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Abstract

The existence of a pullback exponential attractor being a family of compact and positively
invariant sets with a uniform bound on their fractal dimension which at a uniform exponential
rate pullback attract bounded subsets of the phase space under the evolution process is
proved for the nonautonomous logistic equation and a system of reaction-diffusion equations
with time-dependent external forces including the case of the FitzHugh-Nagumo system.
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1. Pullback exponential and global attractors for semilinear parabolic problems

In Part I of this work (see [5]) we have constructed a pullback exponential attractor for
an evolution process. By this we mean a family of compact and positively invariant sets
with uniformly bounded fractal dimension which under the evolution process at a uniform
exponential rate pullback attract bounded subsets of the phase space. We have also compared
this object with a better known notion of a pullback global attractor (see for example [2], [3])
being a minimal family of compact invariant sets under the process and pullback attracting
each bounded subset of the phase space. Moreover, we have formulated conditions under
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which the mentioned abstract results apply to nonautonomous semilinear parabolic problems.
For completeness we recall here the main result (see [5, Theorem 3.6]) and refer the reader
for the proof and details to Part I of this work.

We consider a positive sectorial operator A : X ⊃ D(A)→ X in a Banach space X having
a compact resolvent (see [7]). Denoting by Xγ, γ ≥ 0, the associated fractional power spaces,
we fix α ∈ [0, 1) and consider a function F : R×Xα → X satisfying the following assumption

∀G⊂Xα, bounded∃0<θ=θ(G)≤1∀T1,T2∈R,T1<T2∃L=L(T2−T1,G)>0∀τ1,τ2∈[T1,T2]∀u1,u2∈G
‖F (τ1, u1)− F (τ2, u2)‖X ≤ L(|τ1 − τ2|θ + ‖u1 − u2‖Xα).

(F1)

Note that L depends only on the difference T2 − T1 and on G. Under this assumption for
any σ ∈ R and u0 ∈ Xα there exists a unique (forward) local Xα solution to the problem{

uτ + Au = F (τ, u), τ > σ,

u(σ) = u0,
(1.1)

defined on the maximal interval of existence [σ, τmax), i.e. a function

u ∈ C([σ, τmax), X
α) ∩ C((σ, τmax), X

1) ∩ C1((σ, τmax), X)

satisfying (1.1) in X and such that either τmax =∞ or τmax <∞ and in the latter case

lim sup
τ→τmax

‖u(τ)‖Xα =∞.

Furthermore, we denote
T = {τ ∈ R : τ ≤ τ0}

with τ0 ≤ ∞ fixed and assume that for some M > 0

sup
τ∈T
‖F (τ, 0)‖X ≤M. (F2)

In order to prove that the local solutions can be extended globally (forward) in time and
obtain the existence of a bounded absorbing set in Xα in specific examples we will verify an
appropriate a priori estimate. Here we assume that

each local solution can be extended globally (forward) in time, i.e. τmax =∞, (F3a)

there exists a constant ω > 0 and a nondecreasing function Q : [0,∞) → [0,∞) (both
independent of σ) such that

‖u(τ)‖Xα ≤ Q(‖u0‖Xα)e−ω(τ−σ) +R0, σ ≤ τ, τ ∈ T , (F3b)
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holds with a constant R0 = R0(τ0) > 0 independent of σ, τ and u0 and (in case τ0 <∞) for

any T > 0 there exists RT,σ > 0 and a nondecreasing function Q̃T,σ : [0,∞) → [0,∞) such
that

‖u(τ)‖Xα ≤ Q̃T,σ(‖u0‖Xα) +RT,σ, τ ∈ [σ, σ + T ]. (F3c)

Note that hypotheses (F3a)–(F3c) can be replaced by a single stronger requirement that
(1.1) admits the following dissipativity condition in Xα

‖u(τ)‖Xα ≤ Q(‖u0‖Xα)e−ω(τ−σ) +R(τ), τ ∈ [σ, τmax), (F3)

where ω > 0, Q : [0,∞) → [0,∞) is a nondecreasing function and R : R → [0,∞) is a con-
tinuous function such that for some positive constant R0 (independent of u0, σ, τ)

sup
τ∈T

R(τ) ≤ R0.

Because of (F3a) we define the evolution process {U(τ, σ) : τ ≥ σ} on Xα by

U(τ, σ)u0 := u(τ), τ ≥ σ, u0 ∈ Xα, (1.2)

where u(τ) is the value at time τ of the Xα solution of (1.1) starting at time σ from u0.
Thus we have

U(τ, σ)U(σ, ρ) = U(τ, ρ), τ ≥ σ ≥ ρ, τ, σ, ρ ∈ R, U(τ, τ) = I, τ ∈ R, (1.3)

where I denotes an identity operator on Xα.

Theorem 1.1. Under the conditions stated above for any β ∈ (α, 1) there exists a family
{M(τ) : τ ∈ R} of nonempty compact subsets of Xβ such that

(i) {M(τ) : τ ∈ R} is positively invariant under the process U(τ, σ), i.e.

U(τ, σ)M(σ) ⊂M(τ), τ ≥ σ,

(ii)M(τ) has a finite fractal dimension in Xβ uniformly with respect to τ ∈ R, i.e. there
exists d <∞ such that

dX
α

f (M(τ)) ≤ dX
β

f (M(τ)) ≤ d, τ ∈ R,

(iii) {M(τ) : τ ∈ R} has the property of pullback exponential attraction, i.e.

∃ϕ>0∀B1⊂Xβ , bounded ∀τ∈R lim
t→∞

eϕt distXβ(U(τ, τ − t)B1,M(τ)) = 0
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and if τ0 =∞, the pullback attraction is uniform with respect to τ

∃ϕ>0∀B1⊂Xβ , bounded lim
t→∞

eϕt sup
τ∈R

distXβ(U(τ, τ − t)B1,M(τ)) = 0.

This property is equivalent to the uniform forwards exponential attraction

∃ϕ>0∀B1⊂Xβ , bounded lim
t→∞

eϕt sup
τ∈R

distXβ(U(t+ τ, τ)B1,M(t+ τ)) = 0.

Furthermore, the pullback exponential attractor {M(τ) : τ ∈ R} contains a (finite dimen-
sional) pullback global attractor {A(τ) : τ ∈ R}, i.e. a family of nonempty compact subsets
of Xβ, invariant under the process {U(τ, σ) : τ ≥ σ}

U(τ, σ)A(σ) = A(τ), τ ≥ σ,

pullback attracting all bounded subsets of Xβ

∀B1⊂Xβ , bounded ∀τ∈R lim
t→∞

distXβ(U(τ, τ − t)B1,A(τ)) = 0

and minimal in the sense that if {Ã(τ) : τ ∈ R} is a family of closed sets in Xβ pullback

attracting all bounded subsets of Xβ, then A(τ) ⊂ Ã(τ), τ ∈ R.

