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Abstract. In this work we give the definition of a global attractor of an impulsive dynamical

system and obtain several important properties for this class of attractors. We prove the

theorem on existence of such attractors and apply it to chosen ordinary and partial differential

equations with impulsive functions.

1. Introduction

The theory of impulsive dynamical systems describes the evolution of systems where the

continuous development of a process is interrupted by abrupt changes of state. This subject

has been the research topic of many authors over the last four decades and first appeared in

the 70’s in the works of Rozko (see [31, 32]). In 1990, Kaul constructed the mathematical

foundation of this theory with impulses at variable times in [25] and next, Kaul and Ciesielski

published very important results in this area (see [16, 17, 18, 26, 27]). Thereon a vast literature

on this topic has been developed and the reader can see for instance [7, 8, 9, 10, 11, 29] for

details of this theory and [1, 5, 12, 13, 15, 20, 21, 22] for other results and applications. Many

real world problems are defined in terms of impulsive systems; for instance, a simple medicine

intake, which requires that a new dose must be taken in order to keep the disease under control.

The study of impulsive dynamical systems requires a previous knowledge of continuous au-

tonomous dynamical systems (or simply, semigroups) and we now state very superficially this

theory.

Let (X, d) be a metric space with metric d and R+ be the set of non-negative real numbers.

A semigroup in X is a family of functions {π(t) : t > 0}, indexed on R+, satisfying

(i) π(0)x = x, for all x ∈ X;

(ii) π(t+ s) = π(t) ◦ π(s), for all t, s > 0;

(iii) the map R+ ×X 3 (t, x) 7→ π(t)x is continuous.

From now on we omit the composition sign ‘ ◦ ’ and will simply write property (ii) as π(t+s) =

π(t)π(s).
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A subset A of X is called π−invariant under {π(t) : t > 0} if π(t)A = A, for all t > 0. Also

A is π−positively (negatively) invariant if π(t)A ⊆ A (π(t)A ⊇ A), for all t > 0.

Given two subsets A,B ⊆ X, we say that A π−attracts B if

lim
t→∞

dH(π(t)B,A) = 0,

where dH(·, ·) denotes the Hausdorff semidistance between two sets; i.e.,

dH(C,D) = sup
x∈C

inf
y∈D

d(x, y).

We can now define the notion of a global attractor for the semigroup {π(t) : t > 0}.

Definition 1.1. A subset A of X is called a global attractor for the semigroup {π(t) : t > 0}
if it is compact, π−invariant and π−attracts all bounded subsets of X.

We know that the global attractor A of the semigroup {π(t) : t > 0} is unique and describes

the long-time behavior dynamics of {π(t) : t > 0}; that is, to study the asymptotic dynamics

of the semigroup {π(t) : t > 0}, one must understand completely the global attractor and its

internal structures. This has been the main research topic for many authors (see for instance

[4, 14, 23, 24, 28, 30, 33]).

Our goal is to develop an analogous theory for impulsive dynamical systems; more precisely,

we want to define a useful notion of a global attractor for an impulsive dynamical system, in

such a way that this object describes completely the long-time behavior of the system. To this

end, we introduce some of the definitions and basic properties of impulsive dynamical systems

and we attempt to find an appropriate notion of a global attractor.

Let {π(t) : t > 0} be a semigroup in X. For each D ⊆ X and J ⊆ R+ we define

F (D, J) =
⋃
t∈J

π(t)−1(D).

A point x ∈ X is called an initial point if F (x, t) = ∅ for all t > 0.

Definition 1.2. An impulsive dynamical system (IDS, for short) (X, π,M, I) consists of

a semigroup {π(t) : t > 0} on a metric space (X, d), a nonempty closed subset M ⊆ X such

that for every x ∈M there exists εx > 0 such that

F (x, (0, εx)) ∩M = ∅ and
⋃

t∈(0,εx)

{π(t)x} ∩M = ∅, (1.1)

and a continuous function I : M → X (its role will be specified later).

The set M is called the impulsive set and the function I is called impulsive function.

We also define

M+(x) =

(⋃
t>0

π(t)x

)
∩M.

Remark 1.3. Condition (1.1) means that the flow of the semigroup {π(t) : t > 0} is, in some

sense, transversal to M at any point of M .
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Proposition 1.4. Let (X, π,M, I) be an IDS and x ∈ X. If M+(x) 6= ∅ then there exists

s > 0 such that π(s)x ∈M and π(t)x /∈M for 0 < t < s.

Proof: Since M+(x) 6= ∅, there exists s0 > 0 such that π(s0)x ∈M . Assume by contradiction

that there exists a sequence sn → 0 such that π(sn)x ∈ M . Since M is closed, the continuity

of R+ 3 t 7→ π(t)x implies that x = π(0)x ∈M . Thus we have two possibilities:

• if x /∈M we have already reached a contradiction;

• if x ∈M then the condition π((0, εx))x∩M = ∅, for some εx > 0, gives us a contradic-

tion.

With this proposition at hand, we are able to define the function φ : X → (0,∞] by

φ(x) =

{
s, if π(s)x ∈M and π(t)x /∈M for 0 < t < s,

∞, if M+(x) = ∅.

If M+(x) 6= ∅, the value φ(x) represents the smallest positive time such that the trajectory of

x meets M . In this case, we say that the point π(φ(x))x is the impulsive point of x.

Definition 1.5. The impulsive trajectory of x ∈ X by the IDS (X, π,M, I) is a map π̃(·)x
defined in an interval Jx ⊆ R+ with values in X given inductively by the following rule: if

M+(x) = ∅, then π̃(t)x = π(t)x for all t ∈ R+. However, if M+(x) 6= ∅ then we denote

x = x+
0 and define π̃(·)x on [0, φ(x+

0 )] by

π̃(t)x =

{
π(t)x+

0 , if 0 6 t < φ(x+
0 ),

I(π(φ(x+
0 ))x+

0 ), if t = φ(x+
0 ).

Now let s0 = φ(x+
0 ), x1 = π(s0)x+

0 , and x+
1 = I(π(s0)x+

0 ). In this case s0 <∞ and the process

can go on, but now starting at x+
1 . If M+(x+

1 ) = ∅ then we define π̃(t)x = π(t − s0)x+
1 for

s0 6 t < ∞ and in this case φ(x+
1 ) = ∞. However, if M+(x+

1 ) 6= ∅ we define π̃(·)x on

[s0, s0 + φ(x+
1 )] by

π̃(t)x =

{
π(t− s0)x+

1 , if s0 6 t < s0 + φ(x+
1 ),

I(π(φ(x+
1 ))x+

1 ), if t = s0 + φ(x+
1 ).

Now let s1 = φ(x+
1 ), x2 = π(s1)x+

1 , and x+
2 = I(π(s1)x+

1 ). Assume now that π̃(·)x is defined

on the interval [tn−1, tn] and that π̃(tn)x = x+
n , where t0 = 0 and tn =

∑n−1
i=0 si for n ∈ N.

If M+(x+
n ) = ∅, then π̃(t)x = π(t − tn)x+

n for tn 6 t < ∞ and φ(x+
n ) = ∞. However, if

M+(x+
n ) 6= ∅, then we define π̃(·)x on [tn, tn + φ(x+

n )] by

π̃(t)x =

{
π(t− tn)x+

n , if tn 6 t < tn + φ(x+
n ),

I(π(φ(x+
n ))x+

n ), if t = tn + φ(x+
n ).
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Now let sn = φ(x+
n ), xn+1 = π(sn)x+

n , and x+
n+1 = I(π(sn)x+

n ). This process ends after a finite

number of steps if M+(x+
n ) = ∅ for some n ∈ N, or it may proceed indefinitely, if M+(x+

n ) 6= ∅
for all n ∈ N and in this case π̃(·)x is defined in the interval [0, T (x)), where T (x) =

∑∞
i=0 si.

