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RADOSLAW CZAJA AND CARLOS ROCHA

Abstract. We prove that stable and unstable manifolds of hyperbolic periodic
orbits for general scalar reaction-diffusion equations on a circle always intersect
transversally. The argument also shows that for a periodic orbit there are no
homoclinic connections. The main tool used in the proofs is Matano’s zero number
theory dealing with the Sturm nodal properties of the solutions.

1. Introduction

We consider the scalar reaction-diffusion equation of the form

(1.1) ut = uxx + f(x, u, ux)

for one real variable u = u(t, x) on a circle x ∈ S1 = R/2πZ. In other words, we
consider (1.1) together with periodic boundary conditions

u(t, 0) = u(t, 2π), ux(t, 0) = ux(t, 2π)

and discuss (1.1) with initial condition

(1.2) u(0, x) = u0(x), x ∈ S1.

Below we use suitable assumptions on f so that the problem (1.1), (1.2) defines
a global semiflow in Xα = H2α(S1), 3

4
< α < 1, for which there exists a global

attractor, i.e. a nonempty compact invariant set attracting every bounded subset
of Xα. The existence of global attractors and other qualitative properties of the
dynamical systems generated by reaction-diffusion equations under various bound-
ary conditions have been extensively considered in the literature. For the interested
reader we mention the following excellent surveys [11, 25, 26].

It has been shown in [3, 19, 20] that time periodic solutions may appear in the
description of dynamics of (1.1). In case the function f does not explicitly depend
on the x variable, i.e. f = f(u, ux), it was proved (see [3, 8] for details) that the
global attractor consists exclusively of equilibria, orbits of periodic solutions of the
form

(1.3) u(t, x) = v(x− ct), t ∈ R, x ∈ S1 with some c 6= 0,

(called rotating waves) and heteroclinic orbits connecting the above-mentioned crit-
ical elements, when all are assumed hyperbolic. Moreover, necessary and sufficient
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conditions for the existence of heteroclinic orbits between critical elements were es-
tablished in [8]. However, as it follows from [29], in case of general x-dependent
nonlinearities homoclinic orbits may belong to the attractor as well and the peri-
odic solutions do not have to be, in general, of the form (1.3). This happens due
to the lack of S1-equivariance, which was a crucial property used in [8] to exclude
homoclinic connections.

One of the most important results concerning (1.1) is the Poincaré-Bendixson
type theorem proved by Fiedler and Mallet-Paret in [7, Theorem 1] (see also [21]).
It states that if u0 ∈ Xα, 3

4
< α < 1, then either its ω-limit set ω(u0) consists in

precisely one periodic orbit or α(v0) and ω(v0) are subsets of the set of all equilibria
for any v0 ∈ ω(u0).

In this paper we investigate closely the situation when a bounded orbit from
the global attractor connects two hyperbolic periodic orbits. First, we exclude the
existence of a homoclinic connection for a hyperbolic periodic orbit (cf. [22]) in
order to finally prove the main result of this paper stating that the intersection of
the global unstable manifold of a hyperbolic periodic orbit Π− with the local stable
manifold of another hyperbolic periodic orbit Π+ is always transversal, i.e.

W u(Π−) ∩ W s
loc(Π

+).

The paper is organized as follows. In Section 2 we formulate the abstract Cauchy
problem for (1.1)-(1.2) and using the theory from [13] we solve the problem lo-
cally. Further we obtain a priori and subordination estimates, which ensure that
the solutions exist globally in time. The semiflow of global solutions constructed
in this way is point dissipative and compact, thus has a compact global attractor.
In Section 3 we examine the properties of the semiflow and the evolution system
for the linearization around a given solution. Moreover, we recall the properties of
the zero number of solutions of linear parabolic equations. Section 4 is devoted to
the operator called a period map for a periodic orbit. We describe its spectrum and
decompose the phase space according to the spectrum. We also recall the notions
of local stable and unstable manifolds of a hyperbolic periodic orbit and list their
properties. In Section 5 we analyze the local stable manifold of a hyperbolic peri-
odic orbit Π and show that for any u0 /∈ Π from the local stable manifold of Π there
exists a ∈ Π such that u(t;u0)− p(t; a) tends exponentially to 0 as t→∞ and

(1.4) z(u0 − a) ≥ i(Π) + 1 +
1 + (−1)i(Π)

2
,

where i(Π) denotes the total algebraic multiplicity of eigenvalues of the period map
for Π outside the closed unit ball. Similarly, in Section 6 we investigate the global
unstable manifold of a hyperbolic periodic orbit Π. We prove that for any u0 /∈ Π
from the global unstable manifold there exists a ∈ Π such that u(t;u0) − p(t; a)
tends exponentially to 0 as t→ −∞ and

(1.5) z(u0 − a) ≤ i(Π)− 1 +
1 + (−1)i(Π)

2
.
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In Section 7 we combine the estimates (1.4) and (1.5) and find, in particular, that
there is no homoclinic connection for a hyperbolic periodic orbit. Finally, in Sec-
tion 8 we follow the ideas from [5] and introduce filtrations of the phase space with
respect to the asymptotic behavior of solutions for the linearized equation around an
orbit connecting two hyperbolic periodic orbits. A proper choice of the spaces from
the filtrations carefully combined with the corresponding zero number estimates
for the functions from these spaces yields the transversality of the intersection of
the stable and unstable manifolds of two hyperbolic periodic orbits. The transver-
sal intersection of invariant manifolds of critical elements is one of the ingredients
for genericity results (cf. e.g. Kupka-Smale theorem) or structural stability theo-
rems (cf. [12, Chapter 10], [23]) in the theory of dynamical systems. In Section 9 we
make some concluding remarks about structural stability for the semiflow generated
by (1.1).

Under different boundary conditions many authors have considered problems of
the same type as discussed here. For separated boundary conditions, the results
of Henry [14] and Angenent [1] on the transversality of the stable and unstable
manifolds of stationary solutions constitute obligatory references. A problem of this
type has also been considered by Chen, Chen and Hale in [5] for nonautonomous
time periodic equations with f = f(t, x, u) under Dirichlet boundary conditions.
The effect of radial symmetry on the transversality of stable and unstable manifolds
of equilibria for problems defined on symmetric domains in Rn has been studied by
Poláčik in [24]. For special classes of ordinary differential equations on Rn, Fusco
and Oliva have considered the transversality between stable and unstable manifolds
of equilibria and periodic orbits (see [9, 10]). Here we extend the results of [10]
realizing the plans sketched by these authors for further possible extensions.

2. Abstract setting of the problem and existence of the global
attractor

Assume that f : S1×R×R → R is a C2 function satisfying the following conditions

there exist 0 ≤ γ < 2 and a continuous function k : [0,∞) → [0,∞) such

that |f(x, y, z)| ≤ k(r)(1 + |z|γ), (x, y, z) ∈ S1 × [−r, r]× R for each r > 0,
(2.1)

yf(x, y, 0) < 0, (x, y) ∈ S1 × R, |y| ≥ K for some K > 0.(2.2)

In this paper we are going to use fractional Sobolev spaces of 2π-periodic functions
Hs(S1), s > 0, and their properties (cf. [27, Appendix A]). Among others we will
frequently use the Sobolev embedding

Hs(S1) ↪→ C1(S1) if s >
3

2
.

We consider the operator A : L2(S1) ⊃ H2(S1) → L2(S1) given by

Au = −uxx + u, u ∈ H2(S1).

Since A is a positive definite selfadjoint operator, it is a positive sectorial operator.
Henceforth we consider fractional power spaces

Xα = D(Aα), α ≥ 0,



TRANSVERSALITY IN SCALAR REACTION-DIFFUSION EQUATIONS ON A CIRCLE 4

with norms ‖u‖Xα = ‖Aαu‖L2(S1), u ∈ Xα (cf. [13, Section 1.4]). Note that X0 =

L2(S1), X1 = H2(S1) and

Xα = [L2(S1), H2(S1)]α = H2α(S1), α ∈ (0, 1)

(see [33, Section 1.18.10] and [30, Section 3.6.1]). Since H2(S1) is compactly em-
bedded in L2(S1), it follows that A has a compact resolvent.