In this paper we apply Theorem 1.1 to nonautonomous reaction-diffusion equations and
systems. In Section 2 we verify the above hypotheses in an introductory example of the
nonautonomous logistic equation with Dirichlet boundary condition and in Section 3 we
consider a system of reaction-diffusion equations perturbed by a time-dependent external
forces. This system satisfies an anisotropic dissipativity condition that holds, for example,
for the FitzHugh-Nagumo system or in some chemical reaction systems (see Remark 3.1).

2. Nonautonomous logistic equation

We consider Dirichlet boundary problem for the nonautonomous logistic equation (cf.
[8]) in a sufficiently smooth bounded domain Ω ⊂ RN , N ≤ 3, of the form{

∂τu = 4Du+ λu− b(τ)u3, τ > σ, x ∈ Ω,

u(σ, x) = u0(x), x ∈ Ω, u(τ, x) = 0, τ ≥ σ, x ∈ ∂Ω.
(2.1)

Here u = u(τ, x) is an unknown function, λ ∈ R and b is Hölder continuous on R with
exponent θ ∈ (0, 1] and satisfies

0 < b(τ) ≤M, τ ∈ R, (2.2)
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for some positive M . Moreover, we assume that there exist τ0 ≤ ∞ and m > 0 such that

m ≤ b(τ), τ ∈ T , (2.3)

where we denoted T = {τ ∈ R : τ ≤ τ0}. We rewrite the problem (2.1) as an abstract Cauchy
problem (1.1), where A = −4D in X = L2(Ω) with the domain D(A) = H2(Ω) ∩H1

0 (Ω) is
a positive sectorial operator with compact resolvent. We also consider its fractional power
spaces and have for α ∈

(
1
4
, 1
)

Xα = H2α
0 (Ω) = {φ ∈ H2α(Ω) : φ|∂Ω = 0}.

Observe that F : R ×X 1
2 → X given as F (τ, u) = λu − b(τ)u3 is well defined and by (2.2)

we have for u1, u2 from a bounded subset G of X
1
2 = H1

0 (Ω) and τ1, τ2 ∈ R

‖F (τ1, u1)− F (τ2, u2)‖L2(Ω) ≤ c1 |τ2 − τ1|θ + c2 ‖u1 − u2‖H1
0 (Ω) .

This shows, in particular, that assumption (F1) is satisfied with α = 1
2
.

Moreover, we have ‖F (τ, 0)‖L2(Ω) = 0 for τ ∈ R. Hence (F2) is satisfied trivially.
Finally, we verify that (F3) also holds. Multiplying the first equation in (2.1) by u and

integrating over Ω we get

1

2

d

dt
‖u‖2

L2(Ω) = −‖|∇u|‖2
L2(Ω) +

∫
Ω

λu2 − b(t)u4dx.

Note that by the Cauchy inequality we have

d

dt
‖u‖2

L2(Ω) + 2 ‖|∇u|‖2
L2(Ω) ≤

1

2
λ2 |Ω| 1

b(t)
. (2.4)

Observe that by the Poincaré inequality we obtain

d

dt
‖u‖2

L2(Ω) + 2λ1 ‖u‖2
L2(Ω) ≤

1

2
λ2 |Ω| 1

b(t)
,

where λ1 > 0 is the principal eigenvalue of −4D. Integrating over the time interval from σ
to τ we get

‖u(τ)‖2
L2(Ω) ≤ ‖u(σ)‖2

L2(Ω) e
−2λ1(τ−σ) +

1

2
λ2 |Ω|

∫ τ

σ

e−2λ1(τ−t)

b(t)
dt. (2.5)

Now we proceed to obtain the a priori estimate in H1
0 (Ω). We multiply the first equation in

(2.1) by −4Du, integrate over Ω and use integration by parts to get

1

2

d

dt
‖|∇u|‖2

L2(Ω) + ‖4Du‖2
L2(Ω) =

∫
Ω

(λ− 3b(t)u2) |∇u|2 dx.
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Because b is a positive function, we obtain

d

dt
‖|∇u|‖2

L2(Ω) ≤ 2 |λ| ‖|∇u|‖2
L2(Ω) . (2.6)

We add to both sides λ1 ‖|∇u|‖2
L2(Ω), multiply by eλ1t and integrate from σ to τ to obtain

‖|∇u(τ)|‖2
L2(Ω) ≤ ‖|∇u(σ)|‖2

L2(Ω) e
−λ1(τ−σ) + (2 |λ|+ λ1)

∫ τ

σ

‖|∇u(t)|‖2
L2(Ω) e

λ1(t−τ)dt. (2.7)

We return now to (2.4) and use the Poincaré inequality to get

d

dt
‖u‖2

L2(Ω) + λ1 ‖u‖2
L2(Ω) + ‖|∇u|‖2

L2(Ω) ≤
1

2
λ2 |Ω| 1

b(t)
.

Multiplying by eλ1t and integrating from σ to τ we conclude that∫ τ

σ

‖|∇u(t)|‖2
L2(Ω) e

λ1(t−τ)dt ≤ ‖u(σ)‖2
L2(Ω) e

−λ1(τ−σ) +
1

2
λ2 |Ω|

∫ τ

σ

e−λ1(τ−t)

b(t)
dt. (2.8)

Combining (2.5), (2.7) and (2.8) and using (2.3) we get

‖u(τ)‖H1
0 (Ω) ≤

√
1 + 2 |λ|+ λ1 ‖u(σ)‖H1

0 (Ω) e
−λ1

2
(τ−σ) +R(τ), (2.9)

where

R(τ) = R0

(
λ1m

∫ τ

−∞

e−λ1(τ−t)

b(t)
dt

) 1
2

, τ ∈ R, (2.10)

and

R0 =

√
(1 + 2 |λ|+ λ1)λ2 |Ω|

2λ1m
.

Note that the function R is well defined and R(τ) ≤ R0 for τ ∈ T . This shows that
assumption (F3) holds with α = 1

2
. Therefore we may apply Theorem 1.1 and obtain the

following

Corollary 2.1. If (2.2) and (2.3) hold, then the problem (2.1) generates an evolution process
{U(τ, σ) : τ ≥ σ} in H1

0 (Ω) and for any β ∈ (1
2
, 1) there exists a family {M(τ) : τ ∈ R} of

nonempty compact subsets of H2β
0 (Ω) with the following properties:

(i) {M(τ) : τ ∈ R} is positively invariant under the process U(τ, σ), i.e.

U(τ, σ)M(σ) ⊂M(τ), τ ≥ σ,
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(ii) M(τ) has a finite fractal dimension in H2β
0 (Ω) uniformly w.r.t. τ ∈ R, i.e.

d
H1

0 (Ω)
f (M(τ)) ≤ d

H2β
0 (Ω)

f (M(τ)) ≤ d <∞, τ ∈ R,

(iii) {M(τ) : τ ∈ R} has the property of pullback exponential attraction, i.e.

