition for the lower semicontinuity at η = 0 of a family

{Aη}η∈[0,1].



26 E. M. BONOTTO, M. C. BORTOLAN, R. COLLEGARI, AND R. CZAJA

Lemma 6.2. Let {Aη}η∈[0,1] be a family of non-empty subsets of X such that A0 is precompact.

Then {Aη}η∈[0,1] is lower semicontinuous at η = 0 if and only if given x0 ∈ A0 and {ηk}k∈N ⊂
[0, 1] with ηk

k→+∞−→ 0, there exist a subsequence {ηkj}j∈N and {xj}j∈N ⊂ X with xj ∈ Aηkj
for

all j ∈ N such that xj
j→+∞−→ x0.

Proof. Suppose that {Aη}η∈[0,1] is not lower semicontinuous at η = 0. Hence, there exists

a sequence {ηk}k∈N ⊂ [0, 1] with ηk
k→+∞−→ 0, ϵ > 0 and a sequence zk ∈ A0, k ∈ N, such that

dH(zk,Aηk) > ϵ, k ∈ N.

Since A0 is precompact, we may assume that zk
k→+∞−→ z0 ∈ A0. Hence, there cannot exist

a subsequence {ηkj}j∈N and {xj}j∈N with xj ∈ Aηkj
for all j ∈ N such that xj

j→+∞−→ z0, which

is a contradiction. Conversely, if {Aη}η∈[0,1] is lower semicontinuous at η = 0, x0 ∈ A0 and

{ηk}k∈N ⊂ [0, 1] with ηk
k→+∞−→ 0, then there exists a subsequence {ηkj}j∈N such that

dH(A0,Aηkj
) < 1

j
, j ∈ N.

Thus, there exists a sequence {xj}j∈N with xj ∈ Aηkj
for all j ∈ N such that xj

j→+∞−→ x0. �

Now, we consider a family of impulsive dynamical systems {(X, πη,Mη, Iη)}η∈[0,1] satisfying
(G), (C1)-(C4) and assume that each point of M0 satisfies C-STC. We set Eη as the set of all

stationary solutions of {πη(t) : t > 0}. Hence, it coincides with the set of stationary solution of

π̃η.

The following result provides sufficient conditions for the lower semicontinuity at η = 0 of

a family of global attractors.

Theorem 6.3. With the above conditions, assume that (X, πη,Mη, Iη) has a global attractor

Aη, for each η ∈ [0, 1]. Additionally, assume that:

(a) there exists p ∈ N such that {y∗,η1 , . . . , y∗,ηp } ⊂ Eη, for each η ∈ [0, 1];

(b) there exists δ > 0 such that the family {W u
δ (y

∗,η
j )}η∈[0,1] is lower semicontinuous at η = 0,

for all j = 1, . . . , p;

(c) A0 =
∪p

j=1W
u(y∗,0j ).

Then the family of global attractors {Aη}η∈[0,1] is lower semicontinuous at η = 0.

Proof. Let u0 ∈ A0 and {ηk}k∈N ⊂ (0, 1] be a sequence such that ηk
k→+∞−→ 0. First we suppose

that u0 ∈ A0. Then u0 ∈ W u(y∗,0r ) for some r ∈ {1, . . . , p}. Thus, there exists a π̃0-global

solution ψu0 through u0 such that ψu0(t)
t→−∞−→ y∗,0r , and let τ > 0 be such that ψu0(−τ) ∈

W u
δ (y

∗,0
r ).

By item (b), taking a subsequence if necessary, there exist u−τ
ηk

∈ W u
δ (y

∗,ηk
r ) such that

u−τ
ηk

k→+∞−→ ψu0(−τ) and a π̃ηk-global solution ψ
(ηk) through u−τ

ηk
such that

ψ(ηk)(0)
k→+∞−→ ψu0(−τ).
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Since ψu0(−τ) /∈M0 it follows by Corollary 3.17 that there is a sequence {αk}k∈N ⊂ R+ such

that αk
k→+∞−→ 0 and

π̃ηk(τ + αk)ψ
(ηk)(0)

k→+∞−→ π̃0(τ)ψu0(−τ) = u0,

with π̃ηk(τ + αk)ψ
(ηk)(0) = π̃ηk(τ + αk)u

−τ
ηk

∈ Aηk .

It remains the case where u0 ∈ A0 \A0. Given ϵ > 0 there is u′ ∈ A0 such that d(u′, u0) <
ϵ
2
,

and since u′ ∈ A0, it follows by the previous case that there are xk ∈ Aηk and k0 ∈ N such that

d(xk, u
′) < ϵ

2
for all k > k0.

Hence, for k > k0 we have d(xk, u0) < ϵ and the proof is complete. �

Using Remark 6.1, this result might be applied, for instance, when the continuous semigroups

{πη(t) : t > 0} are differentiable in X (or at least in a small neighbourhood of
∪

η∈[0,1]Aη) and

the equilibrium points of {π0(t) : t > 0} are all hyperbolic, that is, the spectrum σ(Dxπ0(1)) of

the derivative Dxπ0(1) is disjoint from the unit circle S1 in C.
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[8] Brunovský, B. and Poláčik, P.: The Morse-Smale structure of a generic reaction-diffusion equation in higher

space dimension, J. Differential Equations, 135 (1997), 129–181.

[9] Carvalho, A. N. and Langa, J. A.: An extension of the concept of gradient semigroups which is stable

under perturbation, J. Differential Equations, 246 (2009), 2646–2668.

[10] Carvalho, A. N., Langa, J. A. and Robinson, J.C.: Lower semicontinuity of attractors for non-autonomous

dynamical systems, Ergodic Theory Dynam. Systems, 29 (2009), 1765–1780.

[11] Carvalho, A. N., Langa, J. A. and Robinson, J. C.: Attractors for Infinite-Dimensional Non-Autonomous

Dynamical Systems, Applied Mathematical Sciences 182, Springer, 2013.



28 E. M. BONOTTO, M. C. BORTOLAN, R. COLLEGARI, AND R. CZAJA

[12] Ciesielski, K.: On semicontinuity in impulsive dynamical systems, Bull. Polish Acad. Sci. Math., 52 (2004),

71–80.

[13] Ciesielski, K.: On stability in impulsive dynamical systems, Bull. Polish Acad. Sci. Math., 52 (2004), 81–91.

[14] Ciesielski, K.: On time reparametrizations and isomorphisms of impulsive dynamical systems, Ann. Polon.

Math., 84 (2004), 1–25.

[15] Ciesielski, K.: Sections in semidynamical systems, Bull. Polish Acad. Sci. Math., 40 (1992), 297–307.

[16] Cortés, J.: Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analysis and stability,

IEEE Control Syst. Mag., 28 (2008), 36–73.
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