With these basic definitions and results, assuming that all impulsive trajectories exist for all

time t > 0, i.e., assuming that T (x) = ∞ for all x ∈ X, we are able to start our search for a

suitable definition of a global attractor for the IDS (X, π,M, I) and from now on we will always

assume this global existence condition:

(G) T (x) =∞ for all x ∈ X, and thus {π̃(t) : t > 0} satisfies the semigroup property:

π̃(t+ s)x = π̃(t)π̃(s)x, t, s > 0, x ∈ X, π̃(0)x = x, x ∈ X. (1.2)

Remark 1.6.

(1) Observe that if there exists ξ > 0 such that φ(z) > ξ for all z ∈ I(M), then for every

x ∈ X we have T (x) =∞ and {π̃(t) : t > 0} satisfies (1.2).

(2) The condition that there exists ξ > 0 such that φ(z) > ξ for all z ∈ I(M) says that there

is a minimum time for which the semigroup π takes to reach M , when leaving from

I(M). This condition is satisfied in several examples and, for instance, when I(M) is

compact and I(M) ∩ M = ∅. Indeed, let ε > 0 be such that Oε(I(M)) ∩ M = ∅.

For each point z ∈ I(M) either π(s)z ∈ Oε(I(M)) for all s > 0 and we set sz = ∞
or there exists a finite time sz > 0 such that π(sz)z ∈ Oε(I(M)) \ Oε(I(M)) and that

π(t)z ∈ Oε(I(M)) for 0 6 t < sz (here and from now on, for a set A ⊆ X, A denotes

its closure in X with its metric d). Hence, by the joint continuity of the semigroup,

the map I(M) 3 z 7→ sz is lower semicontinuous, and since I(M) is compact, it has

a positive infimum ξ > 0.

The definitions of π̃-invariance and π̃−attraction are analogous to the notions of π−invariance

and π−attraction, respectively, simply replacing π by π̃. In Bonotto-Demuner [7], the authors

present the following definition for a global attractor:

Definition 1.7. A subset A of X is a global attractor for an IDS (X, π,M, I) if it is compact,

A ∩M = ∅, π̃−invariant and π̃ − attracts all bounded subsets of X.

This definition is consistent with the notion of a global attractor for semigroups; that is,

when M = ∅, both definitions coincide; and in fact, this notion of a global attractor is useful

to describe the asymptotic dynamics of π̃ in many cases. However, this notion excludes large

and very important classes of IDS, since with this definition, the asymptotic behavior of π̃

is qualitatively not different from the asymptotic behavior of π. Thus we must find a more

suitable definition, that includes cases where the dynamics in long time of π̃ is different from

the one of π. Let us present a simple example of a case in which the asymptotic dynamics of

π̃ and π are different.
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Example 1.8. Consider the following continuous differential equation

ẋ =

{
1, if x < 0,

1− x, if x > 0
(1.3)

with the initial condition x(0) = x0 ∈ R and consider the action of the impulsive function

I(0) = −1. The solutions of (1.3) without the action of I are given by

π(t)x0 =


t+ x0, x0 < 0, t ∈ [0,−x0),

−e−t−x0 + 1, x0 < 0, t ∈ [−x0,∞),

(x0 − 1)e−t + 1, x0 > 0, t ∈ [0,∞).

This problem has only one bounded invariant set; namely the asymptotically stable equilibrium

solution {1}, and it is also the global attractor for (1.3). Now, the solutions of (1.3) with the

action of I, are given by

π̃(t)x0 =


t+ x0, x0 < 0, t ∈ [0,−x0),

t+ x0 − n, x0 < 0, t ∈ [−x0 + n− 1,−x0 + n), n ∈ N,
(x0 − 1)e−t + 1, x0 > 0, t ∈ [0,∞).

(1.4)

We can see that the dynamics is quite different, since there appeared the “impulsive periodic

orbit” [−1, 0). Note that in this case there is no subset of R satisfying all the conditions of

Definition 1.7. But we can distinguish some interesting sets:

• The set A1 = [−1, 0)∪{1} is π̃−invariant and π̃−attracting bounded sets, A1∩M = ∅,

but A1 is not compact.

• The set A2 = [−1, 0] ∪ {1} π̃−attracts bounded sets, A2 is compact, but A2 ∩M 6= ∅
and A2 is neither π̃−positively nor π̃−negatively invariant.

• The set A3 = [−1, 1] π̃−attracts bounded sets, A3 is compact, it is π̃−positively invari-

ant, but it is not π̃−negatively invariant and A3 ∩M 6= ∅.

If one is familiar with the theory of the semigroups, the global attractor in this context is

characterized as the union of all bounded global solutions of π, and this property is closely

related with the invariance of the global attractor. Hence, looking at the three sets above, one

can conjecture that the set A1 is a natural candidate for the global attractor of this impulsive

system, since it is the only π̃−invariant among the three.

We will show that in fact this is the case. Also, if we recall the definition of an impulsive

trajectory, we can see that through points of M there can be no global solutions of π̃, hence it

is natural to assume that if the invariance is the property we seek for our global attractor, then

no point of M can be in it; therefore the hypothesis A ∩M = ∅ in Definition 1.7 needs to be

maintained and this implies a direct consequence: the hypothesis of compactness needs to be

weakened. The set A1 above is not compact, but it is precompact and moreover A1 = A1 \M .

All of these arguments lead us to our definition of a global attractor.
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Definition 1.9. A subset A ⊂ X will be called a global attractor for the IDS (X, π,M, I) if

it satisfies the following conditions:

(i) A is precompact and A = A \M ;

(ii) A is π̃−invariant;

(iii) A π̃−attracts bounded subsets of X.

With this definition, we can see that the set A1 is the global attractor for the IDS in Example

1.8, and although it is a quite simple example its dynamics is much richer than the dynamics

arising from continuous differential equations, this attractor is disconnected and it is the union

of two disjoint isolated invariant sets with no connection between them; also, solutions reach

the periodic orbit [−1, 0) in finite time (hence there is no backward uniqueness in general).

This simple example shows us that a very large amount of systems is not present in the context

of [7]. We aim to describe the asymptotic dynamics of a larger class of impulsive dynamical

systems. To this end, our work is divided in three main sections.

Section 2 is one of technical nature, and deals with “tube conditions” for an impulsive dynam-

ical system. The main purpose of this section is to develop a result that enables us to overcome

the difficulty found in the previous theory: the negative invariance of impulsive ω−limits. This

result (Proposition 2.6) states that the impulsive flow π̃(t) cannot reach the “right side” of the

impulsive set M for large values of t.

In Section 3, we discuss the impulsive ω−limits of bounded subsets of X. In this section

we define bounded dissipative impulsive dynamical systems and we study the properties of the

impulsive ω−limits for such impulsive systems. We prove the positive invariance (Proposition

3.7) and, using the result of Section 2, the negative invariance (Proposition 3.12). Also, we

prove the attraction of the impulsive ω-limits (Proposition 3.14).

In Section 4 we show the existence a global attractor for a strongly bounded dissipative

impulsive dynamical system, using impulsive ω−limits (Theorem 4.7), and we present three

examples, in increasing order of complexity: a simple planar impulsive system, an impulsive

ODE and finally, an impulsive PDE. In each one of these three cases we are able to show the

existence of a global attractor for the generated impulsive dynamical system.