∃ϕ>0∀B1⊂H2β
0 (Ω), bounded ∀τ∈R lim

t→∞
eϕt distH2β

0 (Ω)(U(τ, τ − t)B1,M(τ)) = 0

and if τ0 =∞, the pullback attraction is uniform w.r.t. τ ∈ R

∃ϕ>0∀B1⊂H2β
0 (Ω), bounded lim

t→∞
eϕt sup

τ∈R
distH2β

0 (Ω)(U(τ, τ − t)B1,M(τ)) = 0.

Furthermore, the pullback exponential attractor {M(τ) : τ ∈ R} contains a (finite dimen-
sional) pullback global attractor {A(τ) : τ ∈ R}, i.e. a family of nonempty compact subsets
of H2β

0 (Ω), invariant under the process {U(τ, σ) : τ ≥ σ}

U(τ, σ)A(σ) = A(τ), τ ≥ σ,

and pullback attracting all bounded subsets of H2β
0 (Ω)

∀B1⊂H2β
0 (Ω), bounded ∀τ∈R lim

t→∞
distH2β

0 (Ω)(U(τ, τ − t)B1,A(τ)) = 0.

3. Anisotropic nonautonomous reaction-diffusion systems

Following [6] we consider the nonautonomous reaction-diffusion system{
∂τu+ Au = f(u) + g(τ), τ > σ, x ∈ Ω,

u(σ, x) = u0(x), x ∈ Ω, u(τ, x) = 0, τ ≥ σ, x ∈ ∂Ω,
(3.1)

where Ω ⊂ R3 is a bounded domain with ∂Ω ∈ C2+η. Here u(τ, x) = (u1(τ, x), . . . , uk(τ, x))
is an unknown function and f(u) = (f1(u), . . . , fk(u)) and g(τ, x) = (g1(τ, x), . . . , gk(τ, x))
are given functions. We suppose that A is a second order elliptic differential operator of the
form Au = (A1u1, . . . , Akuk), where

Alul(x) =
3∑

i,j=1

∂xi(a
l
ij(x)∂xjul(x)), x ∈ Ω, l = 1, . . . , k, (3.2)

with the functions alij = alji from C1+η(Ω) and satisfying uniformly strong ellipticity condition

∃ν>0∀l=1,...,k∀x∈Ω∀ξ=(ξ1,ξ2,ξ3)∈R3 −
3∑

i,j=1

alij(x)ξiξj ≥ ν |ξ|2 . (3.3)
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We also assume that for the nonlinear term f ∈ C(Rk,Rk) there exist constants p1, . . . , pk ≥ 0
and q1, . . . , qk ≥ 0 such that f satisfies the growth assumption

∃c>0∀u=(u1,...,uk),v=(v1,...,vk)∈Rk |f(u)− f(v)|2 ≤ c

k∑
l=1

|ul − vl|2 (1 + |ul|pl + |vl|pl) (3.4)

and the anisotropic dissipativity assumption

∃C>0∀u=(u1,...,uk)∈Rk

k∑
l=1

fl(u)ul |ul|ql ≤ C. (3.5)

The restrictions on the range of constants will be imposed later. As refers to the time-
dependent perturbation we assume that

g : R→ [L2(Ω)]k is globally Hölder continuous with exponent θ ∈ (0, 1] (3.6)

and there is τ0 ≤ ∞ such that

sup
τ∈T
‖g(τ)‖[L2(Ω)]k <∞, (3.7)

where we denoted T = {τ ∈ R : τ ≤ τ0}.
Below in Remark 3.1 we present two particular cases of the system (3.1) concerning

time-perturbed systems of two coupled reaction-diffusion equations.

Remark 3.1. If k = 2, we consider the perturbed FitzHugh-Nagumo system modelling
transmission of nerve impulses in axons, i.e. for α, β, γ, δ ∈ R and ε > 0

f1(u1, u2) = αu1 + βu2
1 − u3

1 − γu2, f2(u1, u2) = δu1 − εu2. (3.8)

Note that the following inequality holds

∀q≥0∃C>0∀(u1,u2)∈R2

2∑
l=1

fl(u1, u2)ul |ul|q ≤ C. (3.9)

Indeed, by the Young inequality it follows that for some positive c1

(αu1 + βu2
1 − u3

1 − γu2)u1 |u1|q + (δu1 − εu2)u2 |u2|q ≤ c1 |u1|2+q + |β| |u1|3+q − |u1|4+q .

Applying again the Young inequality, we obtain (3.9).
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Note that there are positive c2, c3 such that for u = (u1, u2), v = (v1, v2) ∈ R2 we have

|f(u)− f(v)|2 ≤ c2 |u1 − v1|2 (1 + |u1|4 + |v1|4) + c3 |u2 − v2|2 .

Thus both assumptions (3.4) and (3.5) are satisfied with p1 = 4, p2 = 0 and q1 = q2 = q,
where q ≥ 0 is arbitrary.

We also consider the following chemical reaction nonlinearity

f1(u1, u2) = u2 − u3
1, f2(u1, u2) = u3

1 − u2. (3.10)

Observe that by the Young inequality we have

(u2 − u3
1)u1 |u1|4 + (u3

1 − u2)u2 |u2|
2
3 ≤ |u2| |u1|5 − |u1|8 + |u1|3 |u2|

5
3 − |u2|

8
3 ≤ 0

and
|f(u)− f(v)|2 ≤ 18 |u1 − v1|2 (|u1|4 + |v1|4) + 4 |u2 − v2|2 .

This means that assumptions (3.4) and (3.5) are satisfied with p1 = 4, p2 = 0 and q1 = 4,
q2 = 2

3
. Note also that the usual dissipativity assumption (q1 = q2 = 0) is not satisfied in

this case, since the expression (u2 − u3
1)u1 + (u3

1 − u2)u2 = (u2 − u1)(u3
1 − u2) can be made

arbitrarily large.

We consider (3.1) as an abstract semilinear parabolic Cauchy problem (1.1) in the space
X = [L2(Ω)]k with F (τ, u) = f(u) + g(τ). Note that A is a sectorial operator in X with the
domainD(A) = [H2(Ω)∩H1

0 (Ω)]k (see [7, Example 1.3(3)], [1, Theorem 1.6.1], [4, Proposition
1.2.3]) and has a compact resolvent and the fractional power spaces are described as follows

Xα = [X,D(A)]α = [H2α
0 (Ω)]k = [{φ ∈ H2α(Ω) : φ|∂Ω = 0}]k, α ∈

(
1

4
, 1

)
(cf. [1, Proposition 2.3.3], [4, Section 1.3]). We fix α = 1

2
and have X

1
2 = [H1

0 (Ω)]k. Below

we show that F : R×X 1
2 → X is well defined and assumption (F1) is satisfied in X

1
2 when

we suitably restrict the range of constants pl.