We rewrite (1.1), (1.2) as an abstract Cauchy problem in X0

(2.3)

{
ut + Au = F (u),

u(0) = u0,

where F is the Nemycki operator corresponding to

F (u)(x) = f(x, u(x), ux(x)) + u(x), x ∈ S1.

For a fixed α ∈ (3
4
, 1), F takes Xα into X0 and is Lipschitz continuous on bounded

subsets of Xα.
By the theory presented in [13] it follows that for each u0 ∈ Xα there exists

a unique local forward Xα solution defined on a maximal interval of existence, i.e.

u ∈ C([0, τu0), X
α) ∩ C1((0, τu0), X

0) ∩ C((0, τu0), X
1)

and satisfies (2.3) on [0, τu0) in X0. Moreover, either τu0 = ∞ or

τu0 <∞ and lim sup
t→τu0

‖u(t;u0)‖Xα = ∞.

Using assumption (2.2) and the maximum principle it follows that if for some
R ≥ 0 we have ‖u0‖L∞(S1) ≤ K+R, then there exists a positive constant δ = δ(K,R)
such that

(2.4) ‖u(t;u0)‖L∞(S1) ≤ K +Re−δt, t ∈ [0, τu0).

This implies that each forward Xα solution is bounded in L∞(S1).
Observe that by using Young’s inequality we can assume without loss of generality

that 1 < γ < 2 in (2.1). Applying (2.4) to (2.1), we obtain

(2.5) ‖F (u(t;u0))‖X0 ≤ c(‖u0‖L∞(S1))(1 + ‖u(t;u0)‖γ
W 1,2γ(S1)), t ∈ (0, τu0).

Fix r > max{γ−1
2−γ

, 2} and let β ≥ α be such that

1

2

(
γ +

1

r
(γ − 1)

)
< β < 1.

Then for a chosen

θ ∈

(
1 + 1

r
− 1

2γ

2β + 1
r
− 1

2

,
1

γ

)
such that θ ≥ r−2γ

γ(r−2)
the following interpolation inequality is satisfied

(2.6) ‖u(t;u0)‖W 1,2γ(S1) ≤ cθ ‖u(t;u0)‖θ
H2β(S1) ‖u(t;u0)‖1−θ

Lr(S1) , t ∈ (0, τu0),

due to the embedding (cf. [30, Section 3.6.1])

[Lr(S1), H2β(S1)]θ ↪→ W 1,2γ(S1).
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Since Xβ = H2β(S1) and L∞(S1) is continuously embedded in Lr(S1), we obtain
from (2.5), (2.6) and again (2.4) the following subordination condition

(2.7) ‖F (u(t;u0))‖X0 ≤ c̃(‖u0‖L∞(S1))(1 + ‖u(t;u0)‖θγ
Xβ), t ∈ (0, τu0),

with θγ < 1.
By [6, Theorem 3.1.1] it follows that each forward Xβ solution of (2.3) exists

globally in time (τu0 = ∞) and denoting by u(·;u0) this solution,

S(t)u0 = u(t;u0), t ≥ 0,

defines a C0 semiflow of global forward Xβ solutions having positive semiorbits of
bounded sets bounded. In fact the above statement holds for Xα solutions, since
we have proved the existence of local forward Xα solutions and we know that, by
definition, they enter X1 immediately and for t > 0 we may consider them as Xβ

solutions that exist globally in time.
Note that now (2.4) implies that the estimate of solutions in L∞(S1) is asymp-

totically independent of initial conditions

lim sup
t→∞

‖u(t;u0)‖L∞(S1) ≤ K.

Then by [6, Theorem 4.1.1] there exists a constant K1 > 0 such that

(2.8) lim sup
t→∞

‖u(t;u0)‖Xα ≤ K1.

Therefore the semiflow {S(t) : t ≥ 0} is point dissipative in Xα. Note also that S(t)
is a compact map on Xα for each t > 0 by [6, Theorem 3.3.1], since A has a compact
resolvent. Thus the semiflow {S(t) : t ≥ 0} has a global attractor A in Xα. We
recall that A is then the union of all bounded orbits.

3. Properties of the semiflow

Fix s ∈ R. Let u(·; s, ξ) be the global forward Xα solution of the problem

(3.1)

{
ut + Au = F (u), t > s,

u(s) = ξ.

Since f is C2, it follows from [13, Theorem 3.4.4, Corollary 3.4.6] that the function

(s,∞)×Xα 3 (t, ξ) 7→ u(t; s, ξ) ∈ Xα

is continuously differentiable. Moreover, for each fixed t ≥ s the function

Xα 3 ξ 7→ u(t; s, ξ) ∈ Xα

is also continuously differentiable and, for each ζ ∈ Xα, its derivative in the ζ-
direction given by

w(t; s, ζ) = Dξu(t; s, ξ)ζ ∈ Xα, t ≥ s,

is a unique global forward Xα solution of the linear variational problem

(3.2)

{
wt + Aw = DuF (u(t; s, ξ))w, t > s,

w(s) = ζ.
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Taking into account the regularity of Xα solutions we see that (3.2) is the abstract
equivalent of

(3.3)

{
wt = wxx + b(t, x)w + d(t, x)wx, t > s, x ∈ S1,

w(s, x) = ζ(x), x ∈ S1,

where
b(t, x) = fy(x, u(t; s, ξ)(x), ux(t; s, ξ)(x)), t > s, x ∈ S1,

d(t, x) = fz(x, u(t; s, ξ)(x), ux(t; s, ξ)(x)), t > s, x ∈ S1.

We define the evolution system

(3.4) T (t, s)ζ = w(t; s, ζ), t ≥ s, ζ ∈ Xα,

where w(t; s, ζ) is a unique global forward Xα solution of (3.2). Note that we have
T (t, s)ζ = Dξu(t; s, ξ)ζ, so it follows that T (t, 0)ζ = (Du0S(t)u0)ζ. Moreover, for
t > s the operator T (t, s) ∈ L(Xα, Xα) is compact in the Hilbert space Xα (see [13,
Section 7.1]).

Below we prove the injectivity of the semiflow {S(t) : t ≥ 0} and the injectivity
of {T (t, s) : t ≥ s}.

To show that the semiflow is injective in Xα suppose that for some u1, u2 ∈ Xα

and some t0 > 0 we have
S(t0)u1 = S(t0)u2.

Define v(t) = S(t)u1 − S(t)u2, t ≥ 0. Then we have

(3.5)

{
vt + Av = F (S(t)u1)− F (S(t)u2), t > 0,

v(0) = u1 − u2.

Moreover, we know that v(t0) = 0. Note that A is a positive definite selfadjoint

operator in the Hilbert space X0 = L2(S1) and Xα ↪→ X
1
2 . Furthermore,

v ∈ C([0,∞), Xα) ∩ C1((0,∞), X0) ∩ C((0,∞), X1)

and

‖F (S(t)u1)− F (S(t)u2)‖X0 ≤ L ‖S(t)u1 − S(t)u2‖X
1
2

= L ‖v(t)‖
X

1
2
, t ∈ [0,∞),

where L is a constant depending on

sup
t∈[0,∞)

‖S(t)ui‖Xα <∞, i = 1, 2.

By [6, Proposition 7.1.1] (see also [32, Lemmas 6.1,6.2]) we get

v(t) = 0, t ∈ [0, t0].