2. Tube conditions on impulsive dynamical systems

In this section we deal with several technicalities that may arise when we are working with

impulses. In order to obtain invariance results, we must ensure that the original semiflow

{π(t) : t > 0} behaves nicely near the impulsive set M ; and for this we mean that the flow

has a well defined direction when crossing M . Therefore we define “tube conditions”, which

guarantee a nice behavior of the semigroup {π(t) : t > 0} near the impulsive set M (see [16] for

more details).

Definition 2.1. Let {π(t) : t > 0} be a semigroup on X. A closed set S containing x ∈ X is

called a section through x if there exists λ > 0 and a closed subset L of X such that:
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(a) F (L, λ) = S;

(b) F (L, [0, 2λ]) contains a neighborhood of x;

(c) F (L, ν) ∩ F (L, ζ) = ∅, if 0 6 ν < ζ 6 2λ.

We say that the set F (L, [0, 2λ]) is a λ−tube (or simply tube) and the set L is a bar.

Lemma 2.2. If S is a section and λ > 0 is given as in the previous definition, then any

0 < µ 6 λ satisfies conditions (a), (b) and (c) above with L replaced with Lµ = F (L, λ−µ) and

λ replaced with µ.

Proof: See Lemma 1.9 in [19].

Definition 2.3. Let (X, π,M, I) be an IDS. We say that a point x ∈ M satisfies the strong

tube condition (STC), if there exists a section S through x such that S = F (L, [0, 2λ])∩M .

Also, we say that a point x ∈ M satisfies the special strong tube condition (SSTC) if it

satisfies STC and the λ-tube F (L, [0, 2λ]) is such that F (L, [0, λ]) ∩ I(M) = ∅.

Theorem 2.4. Let (X, π,M, I) be an IDS such that each point of M satisfies STC. Then φ

is upper semicontinuous in X and it is continuous in X \M . Moreover, if there are no initial

points in M and φ is continuous at x then x /∈M .

Proof: See Theorem 3.8 in [16].

Remark 2.5. Before continuing, we note that if we assume that I(M)∩M = ∅, then no point

x ∈ M is in any impulsive π̃−trajectory, except if the trajectory starts at x. This is a simple

consequence of the definition of impulsive trajectories and this fact will be used in what follows.

This following proposition is the main result of this section, and will later help us with

negatively π̃−invariant sets, giving us a better understanding about the behavior of impulsive

trajectories near the impulsive set M .

Proposition 2.6. Let (X, π,M, I) be an IDS such that I(M) ∩M = ∅ and let y ∈ M satisfy

SSTC with λ-tube F (L, [0, 2λ]). Then π̃(t)X ∩ F (L, [0, λ]) = ∅ for t > λ.

Proof: Suppose contrary to the claim that there exist t > λ and z = π̃(t)x ∈ F (L, [0, λ]) for

some x ∈ X. Hence there exists µ ∈ [0, λ] such that π(µ)z ∈ L. If µ = λ, then z ∈ S ⊆ M ,

which is not possible by Remark 2.5, and hence µ ∈ [0, λ).

If t < φ(x), then z = π̃(t)x = π(t)x and we consider w = π(t − (λ − µ))x. We have that

π(λ)w = π(t+ µ)x = π(µ)π(t)x = π(µ)z ∈ L. Thus w ∈ S ⊆M , a contradiction with the fact

that t− (λ− µ) < φ(x).

Consider now the case z = π̃(t)x = π(t′)x+, where x+ ∈ I(M) and t′ ∈ [0, φ(x+)). If

t′ > λ− µ, then we consider w = π(t′ − (λ− µ))x+. We have

π(λ)w = π(µ)π(t′)x+ = π(µ)z ∈ L

and consequently w ∈ S ⊆M , a contradiction with the fact that t′ < φ(x+).
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Finally, if t′ ∈ [0, λ− µ), then

π(t′ + µ)x+ = π(µ)π(t′)x+ = π(µ)z ∈ L

and 0 6 µ 6 t′ + µ < λ, so x+ ∈ F (L, [0, λ)) ∩ I(M), which is a contradiction with SSTC.

3. Impulsive ω−limits

We now want to give necessary and sufficient conditions to ensure the existence of a global

attractor for an IDS (X, π,M, I) as defined in Definition 1.9. To begin our study, we define the

notion of an impulsive ω−limit.

Definition 3.1. We represent the impulsive positive orbit of x ∈ X starting at s > 0 by

the set

γ̃+
s (x) = {π̃(t)x : t > s}.

Also we set γ̃+(x) = γ+
0 (x).

Given a subset B ⊆ X we define γ̃+
s (B) =

⋃
x∈B γ̃

+
s (x) and we define the impulsive ω−limit

of B as the set

ω̃(B) =
⋂
t>0

γ̃+
t (B).

Analogously to the case of semigroups, we have the following characterization result for

impulsive ω−limits.

Lemma 3.2. We have

ω̃(B) = {x ∈ X : there exist sequences {xn}n∈N ⊆ B and {tn}n∈N ⊆ R+

with tn →∞ such that π̃(tn)xn → x as n→∞},

and ω̃(B) is closed for every subset B ⊆ X.

Proof: If x ∈ ω̃(B) then given n ∈ N, x ∈ γ̃+
n (B), which implies that there exist xn ∈ B

and tn > n such that d(x, π̃(tn)xn) < 1
n

and therefore tn → ∞ and π̃(tn)xn → x as n → ∞.

Conversely, given t > 0, we have π̃(tn)xn ∈ γ̃+
t (B) for tn > t and hence x ∈ γ̃+

t (B).

Finally, ω̃(B) is closed, since it is an intersection of closed sets, which concludes the proof.

To continue with a more detailed description of the properties of impulsive ω−limits, we will

need a dissipativity condition on the IDS (X, π,M, I).

Definition 3.3. An IDS (X, π,M, I) is called bounded dissipative if there exists a precom-

pact set K ⊆ X with K∩M = ∅ that π̃−attracts all bounded subsets of X. Any set K satisfying

these conditions will be called a pre-attractor.

Proposition 3.4. If (X, π,M, I) is a bounded dissipative IDS with a pre-attractor K, then for

any nonempty bounded subset B of X the impulsive ω−limit ω̃(B) is nonempty, compact and

ω̃(B) ⊆ K.
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Proof: If x ∈ ω̃(B), then π̃(tn)xn → x for some {xn}n∈N ⊆ B and {tn}n∈N ⊂ R+, tn → ∞,

and we have

dH(π̃(tn)xn, K) ≤ dH(π̃(tn)B,K)→ 0 as n→∞,
since K π̃−attracts B. Hence x ∈ K and thus ω̃(B) ⊆ K. Since ω̃(B) is closed and contained

in the compact set K, ω̃(B) is compact.

If {tn}n∈N is any sequence in R+, with tn → ∞, and {xn}n∈N is any sequence in B, the

attraction property of K ensures that there exists a convergent subsequence of {π̃(tn)xn}n∈N
and hence ω̃(B) is nonempty.

Proposition 3.5. If (X, π,M, I) is a bounded dissipative IDS with a pre-attractor K then, for

any nonempty bounded subset B of X, the impulsive ω−limit ω̃(B) π̃−attracts B.

Proof: Suppose contrary to the claim that there exist sequences {tn}n∈N ⊆ R+, tn → ∞,

{xn}n∈N ⊆ B and ε0 > 0 such that dH(π̃(tn)xn, ω̃(B)) > ε0. We know that dH(π̃(tn)xn, K)→ 0

as n→∞, so for some subsequence there exists x ∈ K such that π̃(tnk)xnk → x, which implies

that 0 = dH(x, ω̃(B)) > ε0, which is a contradiction.