Proposition 3.2. If 0 ≤ pl ≤ 4, l = 1, . . . , k, then there exists θ ∈ (0, 1] such that for any

bounded subset G of X
1
2 there exists L > 0 such that for any u, v ∈ G and τ1, τ2 ∈ R we have

‖F (τ1, u)− F (τ2, v)‖[L2(Ω)]k ≤ L(|τ1 − τ2|θ + ‖u− v‖
X

1
2
).
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Proof. We have

‖F (τ1, u)− F (τ2, v)‖[L2(Ω)]k ≤ ‖f(u)− f(v)‖[L2(Ω)]k + ‖g(τ1)− g(τ2)‖[L2(Ω)]k . (3.11)

Since by assumption we know that

‖g(τ1)− g(τ2)‖[L2(Ω)]k ≤ L1 |τ1 − τ2|θ , τ1, τ2 ∈ R,

it is enough to estimate the first term in (3.11). Indeed, using (3.4) and the Hölder inequality
in case pl > 0, we obtain

‖f(u)− f(v)‖2
[L2(Ω)]k ≤ c̃

k∑
l=1

‖ul − vl‖2
Lpl+2(Ω) (1 + ‖ul‖plLpl+2(Ω)

+ ‖vl‖plLpl+2(Ω)
). (3.12)

Hence we have

‖f(u)− f(v)‖2
[L2(Ω)]k ≤ c̃ ‖u− v‖2

[Lpl+2(Ω)]k

k∑
l=1

(1 + ‖ul‖plLpl+2(Ω)
+ ‖vl‖plLpl+2(Ω)

),

If 0 ≤ pl ≤ 4, l = 1, . . . , k, then H1
0 (Ω) ↪→ Lpl+2(Ω) and in consequence for any bounded

subset G of X
1
2 = [H1

0 (Ω)]k we have

‖f(u)− f(v)‖[L2(Ω)]k ≤ LG ‖u− v‖X 1
2
, u, v ∈ G.

This proves the claim.

Thus if 0 ≤ pl ≤ 4, l = 1, . . . , k, then for any σ ∈ R and u0 ∈ X
1
2 there exists a unique

(forward) X
1
2 solution to (3.1) defined on the maximal interval of existence [σ, τmax), i.e.

u ∈ C([σ, τmax), [H
1
0 (Ω)]k) ∩ C((σ, τmax), [H

2(Ω) ∩H1
0 (Ω)]k) ∩ C1((σ, τmax), [L

2(Ω)]k)

and either τmax =∞ or τmax <∞ and in the latter case

lim sup
τ→τmax

‖u(τ)‖[H1
0 (Ω)]k =∞. (3.13)

Note that assumption (F2) is also clearly satisfied, since by (3.7) we have

sup
τ∈T
‖F (τ, 0)‖[L2(Ω)]k ≤ ‖f(0)‖[L2(Ω)]k + sup

τ∈T
‖g(τ)‖[L2(Ω)]k <∞.

Now we will show that under certain constraints on pl and ql assumptions (F3a)–(F3c)
also hold. To this end, we develop some a priori estimates following [6].
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Lemma 3.3. For any γ > 0 there exists Cγ > 0 such that for any h > 0, any real τ ≥ σ+h
and any nonnegative integrable function z on [σ, τ ] we have∫ τ

σ

z(t)dt ≤ Cγ sup
t∈[σ+h,τ ]

(
e
γ
2
τ−t
h

∫ t

t−h
z(s)ds

)
. (3.14)

Proof. Observe that∫ τ

σ

z(t)dt ≤ e
γ
2

(
1 + e−

γ
2 + e−γ + . . .+ e−

γ
2

[ τ−σ
h

]
)

sup
t∈[σ+h,τ ]

(
e
γ
2
τ−t
h

∫ t

t−h
z(s)ds

)
,

since e−
γ
2

( τ−σ
h
−1) ≤ e−

γ
2

[ τ−σ
h

]e
γ
2 . This leads to (3.14) with Cγ = e

γ
2 (1− e− γ2 )−1.

We also adapt the following lemma from [10, Proposition 3].

Lemma 3.4. Assume that a continuous function z : [a, b)→ [0,∞), a < b ≤ ∞, satisfies

z(τ) ≤ D0e
−β(τ−a) +D1 + µ sup

s∈[a,τ ]

{e−γ(τ−s)z(s)}, a ≤ τ < b (3.15)

with β ≥ γ > 0, D0, D1 ≥ 0 and 0 ≤ µ < 1. Then we have

z(τ) ≤ D0(1− µ)−1e−γ(τ−a) +D1(1− µ)−1, a ≤ τ < b. (3.16)

Proof. Fix any a < T < b. From (3.15) it follows that

z(τ) ≤ D0e
−β(τ−a) +D1 + µ sup

s∈[a,T ]

{e−γ|τ−s|z(s)}, τ ∈ [a, T ]. (3.17)

Let us fix ρ ∈ [a, T ]. Then we multiply the above equation by e−γ|ρ−τ | and take the supremum
with respect to τ ∈ [a, T ]

sup
τ∈[a,T ]

e−γ|ρ−τ |z(τ) ≤ D0 sup
τ∈[a,T ]

e−β(τ−a)−γ|ρ−τ | +D1 + µ sup
τ∈[a,T ]

sup
s∈[a,T ]

{e−γ(|τ−s|+|ρ−τ |)z(s)}.

Note that we have sup
τ∈[a,T ]

e−β(τ−a)−γ|ρ−τ | = e−γ(ρ−a) and

sup
τ∈[a,T ]

sup
s∈[a,T ]

{e−γ(|τ−s|+|ρ−τ |)z(s)} = sup
s∈[a,T ]

e−γ|ρ−s|z(s).

Concluding, we get

sup
s∈[a,T ]

e−γ|ρ−s|z(s) ≤ D0e
−γ(ρ−a) +D1 + µ sup

s∈[a,T ]

e−γ|ρ−s|z(s).
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Since 0 ≤ µ < 1 and sup
s∈[a,T ]

e−γ|ρ−s|z(s) <∞, we obtain

sup
s∈[a,T ]

e−γ|ρ−s|z(s) ≤ D0(1− µ)−1e−γ(ρ−a) +D1(1− µ)−1, ρ ∈ [a, T ].

We apply this estimate to (3.17). From the arbitrary choice of T < b we get (3.16).

Proposition 3.5. Let u = (u1, . . . , uk) be an X
1
2 solution of (3.1) on [σ, τmax).