In particular, we obtain u1 = u2. This proves the injectivity of the semiflow.
Suppose now that

T (t0, s0)ζ = 0

for some t0 > s0 and ζ ∈ Xα. Define w(t) = T (t + s0, s0)ζ, t ≥ 0, and choose any
T0 > t0 − s0. Then we have

(3.6)

{
wt + Aw = DuF (u(t+ s0; s0, ξ))w, 0 < t ≤ T0,

w(0) = ζ.
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Moreover, we know that w(t0 − s0) = 0. For t ∈ [0, T0] we estimate

‖DuF (u(t+ s0; s0, ξ))w(t)‖X0 ≤ C1 ‖w(t)‖X0 + C2 ‖w(t)‖
X

1
2
≤M ‖w(t)‖

X
1
2
,

where C1 and C2 depend on

sup
(t,x)∈[0,T0]×S1

|fy(x, u(t+ s0; s0, ξ)(x), ux(t+ s0; s0, ξ)(x))| ,

sup
(t,x)∈[0,T0]×S1

|fz(x, u(t+ s0; s0, ξ)(x), ux(t+ s0; s0, ξ)(x))| ,

respectively. Thus the assumptions of [6, Proposition 7.1.1] are fulfilled again and

w(t) = 0, t ∈ [0, t0 − s0].

In particular, we obtain ζ = 0. This proves the injectivity of T (t, s), t ≥ s.
Observe also that by the backward uniqueness of the adjoint equation of (3.3)

(see [16]) the adjoint operator T (t, s)∗ is injective and by [13, Theorem 7.3.3] each
operator T (t, s), t ≥ s, has a dense range.

In what follows we are going to use frequently the properties of the zero number
of a C1 function referring to the Sturm nodal properties of the solutions of (3.7)
(see [31]) so successfully reintroduced by Matano (cf. [18]) as an essential tool for
the description of the dynamics of scalar semilinear parabolic equations. We denote
by z(ϕ) the number of strict sign changes of a C1 function ϕ : S1 → R. Then,
as a consequence of the maximum principle, the zero number has the following
properties.

Lemma 3.1. ([20, Lemma 3.2],[2]) Let J ⊂ R be an open interval and v be a non-
trivial classical solution of the linear parabolic equation

(3.7) vt = vxx + b(t, x)v + d(t, x)vx, t ∈ J, x ∈ S1,

where b, bx, bt and d are bounded on any compact subset of J × S1, then the zero
number of v(t) has the following properties:

(i) z(v(t)) is finite for any t ∈ J ,
(ii) z(v(t)) is nonincreasing in t on J ,
(iii) z(v(t)) drops strictly at t = t0 if and only if

S1 3 x 7→ v(t0)(x) ∈ R,
has a multiple zero.

Observe that the assertions of this lemma hold for the zero number of the differ-
ence of two different solutions for a scalar semilinear parabolic equation.

Lemma 3.2. ([20, Lemma 3.4]) If u1 and u2 are two different Xα solutions of (1.1)
defined on an open interval J , then v(t) = u1(t) − u2(t), t ∈ J , satisfies the linear
parabolic equation (3.7) with

b(t, x) =

∫ 1

0

fy(x, θu1 + (1− θ)u2, θ(u1)x + (1− θ)(u2)x)dθ,

d(t, x) =

∫ 1

0

fz(x, θu1 + (1− θ)u2, θ(u1)x + (1− θ)(u2)x)dθ,

and the assertions of Lemma 3.1 hold.
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4. The period map

Consider a periodic orbit Π with period ω > 0 and choose a periodic point a ∈ Π.
Thus

Π = {p(t) : t ∈ [0, ω)},
where p : R → X1 is a periodic solution of (2.3) with p(0) = a. We consider the
linear variational problem (3.2) around p and the corresponding evolution operators
T (t, s), t ≥ s. In particular, the operator Tω = T (ω, 0) = Du0S(ω)a is called a period
map (cf. [13, Definition 7.2.1]) and the function w(t) = T (t, 0)ζ satisfies the linear
nonautonomous equation

(4.1) wt = wxx + b(t, x)w + d(t, x)wx, t > 0, x ∈ S1,

with

b(t, x) = fy(x, p(t)(x), px(t)(x)), d(t, x) = fz(x, p(t)(x), px(t)(x)).

Since Tω is a bounded compact operator in the Hilbert infinite-dimensional space
Xα, the spectrum σ(Tω) of Tω consists of 0 and a countable number of eigenvalues
converging to 0. Each of these eigenvalues is called a characteristic multiplier and
has a finite algebraic multiplicity.

Moreover, if we choose p(θ) ∈ Π instead of a and linearize around the periodic
solution p(·+ θ), then the evolution operators are T (θ+ t, θ+ s), so the period map
is equal to T (θ + ω, θ) = Du0S(ω)p(θ). Thus, by [13, Lemma 7.2.2], the spectrum
of Tω = Du0S(ω)a does not depend on the choice of the periodic point a ∈ Π, but
the eigenfunctions do depend on a. Observe also that 1 is always a characteristic
multiplier with the corresponding eigenfunction pt(0) ∈ X1 (cf. [13, Lemma 8.2.2]).
If 1 is a simple eigenvalue of Tω unique on the unit circle, we say that Π is a hyperbolic
periodic orbit.

We put the multipliers in a sequence {λj}j≥0 such that they appear according
to their algebraic multiplicity and are ordered by |λj+1| ≤ |λj|. It was shown in
[3] that for all j ≥ 0 we have |λ2j+1| < |λ2j|. In other words, denoting by Ej(Π)
the real generalized eigenspace of {λ2j−1, λ2j} for j ≥ 1 and by E0(Π) the real
eigenspace corresponding to the isolated eigenvalue λ0, we know that dimE0(Π) = 1
and dimEj(Π) = 2, j ≥ 1. Moreover, [3, Theorem 2.2] yields that any nonzero
φ ∈ Ej(Π), j ≥ 0, has only simple zeros and z(φ) = 2j.

Now we consider three projections connected with the decomposition of the spec-
trum of Tω

P` =
1

2πi

∫
γ`

(µI − Tω)−1dµ, ` ∈ {s, c, u}

where γ`, ` ∈ {s, c, u}, is a closed regular curve surrounding in mathematically
positive sense and separating from the rest of the spectrum of Tω the following
subsets of the spectrum of Tω

σs = {λ ∈ σ(Tω) : |λ| < 1}, σc = {λ ∈ σ(Tω) : |λ| = 1}, σu = {λ ∈ σ(Tω) : |λ| > 1},

respectively. Note that dimPuX
α, called the Morse index i(Π), is finite and equals

the total algebraic multiplicity of multipliers outside the closed unit ball. Similarly
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dimPcX
α is finite and equals the total algebraic multiplicity of multipliers on the

unit circle.
Observe that Xα = PuX

α ⊕ PcX
α ⊕ PsX

α and P`X
α, ` ∈ {s, c, u} are positively

invariant subspaces of Tω and

σ(Tω|P`Xα) = σ`.

Furthermore, the eigenvectors of Tω belong to X1, so P`X
α ⊂ X1, ` ∈ {c, u}.

Moreover, Tω maps bijectively PuX
α onto PuX

α and PcX
α onto PcX

α.
Assume that Π is a hyperbolic periodic orbit. Consequently, we have PcX

α =
span{pt(0)}. We consider the Poincaré map Pa for the semiflow {S(t)} correspond-
ing to the cross section a + PuX

α + PsX
α (see [13, Section 8.4],[28, Section 4.1]).

Then the spectrum of the tangent map to Pa at a is equal to σ(Tω) \ {1} and hence
a is a hyperbolic fixed point of Pa. Therefore Π is hyperbolic in the sense of [28].

Since a hyperbolic periodic orbit Π is a normally hyperbolic manifold for {S(t)}
(see [28, Remark 14.3 (c)]), it follows from [28, Theorem 14.2, Remark 14.3] (see
also [28, Section 6.3]) that the local stable manifold of Π in a small neighborhood
U of Π defined by

W s
loc(Π) = {u0 ∈ Xα : S(t)u0 ∈ U, t ≥ 0}

is a C1 submanifold of Xα with codimW s
loc(Π) = i(Π), whereas the local unstable

manifold of Π in U defined by

W u
loc(Π) = {u0 ∈ Xα : ∃{u−s}s≥0

S(t)u−s = ut−s, 0 ≤ t ≤ s and u−s ∈ U, s ≥ 0}

is a C1 submanifold of Xα with dimW u
loc(Π) = i(Π) + 1.