3.1. Positive invariance of impulsive ω−limits. In this subsection we establish the positive

invariance for impulsive ω−limits. We will need one auxiliary result:

Lemma 3.6. Let (X, π,M, I) be an IDS such that I(M)∩M = ∅ and each point of M satisfies

STC. Let also x ∈ X \M and {zn}n∈N be a sequence in X such that zn → x. Then, given t > 0,

there exists a sequence {ηn}n∈N in R such that ηn → 0 and π̃(t+ ηn)zn → π̃(t)x.

Proof: If φ(x) = ∞, it follows by continuity of φ on X \M that for a given t ∈ [0,∞) there

is a natural number n0 > 0 such that φ(zn) > t, for all n > n0. Consequently, for n > n0,

π̃(t)zn = π(t)zn, and the result follows from the continuity of π(t) by setting ηn = 0, n ∈ N.

Now, let us assume that φ(x) < ∞. Since φ is continuous on X \M , we may assume that

φ(zn) <∞ for all n ∈ N.

Case 1: 0 6 t < φ(x).

In this case, consider 0 < ε < φ(x) − t. By continuity of φ there is n0 ∈ N such that

φ(x) − ε < φ(zn) for all n > n0. Then t < φ(zn) and π̃(t)zn = π(t)zn for all n > n0. Taking

ηn = 0, n ∈ N, it follows that

π̃(t+ ηn)zn = π(t)zn → π(t)x = π̃(t)x.

Case 2: t = φ(x).

Note that π̃(t)x = π̃(φ(x))x = x+
1 . Thus

(zn)1 = π(φ(zn))zn → π(φ(x))x = x1.

Since I is continuous on M we have

(zn)+
1 = I((zn)1)→ I(x1) = x+

1 .
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By the continuity of φ we have that φ(zn) = φ(x) + ηn = t + ηn, where {ηn}n∈N is a sequence

of real numbers such that ηn → 0. Hence,

π̃(t+ ηn)zn = π̃(φ(zn))zn = (zn)+
1 → x+

1 = π̃(t)x.

Case 3: t > φ(x).

In this case, there exists m ∈ N such that t =
m−1∑
i=0

φ(x+
i ) + t′ with 0 6 t′ < φ(x+

m). Define

(zn)i by

(zn)1 = π(φ(zn))zn and (zn)i+1 = π((zn)+
i ))(zn)+

i , i = 1, . . . ,m− 1.

Set tn =
m−1∑
i=0

φ((zn)+
i ). Since φ(zn)→ φ(x), we have

(zn)1 = π(φ(zn))zn → π(φ(x))x = x1.

By continuity of I we have

(zn)+
1 = I((zn)1)→ I(x1) = x+

1 .

Now, since φ((zn)+
1 )→ φ(x+

1 ), because x+
1 /∈M , we get

(zn)2 = π(φ((zn)+
1 ))(zn)+

1 → π(φ(x+
1 ))x+

1 = x2.

By continuing with this process, we obtain

(zn)i → xi and (zn)+
i → x+

i , for all i = 1, . . . ,m.

Thus
m−1∑
i=0

φ((zn)+
i )→

m−1∑
i=0

φ(x+
i ). Define the sequence {ηn}n∈N ⊂ R by ηn = tn + t′ − t. Note

that ηn → 0 and t+ ηn = tn + t′ > 0. Then, since t′ < φ((zn)+
m) for a large n, we get

π̃(t+ ηn)zn = π(t′)(zn)+
m → π(t′)x+

m = π̃(t)x.

Therefore, the result is proved.

Proposition 3.7 (Positive invariance). Let (X, π,M, I) be an IDS such that I(M)∩M = ∅
and each point of M satisfies STC. Then for any nonempty bounded subset B of X the set

ω̃(B) \M is positively π̃−invariant.

Proof: Let x ∈ ω̃(B)\M and t > 0. Then there exist {xn}n∈N ⊆ B and {tn}n∈N ⊂ R+, tn →∞
such that π̃(tn)xn → x. Since x /∈ M and M is closed, we can assume that π̃(tn)xn /∈ M .

Therefore by Lemma 3.6 there exists a sequence {ηn}n∈N ⊂ R such that ηn → 0 and

π̃(tn + t+ ηn)xn = π̃(t+ ηn)π̃(tn)xn → π̃(t)x as n→∞.

Hence π̃(t)x ∈ ω̃(B). Observe that π̃(t)x /∈ M , since any impulsive trajectory starting at

a point of X \ M never reaches M in finite time (note that I(M) ∩ M = ∅). This shows

positive π̃-invariance of ω̃(B) \M .
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3.2. Negative invariance of impulsive ω−limits. The negative invariance of ω−limits is

harder to obtain. To this end, we must perform a deep analysis of the behavior of the impulsive

semiflow π̃ near the impulsive set M . In [7], the authors consider the global attractor away from

the impulsive set and avoided this study, but now, with a finer study, we are able to complete

the theory in order to allow the attractor to be near M .

We begin with a sequence of results which, when put together, will give us the desired negative

invariance.

Lemma 3.8. Let (X, π,M, I) be an IDS such that each point in M satisfies STC, z /∈ M and

{zn}n∈N be a sequence in X \M such that zn → z. Then if αn → 0 and αn > 0, for all n ∈ N,

we have π̃(αn)zn → z.

Proof: Since z /∈ M , by the continuity of the function φ in X \ M , we can assume that
φ(z)

2
< φ(zn) < 3φ(z)

2
and since αn → 0 we can assume that 0 6 αn < φ(zn) for all n ∈ N. Hence

π̃(αn)zn = π(αn)zn → π(0)z = z,

by the joint continuity of the semigroup π.

Corollary 3.9. Under the assumptions of Lemma 3.6, there exists a sequence {εn}n∈N ⊆ [0,∞)

such that εn → 0 and π̃(t+ εn)zn → π̃(t)z.

Proof: By Lemma 3.6 we know that there exists a sequence {ηn}n∈N ⊆ R such that ηn → 0

and π̃(t+ ηn)zn → π̃(t)z /∈M . Thus from Lemma 3.8 we have

π̃(t+ ηn + |ηn|)zn = π̃(|ηn|)π̃(t+ ηn)zn → π̃(t)z

and the claim follows by setting εn = ηn + |ηn|.

Lemma 3.10. Let (X, π,M, I) be an IDS and let x ∈M satisfy STC with λ−tube F (L, [0, 2λ]).

Assume that there exists a sequence {zn}n∈N such that zn ∈ F (L, (λ, 2λ]) and zn → x. Then

there exist a subsequence {znk}k∈N of {zn}n∈N and a sequence {εk}k∈N such that εk > 0 and

εk → 0 as k →∞, xk = π(εk)znk ∈M , φ(znk) = εk and xk → x.

Proof: There exist λ < λn 6 2λ such that π(λn)zn ∈ L. We can choose a convergent

subsequence λnk → λ̄ ∈ [λ, 2λ]. By the continuity of π, we have π(λnk)znk → π(λ̄)x ∈ L,

since L is closed. Thus x ∈ F (L, λ̄) ∩ F (L, λ), which implies λ̄ = λ. Set εk = λnk − λ > 0

and consider xk = π(εk)znk . We have π(λ)xk = π(λnk)znk ∈ L, so xk ∈ S ⊆ M . Moreover,

εk → 0 and xk → x, by the continuity of π. If wnk = π(t0)znk ∈ M for some t0 ∈ (0, εk), then

π(λnk − t0)wnk ∈ L and wnk ∈ F (L, [0, 2λ]) ∩M = S. Hence wnk ∈ F (L, λ) ∩ F (L, λnk − t0)

and thus t0 = λnk − λ = εk. This contradiction shows that φ(znk) = εk.