If τmax <∞, then with h > 0 such that σ < σ + h < τmax we have for σ ≤ τ < τmax

k∑
l=1

‖ul(τ)‖2+ql
L2+ql (Ω)

≤ 2e
λ1ν
2
h

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
2

(τ−σ)+

+C8

(
k∑
l=1

(
sup
s∈E
‖g(s)‖[L2(Ω)]k

)ql+2

+ 1

)
,

(3.18)

and for σ + h ≤ τ < τmax

ν

∫ τ

τ−h

k∑
l=1

∥∥∥∣∣∣∇(|ul(s)|
ql+2

2 )
∣∣∣∥∥∥2

L2(Ω)
ds ≤ 2e

λ1ν
2
h

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
2

(τ−σ)+

+C8

(
k∑
l=1

(
sup
s∈E
‖g(s)‖[L2(Ω)]k

)ql+2

+ 1

)
,

(3.19)

with E = [σ, τmax), where C8 = C8(h) is a positive constant.
If τmax = ∞, then we choose h = 1 and (3.18) holds with E = (−∞, τ0 + 2) for σ ≤ τ ,

τ ∈ T , whereas (3.19) holds with E = (−∞, τ0 + 2) for σ + 1 ≤ τ , τ ∈ T .
If τmax =∞, then for any T > 0 we choose 0 < h < T and (3.18) holds with E = [σ, σ+T ]

for σ ≤ τ ≤ σ + T , while (3.19) holds with E = [σ, σ + T ] for σ + h ≤ τ ≤ σ + T .

Proof. For each l = 1, . . . , k we multiply the l-th equation in (3.1) by ul |ul|ql and integrate
over Ω∫

Ω

(∂tul)ul |ul|ql dx+

∫
Ω

(Alul)ul |ul|ql dx =

∫
Ω

fl(u)ul |ul|ql dx+

∫
Ω

gl(t)ul |ul|ql dx.

Note that ∫
Ω

(∂tul)ul |ul|ql dx =
1

ql + 2
∂t ‖ul‖2+ql

L2+ql (Ω)

12



and by integration by parts and (3.3) we have∫
Ω

(Alul)ul |ul|ql dx = −(ql + 1)
3∑

i,j=1

∫
Ω

alij∂xjul |ul|
ql ∂xiuldx.

Thus if ql > 0 then∫
Ω

(Alul)ul |ul|ql dx = −4(ql + 1)

(ql + 2)2

3∑
i,j=1

∫
Ω

alij∂xi

(
|ul|

ql+2

2

)
∂xj

(
|ul|

ql+2

2

)
dx ≥

≥ 4(ql + 1)

(ql + 2)2
ν

∫
Ω

3∑
i=1

∣∣∣∂xi (|ul| ql+2

2

)∣∣∣2 dx =
4(ql + 1)

(ql + 2)2
ν
∥∥∥∣∣∣∇(|ul|

ql+2

2 )
∣∣∣∥∥∥2

L2(Ω)

and if ql = 0 then we have ∫
Ω

(Alul)ul |ul|ql dx ≥ ν ‖|∇ul|‖2
L2(Ω) .

Since 4(ql+1)
ql+2

≥ 2, we obtain

∂t ‖ul‖2+ql
L2+ql (Ω)

+ ν
∥∥∥∣∣∣∇(|ul|

ql+2

2 )
∣∣∣∥∥∥2

L2(Ω)
≤ (ql + 2)

(∫
Ω

fl(u)ul |ul|ql dx+

∫
Ω

gl(t)ul |ul|ql dx
)

omitting the modulus under the gradient when ql = 0. We set

Fu(t) =
k∑
l=1

‖ul‖2+ql
L2+ql (Ω)

, Φu(t) =
k∑
l=1

∥∥∥∣∣∣∇(|ul|
ql+2

2 )
∣∣∣∥∥∥2

L2(Ω)
, Gu(t) =

k∑
l=1

∫
Ω

gl(t)ul |ul|ql dx.

We add the obtained inequalities and use (3.5) to get

∂tFu(t) + νΦu(t) ≤ (q + 2) (C |Ω|+Gu(t)) , (3.20)

where q = max{q1, . . . , qk}. We use the Poincaré inequality λ1 ‖φ‖2
L2(Ω) ≤ ‖|∇φ|‖

2
L2(Ω) with

φ = |ul|
ql+2

2 if ql > 0 or φ = ul if ql = 0 and thus obtain

∂tFu(t) + λ1νFu(t) ≤ (q + 2) (C |Ω|+Gu(t)) .

We multiply by eλ1νt and integrate from σ to τ to get with C1 > 0

Fu(τ) ≤ Fu(σ)e−λ1ν(τ−σ) + C1 + (q + 2)

∫ τ

σ

Gu(t)e
−λ1ν(τ−t)dt, σ ≤ τ < τmax. (3.21)
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Let h > 0 be such that σ < σ+h < τmax. Assume now that σ+h ≤ τ < τmax. We integrate
(3.20) from τ − h to s ≤ τ and in consequence we get

sup
s∈[τ−h,τ ]

Fu(s) + ν

∫ τ

τ−h
Φu(t)dt ≤ Fu(τ − h) + (q + 2)C |Ω|h+ (q + 2)

∫ τ

τ−h
|Gu(t)| dt.

Combining this estimate with (3.21) we obtain

sup
s∈[τ−h,τ ]

Fu(s)+ν

∫ τ

τ−h
Φu(t)dt ≤ Fu(σ)e−λ1ν(τ−σ−h) +C2 +C3

∫ τ

σ

|Gu(t)| e−λ1ν(τ−t)dt, (3.22)

where C2 = C2(h) and C3 = C3(h) are positive constants.
We estimate the last term using Lemma 3.3 with γ = λ1νh and get with C4 = C4(h) > 0

C3

∫ τ

σ

|Gu(t)| e−λ1ν(τ−t)dt ≤ C4 sup
t∈[σ+h,τ ]

(
e
λ1ν
2

(τ−t)
∫ t

t−h
|Gu(s)| e−λ1ν(τ−s)ds

)
. (3.23)

Moreover, it follows that

e
λ1ν
2

(τ−t)
∫ t

t−h
|Gu(s)| e−λ1ν(τ−s)ds ≤ e−

λ1ν
2

(τ−t)
k∑
l=1

∫ t

t−h

∣∣∣∣∫
Ω

gl(s)ul |ul|ql dx
∣∣∣∣ ds. (3.24)

Observe that by Schwarz and Young inequalities we have∫ t

t−h

∣∣∣∣∫
Ω

gl(s)ul |ul|ql dx
∣∣∣∣ ds ≤ sup

s∈[σ,τ ]

‖g(s)‖[L2(Ω)]k ‖ul‖
ql+1

Lql+1([t−h,t],L2(ql+1)(Ω))
≤

≤ µ ‖ul‖ql+2

Lql+1([t−h,t],L2(ql+1)(Ω))
+ Cµ

(
sup
s∈[σ,τ ]

‖g(s)‖[L2(Ω)]k

)ql+2

,

where µ > 0 and Cµ is independent of l. Note that

‖ul‖ql+2

Lql+1([t−h,t],L2(ql+1)(Ω))
≤ C̃ ‖ul‖ql+2

L
r(ql+2)

2 ([t−h,t],Lr(ql+2)(Ω))
= C̃

∥∥∥|ul| ql+2

2

∥∥∥2

Lr([t−h,t],L2r(Ω))
,

since ql + 1 < 7
6
(ql + 2) = r

2
(ql + 2) with r = 7

3
and C̃ does not depend on l and t.