Moreover, W s
loc(Π) is fibrated by local strong stable manifolds at each a ∈ Π

W s
loc(Π) =

⋃
a∈Π

W ss
loc(a)

and W u
loc(Π) by local strong unstable manifolds at each a ∈ Π

W u
loc(Π) =

⋃
a∈Π

W su
loc(a),

where, for sufficiently small ρ > 0, we have the following characterizations with
certain κ, κ′ > 0

W ss
loc(a) = {u0 ∈ Xα : ‖S(t)u0 − S(t)a‖Xα < ρ for t ≥ 0

and lim
t→∞

eκt ‖S(t)u0 − S(t)a‖Xα = 0},

W su
loc(a) = {u0 ∈ Xα : ∃{u−t}t≥0

∥∥u−t − S(t)−1a
∥∥

Xα < ρ for t ≥ 0,

S(r)u−s = ur−s for 0 ≤ r ≤ s and lim
t→∞

eκ′t
∥∥u−t − S(t)−1a

∥∥
Xα = 0}.

From [28, Section 15.2] it follows that for each a ∈ Π, W ss
loc(a) is a C1 submanifold

of Xα tangent at a to PsX
α and W su

loc(a) is a C1 submanifold of Xα tangent at a to
PuX

α.
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5. Local stable manifold of a hyperbolic periodic orbit

In this section we consider a hyperbolic parabolic orbit Π and show that for any
u0 ∈ W s

loc(Π) \ Π there exists a ∈ Π such that u(t;u0)− p(t; a) tends exponentially
to 0 as t→∞ and

(5.1) z(u0 − a) ≥ i(Π) + 1 +
1 + (−1)i(Π)

2
.

Choose u0 ∈ W s
loc(Π) \ Π and let a ∈ Π be such that u0 ∈ W ss

loc(a). We consider
the corresponding solutions u(t) = S(t)u0 and p(t) = S(t)a of (2.3). Let v(t) =
u(t)− p(t), t ≥ 0, and note that v satisfies the nonautonomous linear equation1

(5.2) vt = vxx + b̂(t, x)v + d̂(t, x)vx, t > 0, x ∈ S1,

where

b̂(t, x) =

∫ 1

0

fy(x, θu(t)(x) + (1− θ)p(t)(x), θux(t)(x) + (1− θ)px(t)(x))dθ,

d̂(t, x) =

∫ 1

0

fz(x, θu(t)(x) + (1− θ)p(t)(x), θux(t)(x) + (1− θ)px(t)(x))dθ.

We also have

(5.3) lim
t→∞

eκt ‖v(t)‖Xα = 0.

We consider the sequence v(nω) = u(nω) − a, n ∈ N. Note that u(nω) ∈ W ss
loc(a)

for all n ∈ N. Changing the norms to the equivalent ones, if necessary, but keeping
the notation, we observe that

(5.4) W ss
loc(a) = {u = a+ h(Ps(u− a)) + Ps(u− a) : u ∈ BXα(a, ρ)},

where h : BPsXα(0, ρ) → BPuXα⊕PcXα(0, ρ) is a C1 function such that h(0) = 0 and
h′(0) = 0. Let

γ = max{|λj| : |λj| < 1}.
Then {λj : |λj| = γ} is a spectral set for Tω and we denote the corresponding projec-
tion in Xα by P . If i(Π) = 2N −1, then λ2N−1 = 1 and λ2N form a spectral set and
thus PXα is the one-dimensional space spanned by the eigenfunction corresponding
to λ2N , so PXα ⊂ EN(Π) and

(5.5) z(φ) = 2N = i(Π) + 1 for φ ∈ PXα \ {0}.
If i(Π) = 2N , then λ2N = 1 and PXα is either EN+1(Π) or the one-dimensional
space spanned by the eigenfunction corresponding to λ2N+1. In both cases we have
PXα ⊂ EN+1(Π) and

(5.6) z(φ) = 2N + 2 = i(Π) + 2 for φ ∈ PXα \ {0}.
It can be shown that for each a ∈ Π the set

W fs
loc(a) = {u0 ∈ Xα : ‖S(t)u0 − S(t)a‖Xα < ρ for t ≥ 0

and lim
t→∞

eκ̃t ‖S(t)u0 − S(t)a‖Xα = 0}

1v(t) 6= 0 for all t ≥ 0, since u0 /∈ Π.
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for a certain κ̃ = κ̃(γ) > κ is a C1 submanifold of Xα, tangent at a to (Ps − P )Xα.

We call W fs
loc(a) the local fast stable manifold.

We are going to show that if u0 ∈ W ss
loc(a) \W

fs
loc(a), then there exists a sequence

tk → ∞ such that the normalized vectors u(tk;u0) − p(tk; a) tend to some ϕ ∈
PXα \ {0}. Consequently, the zero number estimates for elements from PXα \ {0}
given in (5.5) and (5.6) will lead to (5.1) for u0 ∈ W ss

loc(a) \W
fs
loc(a). We will also

show that (5.1) for u0 ∈ W fs
loc(a) \ {a} follows from the previous case and the fact

that W fs
loc(a) is a submanifold of W ss

loc(a) with codimension 1 or 2 within W ss
loc(a).

Following [4, Lemma 2.2], we begin by proving that for u0 ∈ W ss
loc(a)\W

fs
loc(a) the

(Ps − P )Xα-coordinate of v(nω) tends faster to zero than its PXα-coordinate.

Lemma 5.1. For u0 ∈ W ss
loc(a) \W

fs
loc(a) we have

(5.7)
‖(Ps − P )v(nω)‖Xα

‖Pv(nω)‖Xα

→ 0 as n→∞.

Proof. Note that

W fs
loc(a) = {u = a+ g((Ps − P )(u− a)) + (Ps − P )(u− a), u ∈ BXα(a, ρ)},

where g : B(Ps−P )Xα(0, ρ) → B(Pu+P+Pc)Xα(0, ρ) is C1 and g(0) = 0, g′(0) = 0,
is a subset of W ss

loc(a). Taking into account (5.4) and setting y = P (u − a) and
z = (Ps − P )(u− a) for u ∈ W ss

loc(a), we see that

W fs
loc(a) = {u = a+ h(y + z) + y + z ∈ W ss

loc(a) : y = Pg(z), z ∈ B(Ps−P )Xα(0, ρ)}.

This means that in the coordinates (y, z) for W ss
loc(a) the manifold W fs

loc(a) is a graph
of the function y = Pg(z).

Consider first the behavior of the sequence {v(nω)} for u0 ∈ W ss
loc(a). Denote by

T̂ (t, s) : Xα → Xα, t ≥ s ≥ 0, the linear evolution operator corresponding to (5.2).
We know that

(5.8) Un = T̂ ((n+ 1)ω, nω)− Tω → 0 as n→∞

in the operator norm of L(Xα, Xα) (see (4.1), (5.2)). Indeed, v(t) = T̂ (t, nω)ξ,
t ∈ [nω, (n+ 1)ω], with ξ ∈ Xα, satisfies

vt = vxx + b̂(t, x)v + d̂(t, x)vx, t ∈ (nω, (n+ 1)ω], x ∈ S1, v(nω) = ξ.

We change the variables ṽn(s) = v(s+ nω), s ∈ [0, ω]. Then ṽn satisfies

(5.9)

{
ṽn

s = ṽn
xx + b̂(s+ nω, x)ṽn + d̂(s+ nω, x)ṽn

x , s ∈ (0, ω], x ∈ S1,

ṽn(0) = ξ.