Lemma 3.11. Let (X, π,M, I) be an IDS with I(M) ∩M = ∅. Assume that every point from

M satisfies SSTC and let B ⊆ X. If y ∈ ω̃(B) ∩M then I(y) ∈ ω̃(B) \M .
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Proof: Let {xn}n∈N ⊆ B and {tn}n∈N ⊂ R+, tn →∞, be such that π̃(tn)xn → y ∈ ω̃(B)∩M .

We can assume that yn = π̃(tn)xn ∈ F (L, [0, 2λ]) and tn > λ for some λ-tube F (L, [0, 2λ])

through y. Since π̃(t)X ∩ F (L, [0, λ]) = ∅ for t > λ (see Proposition 2.6), it follows that

yn ∈ F (L, (λ, 2λ]).

Lemma 3.10 then implies that there exist a positive sequence εk → 0 such that π(εk)ynk ∈M
for some subsequence {ynk} and π(εk)ynk → y. By continuity of I, we have

π̃(tnk + εk)xnk = π̃(εk)ynk = I(π(εk)ynk)→ I(y).

Therefore I(y) ∈ ω̃(B) \M , since I(M) ∩M = ∅.

Now with all these results at hand, we are able to prove the negative invariance for the

impulsive ω−limit.

Proposition 3.12 (Negative invariance). Let (X, π,M, I) be an IDS such that I(M)∩M =

∅ and each point from M satisfies SSTC and let B ⊆ X. If ω̃(B) is compact and π̃−attracts

B, then ω̃(B) \M is negatively π̃−invariant.

Proof: Let x ∈ ω̃(B) \M and t > 0. Then there exist sequences {xn}n∈N ⊆ B and tn → ∞
such that

π̃(tn)xn → x as n→∞.

Now, since ω̃(B) is compact and π̃−attracts B, we can assume that {π̃(tn − t)xn}n∈N has

a convergent subsequence (which we denote the same, and we already assumed that tn > t,

since tn →∞ and t is fixed). Thus π̃(tn − t)xn → y ∈ ω̃(B).

• Case 1: y ∈M .

In this case, using Proposition 2.6, we can assume that all points yn := π̃(tn − t)xn are in

F (L, (λ, 2λ]), where F (L, [0, 2λ]) is a λ−tube through y. Hence there exists a sequence εn → 0,

εn > 0, such that zn := π(εn)yn ∈ M and zn → y, by Lemma 3.10, renaming the sequence if

necessary. By the continuity of I, we have z+
n := π̃(εn)yn = I(zn) → I(y) =: z ∈ ω̃(B) \M ,

using Lemma 3.11.

Now, by Corollary 3.9, there exists a non-negative sequence αn → 0 such that

π̃(t+ αn)z+
n → π̃(t)z.

But π̃(t + αn)z+
n = π̃(tn + εn + αn)xn and again, using Lemma 3.8, we have π̃(t + αn)z+

n → x,

therefore x = π̃(t)z ∈ π̃(t)(ω̃(B) \M).

• Case 2: y /∈M .

We know that there exists a non-negative sequence εn → 0 such that

π̃(t+ εn)yn → π̃(t)y.

But π̃(t + εn)yn = π̃(tn + εn)xn, and using again Lemma 3.8 we know that π̃(t + εn)yn → x.

Therefore x = π̃(t)y ∈ π̃(t)(ω̃(B) \M).
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3.3. Attraction. We already know (see Proposition 3.5) that if the IDS (X, π,M, I) is bounded

dissipative and B is a nonempty subset of X, then ω̃(B) π̃−attracts B. But ω̃(B) can possess

points in M , but with our definition of a global attractor, we do not want this to happen and

hence we need to be able to prove that ω̃(B)\M also π̃−attracts B. This subsection is devoted

to this goal.

Lemma 3.13. Let (X, π,M, I) be a bounded dissipative IDS with a pre-attractor K such that

I(M) ∩M = ∅ and every point from M satisfies SSTC. Assume that there exists ξ > 0 such

that φ(z) > ξ for all z ∈ I(M). If B is a nonempty bounded subset of X, then ω̃(B) ∩M ⊆
ω̃(B) \M .

Proof: Let x ∈ ω̃(B)∩M . Then there exist sequences {xn}n∈N ⊆ B and {tn}n∈N ⊂ R+, tn →
∞ such that π̃(tn)xn → x. By Proposition 2.6 we can assume that zn = π̃(tn)xn ∈ F (L, (λ, 2λ]),

where F (L, [0, 2λ]) is a λ-tube through x. We can choose a subsequence if necessary, which we

will call the same, {λn}n∈N ⊂ (λ, 2λ] such that λn → λ and π(λn − λ)zn ∈ M , as in Lemma

3.10. We may also assume that 0 < εn := λn − λ < ξ
2

for n ∈ N.

Recall that there exists εx > 0 such that F (x, (0, εx)) ∩M = ∅. Let m0 ∈ N be such that
1
m0

< min{εx, ξ2}. For each m > m0 we consider the sequence wmn = π̃(tn − 1
m

)xn, n ∈ N. By

the bounded dissipativity we can assume that wmn → ym ∈ ω̃(B) as n→∞, for each m > m0.

We claim that φ(wmn ) > 1
m

for all n ∈ N and m > m0. Indeed, suppose that φ(wmn ) 6 1
m

for

some n ∈ N and m > m0. This means that π(φ(wmn ))wmn ∈M and vmn = π̃(φ(wmn ))wmn ∈ I(M).

We have

π(εn + 1/m− φ(wmn ))vmn = π(εn)π(1/m− φ(wmn ))vmn = π(εn)zn ∈M

since 1/m − φ(wmn ) < 1/m < ξ, and this is a contradiction, since 0 < εn + 1/m − φ(wmn ) <

εn + 1/m < ξ and vmn ∈ I(M).

This shows that for n ∈ N and m > m0

π(1/m)wmn = π̃(1/m)wmn = π̃(1/m)π̃(tn − 1/m)xn = π̃(tn)xn.

By the continuity of π we get π(1/m)ym = x ∈M . Since 1/m < εx, we obtain ym ∈ ω̃(B) \M .

If {ym} does not converge to x, then we can choose a convergent subsequence {yml} to a point

x0 6= x, but x = π(1/ml)yml → π(0)x0 = x0, which gives us a contradiction and proves that

ym → x.

Proposition 3.14 (Attraction). With the hypotheses of Lemma 3.13, if ω̃(B) π̃−attracts B,

then ω̃(B) \M π̃−attracts B.

Proof: By Lemma 3.13, ω̃(B) = ω̃(B) \M and the result follows directly by the definition of

attraction.
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4. Global attractors for impulsive dynamical systems

We would like to formulate a theorem on the existence of global attractors for impulsive

dynamical systems. In [7, Theorem 3.7] the authors considered global attractors as in Defini-

tion 1.9, which are compact instead of only precompact in X. They showed that the existence

of the compact global attractor is equivalent to the existence of a compact subset K of X such

that K ∩M = ∅ and K π̃−attracts all bounded subsets of X. This excludes important classes

of dynamical systems with impulse, e.g., those containing a periodic orbit with points from M

in its ω-limit set (cp. Example 1.8). Moreover, the long-time dynamics in their case does not

differ from the dynamics of the original semiflow π. Since our definition of a global attractor

implies that the impulsive dynamical system is bounded dissipative (with the global attractor

being the pre-attractor), we make it a starting assumption for the existence of a global attractor

as in Definition 1.9.