Observe that by interpolation inequalities we have∥∥∥|ul| ql+2

2

∥∥∥
Lr([t−h,t],L2r(Ω))

≤ Ĉ
∥∥∥|ul| ql+2

2

∥∥∥1−θ0

L∞([t−h,t],L2(Ω))

∥∥∥|ul| ql+2

2

∥∥∥θ0
L2([t−h,t],H1

0 (Ω))
,
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where θ0 = 6
7
, since by [9, §4.3.1, Theorem 2]

[L2(Ω), H1(Ω)]θ0 = Hθ0(Ω) ↪→ L
6

3−2θ0 (Ω) = L2r(Ω)

and by [9, §1.18.4(10)]

[L∞([t− h, t], L2(Ω)), L2([t− h, t], H1(Ω))]θ0 = Lr([t− h, t], [L2(Ω), H1(Ω)]θ0).

Hence we get with C5 = C5(h) > 0

‖ul‖ql+2

Lql+1([t−h,t],L2(ql+1)(Ω))
≤ C5

(
sup

s∈[t−h,t]
Fu(s) + ν

∫ t

t−h
Φu(s)ds

)
,

where we used the Young inequality again.
Summarizing, we get ∫ t

t−h

∣∣∣∣∫
Ω

gl(s)ul |ul|ql dx
∣∣∣∣ ds ≤

≤ µC5

(
sup

s∈[t−h,t]
Fu(s) + ν

∫ t

t−h
Φu(s)ds

)
+ Cµ( sup

s∈[σ,τ ]

‖g(s)‖[L2(Ω)]k)
ql+2.

Applying this estimate to (3.24) we obtain with C6 = C6(h) > 0

e
λ1ν
2

(τ−t)
∫ t

t−h
|Gu(s)| e−λ1ν(τ−s)ds ≤ µC6e

−λ1ν
2

(τ−t)Zu(t) + Cµ

k∑
l=1

( sup
s∈[σ,τ ]

‖g(s)‖[L2(Ω)]k)
ql+2,

where

Zu(t) = sup
s∈[t−h,t]

Fu(s) + ν

∫ t

t−h
Φu(s)ds.

Therefore, it follows from (3.23) that

C3

∫ τ

σ

|Gu(t)| e−λ1ν(τ−t)dt ≤ µC7 sup
t∈[σ+h,τ ]

(
e−

λ1ν
2

(τ−t)Zu(t)
)

+ C̃µ

k∑
l=1

( sup
s∈[σ,τ ]

‖g(s)‖[L2(Ω)]k)
ql+2

with C7 = C7(h) > 0. Applying this estimate to (3.22) we finally obtain for any µ > 0

Zu(τ) ≤ Fu(σ)e−λ1ν(τ−σ−h) + µC7 sup
t∈[σ+h,τ ]

(
e−

λ1ν
2

(τ−t)Zu(t)
)

+

+Ĉµ

( k∑
l=1

( sup
s∈[σ,τ ]

‖g(s)‖[L2(Ω)]k)
ql+2 + 1

)
, σ + h ≤ τ < τmax.

(3.25)
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If τmax <∞, then we choose µ = 1
2C7

and use Lemma 3.4 to see that for σ + h ≤ τ < τmax

Zu(τ) ≤ 2Fu(σ)e−
λ1ν
2

(τ−σ−h) + C8

( k∑
l=1

(sup
s∈E
‖g(s)‖[L2(Ω)]k)

ql+2 + 1
)
, (3.26)

where E = [σ, τmax). It follows immediately that (3.19) holds with E = [σ, τmax) and
σ + h ≤ τ < τmax. Moreover, we know in particular that

sup
s∈[σ,σ+h]

Fu(s) ≤ 2Fu(σ) + C8

( k∑
l=1

(sup
s∈E
‖g(s)‖[L2(Ω)]k)

ql+2 + 1
)

(3.27)

with E = [σ, τmax). This implies (3.18) with E = [σ, τmax) and for σ ≤ τ < τmax.
If τmax =∞, then we set h = 1 and apply Lemma 3.4 to (3.25) and in case σ+ 1 < τ0 we

obtain (3.26) with E = (−∞, τ0 + 2) for σ+ 1 ≤ τ , τ ∈ T and (3.27) with E = (−∞, τ0 + 2).
This implies that (3.19) holds with h = 1, E = (−∞, τ0 + 2) for σ+ 1 ≤ τ , τ ∈ T and (3.18)
with E = (−∞, τ0 + 2) for σ ≤ τ , τ ∈ T . Moreover, in case σ + 1 ≥ τ0 and σ ≤ τ , τ ∈ T ,
we know that (3.26) holds with h = 1, E = (−∞, τ0 + 2) for σ + 1 ≤ τ < τ0 + 2 and hence
(3.18) holds with E = (−∞, τ0 + 2) for σ ≤ τ , τ ∈ T also in this case.

Finally, suppose that τmax = ∞ and let T > 0. We choose 0 < h < T and apply
Lemma 3.4 to (3.25) in order to obtain (3.26) and thus (3.19) with E = [σ, σ + T ] for
σ + h ≤ τ ≤ σ + T . Moreover, (3.27) holds with E = [σ, σ + T ] and hence (3.18) with
E = [σ, σ + T ] for σ ≤ τ ≤ σ + T .

As follows from the above proposition we will obtain below a priori estimates in the
following three cases:

1) τmax <∞, σ < σ + h < τmax, E = J = [σ, τmax), Jh = [σ + h, τmax),

2) τmax =∞, T > 0, 0 < h < T, E = J = [σ, σ + T ], Jh = [σ + h, σ + T ],

3) τmax =∞, h = 1, E = (−∞, τ0 + 2), J = {τ ∈ R : σ ≤ τ, τ ∈ T },
Jh = {τ ∈ R : σ + 1 ≤ τ, τ ∈ T }.

(3.28)

Proposition 3.6. Let ql ≥ pl, l = 1, . . . , k and u = (u1, . . . , uk) be an X
1
2 solution of (3.1)

on [σ, τmax). We have for τ ∈ J

‖F (τ, u(τ))‖2
[L2(Ω)]k ≤ c4

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
2

(τ−σ) + P
(

sup
s∈E
‖g(s)‖[L2(Ω)]k

)
, (3.29)

where c4 = c4(h) > 0 is a constant and P = P (h) is a nondecreasing positive function in
any of the three cases stated in (3.28).
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Proof. We have

‖F (τ, u)‖2
[L2(Ω)]k ≤ 2 ‖f(u)‖2

[L2(Ω)]k + 2 ‖g(τ)‖2
[L2(Ω)]k . (3.30)

We estimate using (3.12)

‖f(u)‖2
[L2(Ω)]k ≤ 2c̃

k∑
l=1

‖ul‖2
L2+pl (Ω)

(
1 + ‖ul‖plL2+pl (Ω)

)
+ 2 ‖f(0)‖2

[L2(Ω)]k ≤

≤ c1

(
1 +

k∑
l=1

‖ul‖2+pl
L2+pl (Ω)

)
≤ c2

(
1 +

k∑
l=1

‖ul‖2+ql
L2+ql (Ω)

)
.