Moreover, for w(s) = T (s, 0)ξ, s ∈ [0, ω], from (4.1) we have

ws = wxx + b(s, x)w + d(s, x)wx, s ∈ (0, ω], x ∈ S1, w(0) = ξ.

Define zn(s) = ṽn(s)− w(s), s ∈ [0, ω], and note that it satisfies

zn
s = zn

xx+b(s, x)zn+d(s, x)zn
x +(b̂(s+nω, x)−b(s, x))ṽn+(d̂(s+nω, x)−d(s, x))ṽn

x ,
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with zn(0) = 0. If we denote by G(t, σ), 0 ≤ σ ≤ t ≤ ω, the evolution operator in
X0 for zs = zxx + b(s, x)z + d(s, x)zx, then we obtain (see [17, (6.1.18),(6.1.19)])

‖G(t, σ)ζ‖Xα ≤ C ‖ζ‖Xα , 0 ≤ σ ≤ t ≤ ω, ζ ∈ Xα,

‖G(t, σ)ζ‖Xα ≤
C

(t− σ)α
‖ζ‖X0 , 0 ≤ σ < t ≤ ω, ζ ∈ X0,

and

zn(s) =

∫ s

0

G(s, σ)hn(σ)dσ, 0 ≤ s ≤ ω,

where hn(σ) = (b̂(σ + nω)− b(σ))ṽn + (d̂(σ + nω)− d(σ))ṽn
x . Thus we get

(5.10) ‖zn(s)‖Xα ≤ C

∫ s

0

1

(s− σ)α
‖hn(σ)‖X0 dσ.

Moreover, from the variation of constants formula and (5.9) we obtain

‖ṽn(s)‖Xα ≤ c ‖ξ‖Xα + c

∫ s

0

1

(s− σ)α
‖b(σ)ṽn + d(σ)ṽn

x

+(b̂(σ + nω)− b(σ))ṽn + (d̂(σ + nω)− d(σ))ṽn
x‖X0dσ.

Note that by the regularity of f we have

|b(σ, x)| ≤M, |d(σ, x)| ≤M, σ ∈ [0, ω], x ∈ S1,

and ∣∣∣b̂(σ + nω, x)− b(σ, x)
∣∣∣ ≤M,

∣∣∣d̂(σ + nω, x)− d(σ, x)
∣∣∣ ≤M,

for any σ ∈ [0, ω], x ∈ S1 and n ∈ N. Therefore

‖ṽn(s)‖Xα ≤ c ‖ξ‖Xα + 2Mcc̃

∫ s

0

1

(s− σ)α
‖ṽn(σ)‖Xα dσ, s ∈ [0, ω].

From a Volterra type inequality we obtain for L = L(c, c̃,M, ω) > 0

(5.11) ‖ṽn(s)‖Xα ≤ L ‖ξ‖Xα , s ∈ [0, ω].

Fix ε > 0 and let n0 ∈ N be such that for n ≥ n0 we have for any σ ∈ [0, ω], x ∈ S1∣∣∣b̂(σ + nω, x)− b(σ, x)
∣∣∣ < (1− α)ε

Cc̃Lω1−α
,
∣∣∣d̂(σ + nω, x)− d(σ, x)

∣∣∣ < (1− α)ε

Cc̃Lω1−α
.

Hence from (5.10) and (5.11) we get

‖zn(ω)‖Xα ≤
(1− α)ε

Lω1−α

∫ ω

0

1

(ω − σ)α
‖ṽn(σ)‖Xα dσ ≤ ε ‖ξ‖Xα .

This shows that Un → 0 in L(Xα, Xα).
Note that by definition v(nω) = u(nω)− a with u(nω) ∈ W ss

loc(a) and

v((n+ 1)ω) = T̂ ((n+ 1)ω, nω)v(nω).

Rewriting this equation in coordinates (y, z), we obtain with yn = Pv(nω) and
zn = (Ps − P )v(nω){

yn+1 = PT̂ ((n+ 1)ω, nω)(h(yn + zn) + yn + zn),

zn+1 = (Ps − P )T̂ ((n+ 1)ω, nω)(h(yn + zn) + yn + zn).
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Using the definition of Un in (5.8) and the properties of projections, our system can
be written as

(5.12)

{
yn+1 = PTωPyn + PUn(h(yn + zn) + yn + zn),

zn+1 = (Ps − P )Tω(Ps − P )zn + (Ps − P )Un(h(yn + zn) + yn + zn).

Finally, we make the change of coordinates ỹ = y − Pg(z), z̃ = z, use the fact that

in the new coordinates W fs
loc(a) is described by the equation ỹ = 0 and get

(5.13)

{
ỹn+1 = PTωP ỹn +Gn(ỹn, z̃n),

z̃n+1 = (Ps − P )Tω(Ps − P )z̃n +Hn(ỹn, z̃n),

where

Gn(ỹn, z̃n) = PUn(h(ỹn + Pg(z̃n) + z̃n) + ỹn − h(Pg(z̃n) + z̃n)),

Hn(ỹn, z̃n) = (Ps − P )Un(h(ỹn + Pg(z̃n) + z̃n) + ỹn + Pg(z̃n) + z̃n).

Considering the spectra σ(PTωP ) and σ((Ps − P )Tω(Ps − P )), we see that there
exist 0 < r < γ and 0 < µ < γ−r

2
and norms equivalent to the original ones in the

spaces PXα and (Ps − P )Xα such that

(5.14) |||(Ps − P )Tω(Ps − P )z̃|||(Ps−P )Xα ≤ (r + µ) |||z̃|||(Ps−P )Xα , z̃ ∈ (Ps − P )Xα.

(5.15) |||PTωP ỹ|||PXα ≥ (γ − µ) |||ỹ|||PXα , ỹ ∈ PXα,

Indeed, choose 0 < r < γ so that

lim
n→∞

‖[(Ps − P )Tω(Ps − P )]n‖
1
n

L((Ps−P )Xα,(Ps−P )Xα) < r.

Then we set

|||z̃|||(Ps−P )Xα =
∞∑

n=0

r−n ‖[(Ps − P )Tω(Ps − P )]nz̃‖(Ps−P )Xα , z̃ ∈ (Ps − P )Xα.

The estimate (5.14) follows easily. Since

lim
n→∞

∥∥(PTωP )−n
∥∥ 1

n

L(PXα,PXα)
=

1

γ
,

we can define

|||ỹ|||PXα =
∞∑

n=0

(γ − µ)n
∥∥(PTωP )−nỹ

∥∥
PXα , ỹ ∈ PXα.

Then the estimate (5.15) is straightforward.

Choose now β ∈
(

r+µ
γ−µ

, 1
)
. Then there exists ε0 = ε0(r, γ, µ, β) > 0 such that for

every 0 < ε < ε0 we have
r + µ+ ε

γ − µ− ε
< β.

Observe that (5.8) and the properties of h and g as well as the fact that

|||ỹn|||PXα + |||z̃n|||(Ps−P )Xα → 0 as n→∞
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imply that for every 0 < ε < ε0 there exists n0 = n0(ε) ∈ N such that for any
n ≥ n0 we have

(5.16) |||Gn(ỹn, z̃n)|||PXα ≤ ε |||ỹn|||PXα

and

(5.17) |||Hn(ỹn, z̃n)|||(Ps−P )Xα ≤ ε(|||ỹn|||PXα + |||z̃n|||(Ps−P )Xα).

Assume now that u0 ∈ W ss
loc(a) \W

fs
loc(a). Then ỹn 6= 0 for all n ∈ N. Applying

(5.15), (5.14), (5.16) and (5.17) to (5.13), we estimate for n ≥ n0

(5.18)
|||z̃n+1|||(Ps−P )Xα

|||ỹn+1|||PXα

≤ r + µ+ ε

γ − µ− ε

|||z̃n|||(Ps−P )Xα

|||ỹn|||PXα

+
ε

γ − µ− ε
.