Before proving the existence result, we first give some characterizations of the global attractor

which are very useful and are analogous to the characterizations we already have for the case

with no impulse.

Proposition 4.1. With Definition 1.9, if A exists, it is uniquely determined.

Proof: Suppose A1 and A2 satisfy Definition 1.9. Then by (ii) and (iii) dH(A1,A2) = 0 =

dH(A2,A1) and hence A1 = A2. Therefore, by (i)

A1 = A1 \M = A2 \M = A2.

Definition 4.2. We say that a function ψ : R→ X is a global solution of π̃ if

π̃(t)ψ(s) = ψ(t+ s), for all t > 0 and s ∈ R.

Moreover, if ψ(0) = x we say that ψ is a global solution through x.

Proposition 4.3. With Definition 1.9, if the IDS (X, π,M, I) has a global attractor A and

I(M) ∩M = ∅ then

A = {x ∈ X : there exists a bounded global solution of π̃ through x}.

Proof: If ψ(·) is a bounded global solution of π̃ then ψ(R) ∩M = ∅, since if ψ(t0) ∈ M for

some t0 ∈ R then π̃(s)ψ(t0−s) = ψ(t0) ∈M for each s > 0 which cannot happen (the impulsive

semiflow from x cannot reach M in positive time for any x ∈ X, because I(M) ∩M = ∅).

Hence ψ(R) ∩M = ∅; by its invariance we can see that ψ(R) ⊆ A and therefore ψ(R) ⊆
A \M = A.

For the reverse inclusion, if x ∈ A then x ∈ π̃(1)A and there exists x−1 ∈ A such that

π̃(1)x−1 = x. Again, since x−1 ∈ A there exists x−2 ∈ A such that π̃(1)x−2 = x−1. Inductively,
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we can construct a sequence {x−n}n∈N such that π̃(1)x−n−1 = x−n for all n > 0, with x0 = x.

Then we can define

ψ(t) =

{
π̃(t+ n)x−n, if t ∈ [−n,−n+ 1], n ∈ N,
π̃(t)x0, if t > 0.

It is clear that ψ(R) ⊆ A hence it is bounded and ends the proof of our claim.

Proposition 4.4. With Definition 1.9, if the IDS (X, π,M, I) has a global attractor A and

I(M) ∩M = ∅, then, denoting by B(X) the collection of all bounded subsets of X, we have

A =
⋃

B∈B(X)

(ω̃(B) \M) .

Proof: Let B be a bounded subset of X. By Proposition 3.4, ω̃(B) ⊆ A and hence ω̃(B)\M ⊆
A \M = A, which proves one inclusion.

For the other one, choose x0 ∈ A. Then x0 /∈ M and using Proposition 4.3 we consider

a bounded global solution ψ of π̃ through x0 and an arbitrary sequence tn → ∞. We have

π̃(tn)ψ(−tn) = x0 and thus x0 ∈ ω̃(ψ(R)). Concluding, we obtain x0 ∈ ω̃(ψ(R)) \M .

Proposition 4.5. With Definition 1.9, if the IDS (X, π,M, I) has a global attractor A then it

is the minimal subset among all subsets K ⊂ X with K = K \M which π̃−attracts all bounded

subsets of X.

Proof: By the invariance of A, if K is such a subset, we have

dH(A, K) = dH(π̃(t)A, K)→ 0 as t→∞.

Hence A ⊆ K and therefore A ⊆ K.

An important class of results for continuous semigroups consists of theorems on existence of

global attractors. Below we show a counterpart of [30, Theorem 10.5] for impulsive dynamical

systems.

Definition 4.6. An impulsive dynamical system (X, π,M, I) is called strongly bounded dis-

sipative if there exists a nonempty precompact set K in X such that K∩M = ∅ and π̃-absorbs

all bounded subsets of X, i.e., for any bounded subset B of X there exists tB > 0 such that

π̃(t)B ⊆ K for all t > tB.

Note that if (X, π,M, I) is strongly bounded dissipative, then it is bounded dissipative.

Theorem 4.7. Let (X, π,M, I) be a strongly bounded dissipative IDS with π̃−absorbing set

K, such that I(M) ∩M = ∅, every point in M satisfies SSTC and there exists ξ > 0 such

that φ(z) > ξ for all z ∈ I(M). Then (X, π,M, I) has a global attractor A and we have

A = ω̃(K) \M .
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Proof: By Propositions 3.7 and 3.12 we know that ω̃(K) \ M is π̃-invariant. Since K is

nonempty, it follows from Proposition 3.4 that ω̃(K) is a nonempty compact subset of K. If

ω̃(K)∩M = ∅, then ω̃(K)\M is nonempty. If ω̃(K)∩M 6= ∅, then by Lemma 3.11 ω̃(K)\M
is nonempty.

Moreover, we have

ω̃(K) \M ⊆ ω̃(K) = ω̃(K),

so ω̃(K)\M is a precompact subset of X and by Lemma 3.13, ω̃(K) = ω̃(K) \M which implies

that

ω̃(K) \M = ω̃(K) \M \M.

We are left to show that ω̃(K) \M π̃−attracts all bounded subsets of X. First, observe that

for any bounded subset B of X we have ω̃(B) ⊆ ω̃(K). Indeed, if x ∈ ω̃(B), then there exist

sequences {xn}n∈N ⊆ B and {tn}n∈N ⊂ R+, tn → ∞ such that π̃(tn)xn → x. From the strong

bounded dissipativity we know that π̃(tB)xn ∈ K and π̃(tn − tB)π̃(tB)xn → x, so x ∈ ω̃(K).

Since ω̃(K) \ M contains ω̃(B) \ M for every bounded B ⊆ X and by Proposition 3.14,

ω̃(B) \M π̃−attracts B, it follows that ω̃(K) \M π̃−attracts all bounded subsets of X, which

concludes the proof.

4.1. Example 1. In this subsection we present a simple example to illustrate the theory de-

scribed above.

Consider the impulsive dynamical system in X = R2 given by


ẋ = −x,
ẏ = −y,
(x(0), y(0)) = (x0, y0),

I : M → I(M),

(4.1)

where M = {(x, y) ∈ R2 : x2 + y2 = 1}, I(M) ⊂ {(x, y) ∈ R2 : x2 + y2 = 9} and the function

I : M → I(M) is given as follows: given (x, y) ∈ M we consider the line segment Γ(x,y) that

connects the points (x, y) and (3, y). The point I(x, y) is the point in the intersection Γ(x,y) ∩
I(M), as we can see in Figure 1 below.
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x

y

0 1 3

I(M)

M

(x0,y0)

Figure 1: Impulsive trajectory of (x0, y0) ∈ R2.

Let {π(t) : t > 0} be the semigroup in R2 generated by (4.1) with no impulse; that is,

π(t)(x0, y0) = (x0e
−t, y0e

−t) and consider the IDS (X, π,M, I). It is easy to see that each

point of M satisfies SSTC, I(M) ∩M = ∅, there exists ξ > 0 such that φ(x, y) > ξ for all

(x, y) ∈ I(M).

If we let K = {(x, y) ∈ R2 : x2 + y2 6 9} \M , it is clear that K is a precompact subset of

R2, K ∩M = ∅ and K π̃−absorbs all bounded subsets of X, hence (X, π,M, I) is strongly

bounded dissipative with π̃−absorbing set K and Theorem 4.7 ensures that (X, π,M, I) has

a global attractor A = ω̃(K) \M .

We can see that ω̃(K) = {(0, 0)} ∪ {(x, 0) : x ∈ [1, 3]} and hence A = {(0, 0)} ∪ {(x, 0) : x ∈
(1, 3]}, which is the part in red in Figure 1 above.