Combining it with (3.30) and applying (3.18) on an appropriate interval J with the corre-
sponding set E, we obtain (3.29).

Proposition 3.7. Let ql ≥ pl, l = 1, . . . , k and u = (u1, . . . , uk) be an X
1
2 solution of (3.1)

on [σ, τmax). Then we have for τ ∈ J

‖u(τ)‖2
[L2(Ω)]k ≤ c9

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
4

(τ−σ) +Q(sup
s∈E
‖g(s)‖[L2(Ω)]k), (3.31)

and for τ ∈ Jh∫ τ

τ−h

k∑
l=1

‖|∇ul(s)|‖2
L2(Ω) ds ≤ c9

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
4

(τ−σ) +Q(sup
s∈E
‖g(s)‖[L2(Ω)]k), (3.32)

where c9 = c9(h) > 0 is a constant, Q = Q(h) is a nondecreasing positive function and J ,
Jh and E come from each of the three cases in (3.28).

Proof. For each l = 1, . . . , k we multiply the l-th equation in (3.1) by ul, integrate over Ω
and add the equations. Integrating by parts and using the Schwarz inequality we obtain

1

2
∂t ‖u(t)‖2

[L2(Ω)]k −
k∑
l=1

3∑
i,j=1

∫
Ω

alij∂xiul∂xjuldx ≤
k∑
l=1

‖Fl(t, u)‖L2(Ω) ‖ul‖L2(Ω) .

By (3.3) and the Cauchy inequality we get for any ε > 0

1

2
∂t ‖u(t)‖2

[L2(Ω)]k + ν
k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) ≤

ε

2
‖u(t)‖2

[L2(Ω)]k +
1

2ε
‖F (t, u)‖2

[L2(Ω)]k . (3.33)

17



By the Poincaré inequality we obtain

∂t ‖u(t)‖2
[L2(Ω)]k + 2λ1ν ‖u(t)‖2

[L2(Ω)]k ≤ ε ‖u(t)‖2
[L2(Ω)]k +

1

ε
‖F (t, u)‖2

[L2(Ω)]k

Taking ε = 7
4
λ1ν, multiplying by e

λ1ν
4
t and integrating over [σ, τ ] gives

‖u(τ)‖2
[L2(Ω)]k ≤ ‖u(σ)‖2

[L2(Ω)]k e
−λ1ν

4
(τ−σ) +

4

7λ1ν

∫ τ

σ

‖F (t, u)‖2
[L2(Ω)]k e

−λ1ν
4

(τ−t)dt.

Let τ ∈ J and E be the corresponding set from (3.28). We apply (3.29) and obtain

‖u(τ)‖2
[L2(Ω)]k ≤

(
‖u(σ)‖2

[L2(Ω)]k + c5

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

)
e−

λ1ν
4

(τ−σ) + c6P (sup
s∈E
‖g(s)‖[L2(Ω)]k)

with c5 = c5(h) > 0, c6 = c6(h) > 0. This yields (3.31), since ‖ul‖2
L2(Ω) ≤ ‖ul‖

2+ql
L2+ql (Ω)

+ |Ω|.
Assume now that τ ∈ Jh. Integrating (3.33) with ε = 1 over [τ − h, τ ] we get

‖u(τ)‖2
[L2(Ω)]k + 2ν

∫ τ

τ−h

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) dt ≤

≤ ‖u(τ − h)‖2
[L2(Ω)]k +

∫ τ

τ−h

(
‖u(t)‖2

[L2(Ω)]k + ‖F (t, u)‖2
[L2(Ω)]k

)
dt.

Using (3.31) and (3.29) we obtain for τ ∈ Jh∫ τ

τ−h

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) dt ≤ c7

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

(
e−

λ1ν
4

(τ−σ) +

∫ τ

τ−h
e−

λ1ν
4

(t−σ)dt

)
+

+Q̂

(
sup
s∈E
‖g(s)‖[L2(Ω)]k

)
≤ c8

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
4

(τ−σ) + Q̂

(
sup
s∈E
‖g(s)‖[L2(Ω)]k

)
,

where c7 = c7(h) > 0, c8 = c8(h) > 0 and Q̂ = Q̂(h) is a nondecreasing positive function.
This gives (3.32).

Proposition 3.8. Let pl ≤ ql ≤ 4, l = 1, . . . , k and u = (u1, . . . , uk) be an X
1
2 solution of

(3.1) on [σ, τmax). Then we have for τ ∈ J
k∑
l=1

‖|∇ul(τ)|‖2
L2(Ω) ≤ R1

( k∑
l=1

‖|∇ul(σ)|‖2
L2(Ω)

)
e−

λ1ν
4

(τ−σ) +R2

(
sup
s∈E
‖g(s)‖[L2(Ω)]k

)
, (3.34)

where R1 = R1(h), R2 = R2(h) are both nondecreasing positive functions and h, J and E
come from each of the three cases in (3.28).
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Proof. For each l = 1, . . . , k we multiply the l-th equation in (3.1) by Alul, integrate over Ω
and add the obtained equations. Since alij do not depend on time and alij = alji, integration
by parts and the Schwarz inequality imply

−1

2

k∑
l=1

3∑
i,j=1

∫
Ω

∂t(a
l
ij∂xiul∂xjul)dx+

k∑
l=1

‖Alul‖2
L2(Ω) ≤

1

2
‖F (t, u)‖2

[L2(Ω)]k +
1

2

k∑
l=1

‖Alul‖2
L2(Ω) .

We add to both sides a term with

zu(t) = −
k∑
l=1

3∑
i,j=1

∫
Ω

alij∂xiul∂xjuldx

and obtain

∂tzu(t) + λ1νzu(t) +
k∑
l=1

‖Alul‖2
L2(Ω) ≤ λ1νzu(t) + ‖F (t, u)‖2

[L2(Ω)]k . (3.35)

Since the functions alij are continuous on Ω, we know that∣∣alij(x)
∣∣ ≤ max

i,j=1,...,3
l=1,...,k

sup
x∈Ω

∣∣alij(x)
∣∣ = Ca.

Therefore, it follows from (3.3) that

ν
k∑
l=1

‖|∇ul|‖2
L2(Ω) ≤ zu(t) ≤ 3Ca

k∑
l=1

‖|∇ul|‖2
L2(Ω) . (3.36)

Applying (3.36) to (3.35), multiplying by eλ1νt and integrating over [σ, τ ], we obtain

zu(τ) ≤ zu(σ)e−λ1ν(τ−σ) + 3λ1νCa

∫ τ

σ

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) e

−λ1ν(τ−t)dt+

+

∫ τ

σ

‖F (t, u)‖2
[L2(Ω)]k e

−λ1ν(τ−t)dt.