Choose δ ∈ (0, 1− β). Therefore, from (5.18) we infer that
(5.19)

if
|||z̃n|||(Ps−P )Xα

|||ỹn|||PXα

≥ ε

δ(γ − µ− ε)
, then

|||z̃n+1|||(Ps−P )Xα

|||ỹn+1|||PXα

≤ (β + δ)
|||z̃n|||(Ps−P )Xα

|||ỹn|||PXα

.

Fix any η > 0. Choose 0 < ε < ε0 such that ε
δ(γ−µ−ε)

< η. Suppose that for every

n ≥ n0 = n0(ε) we have |||z̃n|||(Ps−P )Xα ≥ η |||ỹn|||PXα . Then by (5.19) we get

ε

δ(γ − µ− ε)
< η ≤

|||z̃n|||(Ps−P )Xα

|||ỹn|||PXα

≤ (β + δ)n−n0
|||z̃n0 |||(Ps−P )Xα

|||ỹn0|||PXα

, n ≥ n0,

which is a contradiction. Therefore, there exists n1 ≥ n0 such that |||z̃n1|||(Ps−P )Xα <

η |||ỹn1|||PXα . Hence from (5.18) it follows that for every n ≥ n1 we have

|||z̃n|||(Ps−P )Xα

|||ỹn|||PXα

< η.

Since η > 0 was chosen arbitrarily, this shows that

(5.20)
‖zn‖Xα

‖yn − Pg(zn)‖Xα

→ 0 as n→∞.

Since g(0) = 0 and g′(0) = 0, we know that yn 6= 0 for all sufficiently large n and

‖zn‖Xα

‖yn‖Xα

≤ ‖zn‖Xα

‖yn − Pg(zn)‖Xα

(
1 +

‖Pg(zn)‖Xα

‖yn‖Xα

)
,

i.e. we have

‖zn‖Xα

‖yn‖Xα

(
1− ‖Pg(zn)‖Xα

‖yn − Pg(zn)‖Xα

)
≤ ‖zn‖Xα

‖yn − Pg(zn)‖Xα

.

This shows that
‖zn‖Xα

‖yn‖Xα

→ 0 as n→∞,

or in other words (5.7), which completes the proof. �
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We compute

(5.21)
v(nω)

‖v(nω)‖Xα

=
h(Psv(nω))

‖v(nω)‖Xα

+
Psv(nω)

‖v(nω)‖Xα

.

Observe that2

(5.22) lim
n→∞

h(Psv(nω))

‖v(nω)‖Xα

= lim
n→∞

h(Psv(nω))

‖Psv(nω)‖Xα

‖Psv(nω)‖Xα

‖v(nω)‖Xα

= 0,

since v(nω) → 0 as n→∞ and h(0) = 0, h′(0) = 0.

Let u0 ∈ W ss
loc(a) \W

fs
loc(a) and note that for n large enough

(5.23)
Psv(nω)

‖v(nω)‖Xα

=
(Ps − P )v(nω)

‖Pv(nω)‖Xα

‖Pv(nω)‖Xα

‖v(nω)‖Xα

+
Pv(nω)

‖v(nω)‖Xα

.

Since PXα is finite-dimensional and the sequence Pv(nω)
‖v(nω)‖Xα

is bounded there, we

can find a subsequence {tnk
} ⊂ {nω : n ∈ N} and ϕ ∈ PXα \ {0} such that

(5.24) lim
k→∞

Pv(tnk
)

‖v(tnk
)‖Xα

= ϕ

and, by (5.21),(5.22),(5.7) and (5.23), we obtain

(5.25) lim
k→∞

v(tnk
)

‖v(tnk
)‖Xα

= lim
k→∞

S(tnk
)u0 − a

‖S(tnk
)u0 − a‖Xα

= ϕ.

Since Lemma 3.2 applies to (5.2), we have for u0 ∈ W ss
loc(a) \W

fs
loc(a) and k large

enough

(5.26) z(u0 − a) = z(v(0)) ≥ z(v(tnk
)) = z(ϕ).

Let now u0 ∈ W fs
loc(a)\{a}. Since Lemma 3.2 applies to (5.2) and the zero number

is bounded from below, there exists n ∈ N large enough so that v(nω) = u(nω)− a

has only simple zeros. Note that u(nω) ∈ W fs
loc(a) and choose ũ ∈ W ss

loc(a) \W
fs
loc(a)

such that

z(v(nω)) = z(u(nω)− a) = z(ũ− a).

Therefore, by the above considerations there exists ψ ∈ PXα \ {0} such that

z(u0 − a) ≥ z(v(nω)) = z(ũ− a) ≥ z(ψ).

Recalling (5.5) and (5.6), we summarize our considerations in the following

Theorem 5.2. For any u0 ∈ W s
loc(Π) \ Π there exist a ∈ Π and κ > 0 such that

lim
t→∞

eκt ‖S(t)u0 − S(t)a‖Xα = 0

and, for 2N = z(pt(0; a)),

(5.27) z(u0 − a) ≥

{
i(Π) + 1 = 2N if i(Π) = 2N − 1,

i(Π) + 2 = 2N + 2 if i(Π) = 2N.

2Psv(nω) 6= 0 for any n ∈ N, because otherwise v(nω) = h(Psv(nω)) + Psv(nω) would be 0.
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6. Global unstable manifold of a hyperbolic periodic orbit

Following [13, Theorem 6.1.9], we prove a general result concerning the extension
of submanifolds.

Lemma 6.1. Let S(t) : Xα → Xα, t ≥ 0, be a semiflow, which admits a com-
pact global attractor A in Xα. Assume that Σ is a bounded subset of A, V is an
open subset of an m-dimensional closed linear subspace E of Xα and k : Σ → V
is a homeomorphism (with Σ endowed with the induced topology from Xα) and its
inverse h = k−1 : V → Σ belongs to C1(V,Xα) with Dvh(v) ∈ L(E,Xα) injective
for any v ∈ V . Moreover, let the semiflow S(t) : Xα → Xα, t ≥ 0, be injective,
belonging to C1(Xα, Xα) and let DwS(t)(w) ∈ L(Xα, Xα) be injective for any t ≥ 0
and w ∈ Σ. Then each set S(t)Σ is a C1 submanifold of Xα with dimension m.

Proof. Define f t : V → Xα by

f t(v) = S(t)h(v), v ∈ V.

Since S(t)|A is a homeomorphism of A onto A, we infer that S(t)|Σ is a homeomor-
phism of Σ onto S(t)Σ (both equipped with the induced topology from Xα). Thus
f t is a homeomorphism of V onto S(t)Σ, f t ∈ C1(V,Xα) and for any v ∈ V we have

Dvf
t(v) = DwS(t)(h(v)) ◦Dvh(v) ∈ L(E,Xα) is injective.

Moreover, (Dvf
t(v))E is an m-dimensional closed linear subspace of Xα, so it has

a closed complement in Xα. Thus by [28, Corollary B.3.4] f t is an injective C1

immersion (at any point v ∈ V ). Since f t is a homeomorphism of V onto S(t)Σ
with the induced topology from Xα, it follows from [28, Proposition B.4.3] that
S(t)Σ is a C1 submanifold of Xα with dimension m. �

In our problem we define the global unstable manifold of a hyperbolic periodic
orbit Π by

W u(Π) =
⋃
t≥0

S(t)W u
loc(Π).

Using Lemma 6.1 we infer that this invariant subset of the global attractor A is the
union of C1 submanifolds of Xα. Moreover, we have

W u(Π) =
⋃
t≥0

⋃
a∈Π

S(t)W su
loc(a),

where again by Lemma 6.1 each S(t)W su
loc(a) is a C1 submanifold of Xα.