4.2. Example 2. Consider the dynamical system generated by{
ẋ = f(x),

x(0) = x0,
(4.2)

where f ∈ C1(Rn,Rn) and x0 ∈ Rn. We suppose that all the solutions of (4.2) are defined in

the whole real line and give rise to a semigroup π on Rn.

Let M ⊆ Rn be an impulsive set and I : M → Rn be an impulse function. We consider M

and I such that I(M) ∩M = ∅, each point of M satisfies SSTC, there exists ξ > 0 such that

φ(x) > ξ for all x ∈M and the conditions (1.1) and (G) are satisfied.

Then, we consider the associated impulsive system
ẋ = f(x),

x(0) = x0,

I : M → Rn.

(4.3)
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Now, let V ∈ C1(Rn,R) be a function satisfying the following conditions:

(i) ∇V (x) · f(x) 6 α1 − α2V (x), for all x ∈ Rn,

(ii) V (I(x)) 6 µ, for all x ∈M ,

(iii) V −1((−∞, µ+ α1

α2
]) is bounded,

where α1, α2 > 0 and µ > 0.

In the sequel, we shall provide conditions for the system (4.3) to be strongly bounded dissi-

pative.

Lemma 4.8. If z ∈ I(M) then V (π̃(t)z) 6 µ+ α1

α2
for all t > 0.

Proof: Let z ∈ I(M) and 0 6 t 6 φ(z) (if φ(z) = ∞ we take 0 6 t < φ(z)). Then, by (i), we

have
d

dt
V (π(t)z) = ∇V (π(t)z) · f(π(t)z) 6 α1 − α2V (π(t)z).

Therefore

V (π(t)z) 6 e−α2tV (z) +
α1

α2

6 V (z) +
α1

α2

6 µ+
α1

α2

, for all 0 6 t 6 φ(z),

which implies that

V (π̃(t)z) 6 µ+
α1

α2

, for all 0 6 t < φ(z).

If φ(z) =∞, we are done. Otherwise, since z+
1 := π̃(φ(z))z ∈ I(M), we can repeat the process

above starting from z+
1 and inductively we obtain the desired result.

Theorem 4.9. The system (4.3) is strongly bounded dissipative.

Proof: Let K = V −1((−∞, µ+ α1

α2
]) \M . Then K is a precompact set (since K is bounded in

Rn by (iii)) and K ∩M = ∅. We will show that K π̃−absorbs bounded subsets of Rn and it

is sufficient to prove that for each x ∈ Rn there exists δx > 0 and T = T (x, δx) > 0 such that

π̃(t)y ∈ K, for all y ∈ Bδx(x) and t > T.

We have some cases to consider:

Case 1: x /∈M and φ(x) =∞.

First choose a ball B centered in x and set β = maxy∈B V (y). Let k > max{0,−α−1
2 ln( µ

|β|+1
)}

be given, and by the continuity of φ, there exists δ = δ(x, k) > 0 such that φ(y) > k for all

y ∈ Bδ(x) ⊂ B. Now we can split the ball Bδ(x) in B1∪B2 where B1 = {y ∈ Bδ(x) : φ(y) =∞}
and B2 = {y ∈ Bδ(x) : k < φ(y) < ∞}. In B1, using the arguments from the proof of Lemma

4.8 we have

V (π(t)y) 6 e−α2tV (y) +
α1

α2

6 e−α2tβ +
α1

α2

,

Therefore, if T := max{0,−α−1
2 ln( µ

|β|+1
)} then

V (π(t)y) 6 µ+
α1

α2

, for all t > T and y ∈ B1.
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In B2, we see that

V (π(t)y) 6 µ+
α1

α2

, for all k 6 t 6 φ(y) and y ∈ B2,

and Lemma 4.8 shows that V (π̃(t)y) 6 µ+ α1

α2
for all t > φ(y) and y ∈ Bδ(x).

Case 2: x /∈M and φ(x) <∞.

By the continuity of φ, there exists δx > 0 such that |φ(y)− φ(x)| < 1 if y ∈ Bδx(x). Thus if

T > sup{φ(y) : y ∈ Bδx(x)} then the conclusion follows from Lemma 4.8.

Case 3: x ∈M and φ(x) =∞.

The point x satisfies SSTC with λ−tube F (L, [0, 2λ]) and a section S through x. Since the

tube contains a neighborhood of x, there is ε > 0 such that

Bε(x) ⊂ F (L, [0, 2λ]).

Set

H1 = F (L, (λ, 2λ]) ∩Bε(x) and H2 = F (L, [0, λ]) ∩Bε(x).

Observe that φ(y) 6 λ for all y ∈ H1. Indeed, if y ∈ H1 then π(µ)y ∈ L for some µ ∈ (λ, 2λ]

and thus π(µ− λ)y ∈ F (L, λ) ⊆M . Hence we get φ(y) 6 µ− λ 6 λ.

By the proof of Case 2, we obtain

V (π̃(t)y) 6 µ+
α1

α2

,

for all y ∈ H1 and for all t > λ.

On the other hand, since φ(x) = ∞, for any k > 0 there exists 0 < δ = δ(x, k, ε) < ε such

that φ(y) > k for y ∈ Bδ(x) ∩ H2. Indeed, assume contrary to the claim that there exists

k0 > 0 and a sequence xn ∈ H2 such that xn → x and φ(xn) 6 k0. Then π(λn)xn ∈ L for some

λn ∈ [0, λ]. Choosing a subsequence if necessary, we can assume that λn → λ and φ(xn) → 0,

since φ(x) =∞. Hence we have for large n

φ(xn) < λ and π(φ(xn))xn ∈ F (L, [0, 2λ]) ∩M = S = F (L, λ).

We obtain λn = λ+ φ(xn), which contradicts the fact that λn ∈ [0, λ].

Therefore, in the same way as in the proof of Case 1, we can choose δ > 0 and T > 0 such

that

V (π̃(t)y) 6 µ+
α1

α2

for all y ∈ Bδ(x) ∩H2 and for all t > T .

Thus we have

V (π̃(t)y) 6 µ+
α1

α2

for all y ∈ Bδ(x) and for all t > max{λ, T}.
Case 4: x ∈M and φ(x) <∞.
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The proof follows the idea of the proof of Case 3. The only difference is that we use the

upper semicontinuity of φ at x ∈M and the proof of Case 2 to show that there exist δ > 0 and

T = T (x, δ) > 0 such that

V (π̃(t)y) 6 µ+
α1

α2

for all y ∈ Bδ(x) ∩ H2 and for all t > T . When we work in H1, the proof is the same as the

proof presented in Case 3.

This concludes all the possible cases and proves that system (4.3) is strongly bounded dissi-

pative.

Corollary 4.10. The system (4.3) has a global attractor A.

4.3. Example 3. Consider the following nonlinear reaction-diffusion initial boundary value

problem 
ut −∆u = f(u), t > 0,

u|∂Ω = 0, t > 0,

u(0) = u0 ∈ L2(Ω),

(4.4)

where f : R → R is a locally Lipschitz function, Ω is a bounded smooth domain of Rn with

smooth boundary and ∆ is the Laplace operator in Ω.

We assume the following conditions:

a) |f(u)− f(v)| 6 c|u− v|(1 + |u|ρ−1 + |v|ρ−1), for all u, v ∈ R, where c > 0 is a constant

and 1 6 ρ 6 1 + 4
n
;

b) lim sup|s|→∞
f(s)
s

< λ1, where λ1 > 0 is the first eigenvalue of the Laplace operator in

L2(Ω) with Dirichlet boundary condition.