Let τ ∈ J and E be the corresponding set from (3.28). We apply (3.29), (3.36) and get

k∑
l=1

‖|∇ul(τ)|‖2
L2(Ω) ≤

3Ca
ν

k∑
l=1

‖|∇ul(σ)|‖2
L2(Ω) e

−λ1ν(τ−σ) +
1

λ1ν2
P
(

sup
s∈E
‖g(s)‖[L2(Ω)]k

)
+

19



+c4
2

λ1ν2

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
2

(τ−σ) + 3λ1Ca

∫ τ

σ

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) e

−λ1ν(τ−t)dt.

We consider now two cases. In the first case we assume that τ belongs to Jh corresponding
to the appropriate case in (3.28). We use Lemma 3.3 and (3.32) to estimate∫ τ

σ

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) e

−λ1ν(τ−t)dt ≤ c10 sup
t∈[σ+h,τ ]

(
e−

λ1ν
2

(τ−t)
∫ t

t−h

k∑
l=1

‖|∇ul(s)|‖2
L2(Ω) ds

)
≤

≤ c11

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
4

(τ−σ) + c10Q
(

sup
s∈E
‖g(s)‖[L2(Ω)]k

)
, τ ∈ Jh,

where c10 = c10(h) > 0 and c11 = c11(h) > 0.
In the second case when σ ≤ τ ≤ σ + h, τ ∈ J , we have by (3.32)∫ τ

σ

k∑
l=1

‖|∇ul(t)|‖2
L2(Ω) e

−λ1ν(τ−t)dt ≤ c9

k∑
l=1

‖ul(σ)‖2+ql
L2+ql (Ω)

e−
λ1ν
4

(τ−σ)+Q
(

sup
s∈E
‖g(s)‖[L2(Ω)]k

)
.

Combining the two cases we obtain

k∑
l=1

‖|∇ul(τ)|‖2
L2(Ω) ≤ c12

k∑
l=1

(
‖|∇ul(σ)|‖2

L2(Ω) + ‖ul(σ)‖2+ql
L2+ql (Ω)

)
e−

λ1ν
4

(τ−σ)+

+R
(

sup
s∈E
‖g(s)‖[L2(Ω)]k

)
, τ ∈ J,

where c12 = c12(h) is a positive constant and R = R(h) is a nondecreasing positive function.
Since ql ≤ 4, l = 1, . . . , k and ul ∈ H1

0 (Ω), it follows from the Sobolev embedding and the
Poincaré inequality that

‖ul‖L2+ql (Ω) ≤ D ‖|∇ul|‖L2(Ω) .

This ends the proof of (3.34).

Propositions 3.7 and 3.8 imply global (forward) in time solvability of (3.1), thus (F3a)
holds. Moreover, assumptions (F3b) and (F3c) are also satisfied.

Corollary 3.9. If pl ≤ ql ≤ 4, l = 1, . . . , k and u = (u1, . . . , uk) is an X
1
2 solution of (3.1)

on [σ, τmax), then τmax =∞ and for σ ≤ τ , τ ∈ T we have

‖u(τ)‖[H1
0 (Ω)]k ≤ Q1

(
‖u(σ)‖[H1

0 (Ω)]k

)
e−

λ1ν
8

(τ−σ) +Q2

(
sup

s∈(−∞,τ0+2)

‖g(s)‖[L2(Ω)]k

)
, (3.37)
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where Q1, Q2 are both nondecreasing positive functions and for any T > 0 there exist non-
decreasing positive functions Q̃1 = Q̃1(T ), Q̃2 = Q̃2(T ) such that for σ ≤ τ ≤ σ + T

‖u(τ)‖[H1
0 (Ω)]k ≤ Q̃1

(
‖u(σ)‖[H1

0 (Ω)]k

)
e−

λ1ν
8

(τ−σ) + Q̃2

(
sup

s∈[σ,σ+T ]

‖g(s)‖[L2(Ω)]k

)
. (3.38)

Proof. The fact that X
1
2 solutions of (3.1) exist globally (forward) in time follows from (3.13)

and Propositions 3.7 and 3.8 in the context of the first case in (3.28), while (3.37) and (3.38)
correspond to the second and the third case in (3.28), respectively.

Therefore, we can apply Theorem 1.1 and obtain

Theorem 3.10. Under assumptions (3.4), (3.5) with 0 ≤ pl ≤ ql ≤ 4, l = 1, . . . , k and
assumptions (3.6), (3.7) the problem (3.1) generates an evolution process {U(τ, σ) : τ ≥ σ}
in [H1

0 (Ω)]k and for any β ∈ (1
2
, 1) there exists a family {M(τ) : τ ∈ R} of nonempty compact

subsets of [H2β
0 (Ω)]k with the following properties

(i) {M(τ) : τ ∈ R} is positively invariant under the process U(τ, σ), i.e.

U(τ, σ)M(σ) ⊂M(τ), τ ≥ σ,

(ii) M(τ) has a finite fractal dimension in [H2β
0 (Ω)]k uniformly w.r.t. τ ∈ R, i.e.

d
[H1

0 (Ω)]k

f (M(τ)) ≤ d
[H2β

0 (Ω)]k

f (M(τ)) ≤ d <∞, τ ∈ R,

(iii) {M(τ) : τ ∈ R} has the property of pullback exponential attraction, i.e.

∃ϕ>0∀B1⊂[H2β
0 (Ω)]k, bounded ∀τ∈R lim

t→∞
eϕt dist[H2β

0 (Ω)]k(U(τ, τ − t)B1,M(τ)) = 0

and if τ0 =∞, the pullback attraction is uniform with respect to τ

∃ϕ>0∀B1⊂[H2β
0 (Ω)]k, bounded lim

t→∞
eϕt sup

τ∈R
dist[H2β

0 (Ω)]k(U(τ, τ − t)B1,M(τ)) = 0.

Furthermore, the pullback exponential attractor {M(τ) : τ ∈ R} contains a (finite dimen-
sional) pullback global attractor {A(τ) : τ ∈ R}, i.e. a family of nonempty compact subsets
of [H2β

0 (Ω)]k, invariant under the process {U(τ, σ) : τ ≥ σ}

U(τ, σ)A(σ) = A(τ), τ ≥ σ,

and pullback attracting all bounded subsets of [H2β
0 (Ω)]k

∀B1⊂[H2β
0 (Ω)]k, bounded ∀τ∈R lim

t→∞
dist[H2β

0 (Ω)]k(U(τ, τ − t)B1,A(τ)) = 0.

Remark 3.11. Observe that the assumptions of the above theorem are satisfied in case of
the FitzHugh-Nagumo system and the chemical reaction system considered in Remark 3.1.
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