Below we examine the unstable manifold and, for simplicity, we keep the same
notation as in the stable manifold case. The aim here is to show that for any
u0 ∈ W u(Π) \ Π there exists a ∈ Π such that u(t;u0) − p(t; a) tends exponentially
to 0 as t→ −∞ and

z(u0 − a) ≤ i(Π)− 1 +
1 + (−1)i(Π)

2
.

The crucial observation is, similarly to the case of W s
loc(Π), the existence of a se-

quence tk → −∞ such that the normalized vectors u(tk;u0) − p(tk; a) tend to
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some ϕ ∈ PuX
α \ {0}. However, the proof is now easier, since W u

loc(Π) is a finite-
dimensional submanifold of Xα.

Choose u0 ∈ W u(Π) \ Π and note that then there exist τ ≥ 0 and ã ∈ Π such
that u0 ∈ S(τ)W su

loc(ã). Let ũ0 ∈ W su
loc(ã) and a ∈ Π satisfy u0 = S(τ)ũ0 and

a = S(τ)ã. We consider the corresponding backward solutions u(t) = u(t; ũ0) and
p̃(t) = p̃(t; ã) = p(t − τ ; a) of (2.3). Let v(t) = u(t) − p̃(t), t ≤ 0, and note that v
satisfies the nonautonomous linear equation3

(6.1) vt = vxx + b̂(t, x)v + d̂(t, x)vx, t < 0, x ∈ S1,

where

b̂(t, x) =

∫ 1

0

fy(x, θu(t)(x) + (1− θ)p̃(t)(x), θux(t)(x) + (1− θ)p̃x(t)(x))dθ,

d̂(t, x) =

∫ 1

0

fz(x, θu(t)(x) + (1− θ)p̃(t)(x), θux(t)(x) + (1− θ)p̃x(t)(x))dθ.

We also have

(6.2) lim
t→−∞

e−κ′t ‖v(t)‖Xα = 0.

We consider the sequence v(−nω) = u(−nω) − ã, n ∈ N. Note that u(−nω) ∈
W su

loc(ã) for all n ∈ N. Changing the norms to the equivalent ones, if necessary, but
keeping the notation, we see that

(6.3) W su
loc(ã) = {u = ã+ h(Pu(u− ã)) + Pu(u− ã) : u ∈ BXα(ã, ρ)},

where h : BPuXα(0, ρ) → BPsXα⊕PcXα(0, ρ) is a C1 function such that h(0) = 0 and
h′(0) = 0. We compute

(6.4)
v(−nω)

‖v(−nω)‖Xα

=
h(Puv(−nω))

‖v(−nω)‖Xα

+
Puv(−nω)

‖v(−nω)‖Xα

.

Again observe that4

(6.5) lim
n→∞

h(Puv(−nω))

‖v(−nω)‖Xα

= lim
n→∞

h(Puv(−nω))

‖Puv(−nω)‖Xα

‖Puv(−nω)‖Xα

‖v(−nω)‖Xα

= 0.

Since
Puv(−nω)

‖v(−nω)‖Xα

, n ∈ N,

is a bounded sequence in a finite-dimensional subspace of Xα, there exist a subse-
quence {tnk

} ⊂ {−nω : n ∈ N} and ϕ ∈ PuX
α \ {0} such that

(6.6) lim
k→∞

Puv(tnk
)

‖v(tnk
)‖Xα

= ϕ

and by (6.4) and (6.5), we obtain

(6.7) lim
k→∞

v(tnk
)

‖v(tnk
)‖Xα

= ϕ.

3v(t) 6= 0 for all t ≤ 0, since ũ0 /∈ Π.
4Puv(−nω) 6= 0 for any n ∈ N, because otherwise v(−nω) = h(Puv(−nω)) + Puv(−nω) would

be 0.
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If i(Π) = 2N − 1, then λ2N−1 = 1, 2N = z(p̃t(0; ã)) = z(pt(0; a)) and

(6.8) z(φ) ≤ 2N − 2 = i(Π)− 1 for φ ∈ PuX
α \ {0},

whereas if i(Π) = 2N , then λ2N = 1, 2N = z(p̃t(0; ã)) = z(pt(0; a)) and

(6.9) z(φ) ≤ 2N = i(Π) for φ ∈ PuX
α \ {0}.

Using Lemma 3.2, we have for u0 ∈ W u(Π) \ Π and k large enough

(6.10) z(u0 − a) ≤ z(ũ0 − ã) = z(v(0)) ≤ z(v(tnk
)) = z(ϕ).

Summarizing the above considerations we obtain

Theorem 6.2. For any u0 ∈ W u(Π) \ Π there exist a ∈ Π and κ′ > 0 such that

lim
t→∞

eκ′t
∥∥S(t)−1u0 − S(t)−1a

∥∥
Xα = 0

and, for 2N = z(pt(0; a)),

(6.11) z(u0 − a) ≤

{
i(Π)− 1 = 2N − 2 if i(Π) = 2N − 1,

i(Π) = 2N if i(Π) = 2N.

7. Exclusion of a homoclinic connection for a hyperbolic periodic
orbit

In this section we will consider two (not necessarily distinct) hyperbolic periodic
orbits Π− and Π+ with periods ω− > 0 and ω+ > 0, respectively. We also assume
that there exists a point

u0 ∈ (W u(Π−) ∩W s
loc(Π

+)) \ (Π− ∪ Π+).

Note that if Π− = Π+, then u0 is a homoclinic point and the corresponding orbit is
a homoclinic connection for the periodic orbit.

Consequently, to u0 /∈ Π−∪Π+ there corresponds an Xα solution u(·;u0) of (2.3),
which is defined for all t ∈ R, its orbit is bounded in Xα (thus belongs to the global
attractor A) and there exist initial data a± ∈ Π± together with periodic solutions
p±(·; a±) of (2.3) such that

(7.1) lim
t→±∞

u(t;u0)− p±(t; a±) = 0

in Xα (cf. [13, Theorem 8.2.3]). We also define N± ∈ N so that 2N± = z(p±t (0; a±)).
In order to combine the estimates (5.27) and (6.11) we observe in the following two

lemmas that there exists some neighborhood of {p+(t; a+)−p−(t; a−) : t ∈ R} in Xα

consisting of a finite number of balls such that in a sufficiently bigger neighborhood
the zero number of functions is constant.

Lemma 7.1. If Π− = Π+ and a− 6= a+, then

z(p+(t; a+)− p−(t; a−)) = const., t ∈ R.
Therefore there exists a finite cover

⋃n
i=1BXα(p+(ti; a

+) − p−(ti; a
−), εi) of the set

{p+(t; a+) − p−(t; a−) : t ∈ R} in Xα such that the zero number is constant in⋃n
i=1BXα(p+(ti; a

+)− p−(ti; a
−), 2εi).
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Proof. Suppose that v(t) = p+(t; a+) − p−(t; a−), t ∈ R, has a multiple zero at
t = t0. Since v is periodic with period ω = ω+ = ω−, then by Lemma 3.2 we have

z(v(t0)) = z(v(t0 − ω)) > z(v(t0)),

which is a contradiction.
The second claim follows from the compactness of {p+(t; a+)− p−(t; a−) : t ∈ R}

in Xα (as a continuous image of a compact interval), since to each point v of this
set there corresponds a ball BXα(v, 2εv) in which the zero number is constant and
we can choose a finite subcover from

⋃
v BXα(v, εv). �

Lemma 7.2. If Π− 6= Π+, then we have

z(p+(t; a+)− p−(s; a−)) = const., s, t ∈ R.

Therefore there exists a finite cover
⋃n

i=1BXα(p+(ti; a
+) − p−(si; a

−), εi) of the set
{p+(t; a+) − p−(s; a−) : s, t ∈ R} in Xα such that the zero number is constant in⋃n

i=1BXα(p+(ti; a
+)− p−(si; a

−), 2εi).