It follows that for any initial data u0 ∈ L2(Ω) there exists a unique solution u of (4.4) such

that

u ∈ C([0,∞);L2(Ω)),

and the mapping u0 7→ u(t) is continuous in L2(Ω). Moreover, it takes bounded subsets of

L2(Ω) into precompact sets in L2(Ω). Thus π(t)u0 := u(t), t > 0, where u is the solution of

(4.4) defines a compact semigroup π on X = L2(Ω). The reader may see [2, 3] for more details.

Let M ⊆ L2(Ω) be an impulsive set and I : M → L2(Ω) be an impulse function. We consider

M and I such that I(M) ∩M = ∅, each point from M satisfies SSTC, there exists ξ > 0 such

that φ(z) > ξ for all z ∈ I(M).

We also assume the following additional condition:

c) ‖I(u)‖2
2 6 µ for all u ∈M , where µ > 0.
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Let ũ(t) = π̃(t)u0 be the associated impulsive solution of
ut −∆u = f(u), t > 0,

u|∂Ω = 0, t > 0,

u(0) = u0,

I : M → L2(Ω).

(4.5)

Lemma 4.11. There exist constants C, η > 0 such that if z ∈ I(M) then ‖π̃(t)z‖2
2 6 µ + C|Ω|

η

for all t > 0.

Proof: Consider the equation ut − ∆u = f(u) and take the scalar product with u ∈ L2(Ω).

Then
1

2

d‖u‖2
2

dt
= (f(u) + ∆u, u).

Note that there exist constants C, η > 0 such that f(s)s 6 (λ1− η)s2 +C, for all s ∈ R and we

have
1

2

d‖u‖2
2

dt
= (f(u)− (λ1 − η)u, u) + ((λ1 − η)u+ ∆u, u),

and hence, using the Poincaré inequality,

d‖u‖2
2

dt
6 −2η‖u‖2

2 + 2C|Ω|, t > 0. (4.6)

Define y(t) = ‖u(t)‖2
2 and note that u(t) and y(t) depend on the initial data, that is, u(t) =

u(t; 0, u0) and y(t) = y(t; 0, ‖u0‖2
2). By (4.6), we have

y′(t) + 2ηy(t) 6 2C|Ω|, t > 0. (4.7)

By inequality (4.7), if z ∈ I(M) and 0 6 t < φ(z), we have by c)

‖π̃(t)z‖2
2 = ‖π(t)z‖2

2 = y(t; 0, ‖z‖2
2) 6 ‖z‖2

2e
−2ηt +

C|Ω|
η

(1− e−2ηt) 6 µ+
C|Ω|
η

.

If t = φ(z), we get with z1 = π(φ(z))z ∈M

‖π̃(φ(z))z‖2
2 = ‖I(z1)‖2

2 6 µ 6 µ+
C|Ω|
η

.

In this way, we can repeat the process above starting in z+
1 = I(z1) and inductively we obtain

the desired result.

We define from now on γ := µ+ C|Ω|
η

.

Lemma 4.12. Let B ⊆ L2(Ω) be a bounded set. Then there is T = T (B) > 0 such that

‖π̃(t)z‖2
2 6 γ for all t > T and for all z ∈ B.

Proof: Let B be a bounded set in L2(Ω). Then there is L > 0 such that ‖u‖2
2 6 L for all

u ∈ B. We may decompose the set B in the following way

B = B1 ∪B2,
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where B1 = {u ∈ B : M+(u) 6= ∅} and B2 = {u ∈ B : M+(u) = ∅}.
If z ∈ B2 then π̃(t)z = π(t)z for all t > 0. Set T2 = max

{
0,− 1

2η
ln
(
µ
L

)}
. If t > T2 we have

‖π̃(t)z‖2
2 = ‖π(t)z‖2

2 = y(t; 0, ‖z‖2
2) 6 ‖z‖2

2e
−2ηt +

C|Ω|
η

(1− e−2ηt) 6 Le−2ηt +
C|Ω|
η

6 γ,

for all z ∈ B2.

Now, we can write B1 = B+
1 ∪B−1 , where

B+
1 = {u ∈ B1 : φ(u) > 1} and B−1 = {u ∈ B1 : φ(u) 6 1}.

It is clear from Lemma 4.11 that ‖π̃(t)u‖2
2 6 γ if u ∈ B−1 and t > 1. Since π(τ) is a compact

map for each τ > 0, hence if α ∈ (0, 1) it follows that π̃(α)B+
1 = π(α)B+

1 is precompact in

L2(Ω).

As in the proof of Theorem 4.9 of the previous example, we can prove that for any point

x ∈ π̃(α)B+
1 , there exists a ball Bx containing x and a time Tx > 0 such that ‖π̃(t)y‖2

2 6 γ for

all t > Tx and y ∈ Bx ∩ π̃(α)B+
1 . This, together with the precompactness of π̃(α)B+

1 shows

that there exists a time T+
1 > 0 such that ‖π̃(t)u‖2

2 6 γ for all t > T+
1 and u ∈ B+

1 .

The result now follows by taking T > max{1, T+
1 , T2}.

Lemma 4.13. Let (X, π,M, I) be an IDS such that there exists ξ > 0 such that φ(z) > ξ for

all z ∈ I(M). If G is a precompact subset of X and α ∈ [0, ξ
2
), then π̃(α)G is precompact in X.

Proof: For α = 0 the result is trivial. Now assume that α > 0 and since each subset of a

precompact set is also precompact, we can only consider the case when φ(x) 6 α for all x ∈ G
with α ∈ (0, ξ

2
) (we could write G = G1 ∪G2, where φ|G1 6 α and φ|G2 > α, and in the latter

the precompactness follows from the continuity of π). In this case, if B :=
⋃
s∈[0,α] π(s)G, we

have

π̃(α)G ⊆
⋃

s∈[0,α]

π(s)(I(B ∩M)),

and by the joint continuity of the semigroup π and the continuity of I, the precompactness of

π̃(α)G follows.

Theorem 4.14. The system (4.5) is strongly bounded dissipative.

Proof: Let B0 = {u ∈ L2(Ω) : ‖u‖2
2 6 γ}. From Lemma 4.12, we see that B0 π̃−absorbs all

bounded subsets of L2(Ω). We claim that Kt := π̃(t)B0 is precompact for some t > 0 and to

this end, we write B0 = G1 ∪G2 ∪G3 where

G1 = {u ∈ B0 : M+(u) = ∅},

G2 =

{
u ∈ B0 : M+(u) 6= ∅ and φ(u) >

ξ

2

}
,

G3 =

{
u ∈ B0 : M+(u) 6= ∅ and φ(u) 6

ξ

2

}
.
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Let 0 < α < ξ
2
. Then,

π̃

(
α +

ξ

2

)
B0 = π

(
α +

ξ

2

)
G1 ∪ π̃(α)π

(
ξ

2

)
G2 ∪ π(α)π̃

(
ξ

2

)
G3,

because φ(x) > ξ for all x ∈ I(M).

Since G1 and π̃
(
ξ
2

)
G3 are bounded by Lemma 4.11, the sets π

(
α + ξ

2

)
G1 and π(α)π̃

(
ξ
2

)
G3

are precompact in X. Now, since π
(
ξ
2

)
G2 is precompact in X, it follows by Lemma 4.13 that

π̃(α)π
(
ξ
2

)
G2 is also precompact in X.

Therefore, K := Kα+ ξ
2

is precompact in X, K ∩ M = ∅ and we can easily see that K

π̃−absorbs bounded sets of L2(Ω).

Corollary 4.15. The system (4.5) has a global attractor A.

Acknowledgments

This work has been carried out while the fourth author visited the Instituto de Ciências
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