Proof. Fix τ ∈ R and suppose that v(t) = p+(t; a+) − p−(t + τ ; a−), t ∈ R, has

a multiple zero at t = t0. We consider two cases. If ω+

ω−
is rational, say ω+

ω−
= k

m
for

some k,m ∈ N, then with ω = mω+ = kω− we have for any t ∈ R

v(t+ω) = p+(t+mω+; a+)−p−(t+kω−+ τ ; a−) = p+(t; a+)−p−(t+ τ ; a−) = v(t),

i.e. v is periodic with period ω. Then we have

z(v(t0)) = z(v(t0 − ω)) > z(v(t0)),

which is a contradiction.
Consider now ω+

ω−
irrational. Note that R 3 t → z(v(t)) ∈ R as a monotone

function has at most a countable number of points of discontinuity. Therefore we
choose t1 ≤ t0 − ω+ < t0 such that v(t1) does not have multiple zeros and observe
that

z(v(t1)) > z(v(t0)).

To obtain a contradiction it suffices to find t2 > t0 such that z(v(t2)) = z(v(t1)).
Below we show that

∀ε>0∃t2>t0

∥∥(p+(t2; a
+), p−(t2 + τ ; a−))− (p+(t1; a

+), p−(t1 + τ ; a−))
∥∥

Xα×Xα < ε,

which implies that ‖v(t1)− v(t2)‖C1(S1) < ε and thus z(v(t1)) = z(v(t2)) for suf-

ficiently small ε > 0. Fix ε > 0. Since p+ and p− are continuous and periodic,
the uniform continuity implies that there exists δ > 0 such that for any points
(t, s), (t̂, ŝ) ∈ R2 we know that

∣∣(t, s)− (t̂, ŝ)
∣∣ < δ implies∥∥(p+(t; a+), p−(s+ τ ; a−))− (p+(t̂; a+), p−(ŝ+ τ ; a−))

∥∥
Xα×Xα < ε.

Choose n0 ∈ N such that ω−

n0
< δ and set s0 = t0−t1

ω+ ≥ 1. Denoting by [ · ] the floor
function, consider the n0 + 1 real positive numbers

([s0] + 1)
ω+

ω−
, 2([s0] + 1)

ω+

ω−
, . . . , (n0 + 1)([s0] + 1)

ω+

ω−
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and their fractional parts, which are pairwise different, since ω+

ω−
is irrational. At

least two of the numbers, say m1
ω+

ω−
> m2

ω+

ω−
, have to have fractional parts closer

than 1
n0

. Therefore, we know that m1 −m2 ≥ [s0] + 1 > s0 and

(m1 −m2)
ω+

ω−
= l + r,

where l ∈ N ∪ {0} and 0 < |r| < 1
n0

.

Hence the distance between the points (t1 + (m1 − m2)ω
+, t1 + (m1 − m2)ω

+)

and (t1 + (m1 − m2)ω
+, t1 + lω−) is less than ω−

n0
< δ. In conclusion, for t2 =

t1 + (m1 −m2)ω
+ > t0 we have∥∥(p+(t2; a

+), p−(t2 + τ ; a−))− (p+(t1; a
+), p−(t1 + τ ; a−))

∥∥
Xα×Xα

= ‖(p+(t2; a
+), p−(t2 + τ ; a−))

−(p+(t1 + (m1 −m2)ω
+; a+), p−(t1 + lω− + τ ; a−))‖Xα×Xα < ε.

This ends the proof of the first assertion.
The second claim follows from the compactness of {p+(t; a+)−p−(s; a−) : s, t ∈ R}

in Xα (as a continuous image of a two-dimensional torus), since to each point v of
this set there corresponds a ball BXα(v, 2εv) in which the zero number is constant
and we choose a finite subcover from

⋃
v BXα(v, εv). �

The above lemmas allow us to combine the inequalities (5.27) and (6.11). As
a particular result, we deduce that there is no homoclinic connection for a hyperbolic
periodic orbit.

Theorem 7.3. If u0 ∈ (W u(Π−)∩W s
loc(Π

+)) \ (Π−∪Π+) and 2N± = z(p±t (0; a±)),
then

(7.2) N− ≥ N+ and i(Π−) ≥ i(Π+) + 1,

which excludes a homoclinic connection for a hyperbolic periodic orbit.
Moreover, if i(Π+) = 2N+, then we even have

(7.3) N− ≥ N+ + 1.

Proof. Let ε0 > 0 be the minimum of ε1, . . . , εn from Lemmas 7.1, 7.2. Since (7.1)
implies for large t > 0∥∥u(t;u0)− p+(t; a+)

∥∥
Xα < ε0 and

∥∥u(−t;u0)− p−(−t; a−)
∥∥

Xα < ε0,

we have

z(u0 − a−) ≥ z(u(t;u0)− p+(t; a+) + p+(t; a+)− p−(t; a−))

= z(p+(t; a+)− p−(t; a−)) = z(p−(−t; a−)− p+(−t; a+))

= z(u(−t;u0)− p−(−t; a−) + p−(−t; a−)− p+(−t; a+)) ≥ z(u0 − a+).

Here we have assumed that a− 6= a+, but if a− = a+ we have z(u0−a−) = z(u0−a+)
immediately. By Theorem 5.2 we have

z(u0 − a+) ≥

{
i(Π+) + 1 = 2N+ if i(Π+) = 2N+ − 1,

i(Π+) + 2 = 2N+ + 2 if i(Π+) = 2N+,
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and by Theorem 6.2 we have

z(u0 − a−) ≤

{
i(Π−)− 1 = 2N− − 2 if i(Π−) = 2N− − 1,

i(Π−) = 2N− if i(Π−) = 2N−.

This leads straightforward to (7.2) and (7.3). �

8. Transversal intersection of stable and unstable manifolds of
hyperbolic periodic orbits

We are going to show the transversal intersection of stable and unstable manifolds
of hyperbolic periodic orbits following the approach used for equilibria by M. Chen,
X.-Y. Chen and J. K. Hale in [5]. Assume that

u0 ∈ S(τ)W u
loc(Π

−) ∩W s
loc(Π

+)

with some τ ≥ 0. Our purpose is to show that

Tu0S(τ)W u
loc(Π

−) + Tu0W
s
loc(Π

+) = Xα.

Without loss of generality we assume that u0 /∈ Π−∪Π+. We consider the lineariza-
tion of (1.1) around u(·;u0)

(8.1)

{
vt = vxx + b̂(t, x)v + d̂(t, x)vx, t > s, x ∈ S1,

v(s) = ψ

and the corresponding evolution operators T̂ (t, s) ∈ L(Xα, Xα), t ≥ s. Therefore,

we have T̂ (t, s)ψ = v(t; s, ψ). Note that each operator T̂ (t, s) is injective and its
adjoint is also injective. Let p±(·; a±) be periodic solutions with a± ∈ Π± such that
2N± = z(p±t (0; a±)) and

u(t;u0)− p±(t; a±) → 0 as t→ ±∞.

First we concentrate on the description of the tangent space to the local stable
manifold. To this end, let us consider the linearization of (1.1) around p+(·; a+){

w+
t = w+

xx + b+(t, x)w+ + d+(t, x)w+
x , t > s, x ∈ S1,

w+(s) = ψ

and the corresponding evolution operators T+(t, s) ∈ L(Xα, Xα), t ≥ s. We denote
by T+

ω+ = T+(ω+, 0) the period map and as in Section 4 we put its multipliers in
a sequence {λj}j≥0 such that they appear according to their algebraic multiplicity
and are ordered by |λj| ≥ |λj+1|.

Since the coefficients of the equations converge to each other, following the part
of the proof of Lemma 5.1 we get Un = T̂ ((n+1)ω+, nω+)−T+

ω+ → 0 in L(Xα, Xα).
We also have the formula

v((n+ 1)ω+) = T̂ ((n+ 1)ω+, nω+)v(nω+) = T+
ω+v(nω

+) + Unv(nω
+)

and the assumptions (B.1)-(B.2) of [5] are satisfied.
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For any ψ ∈ Xα and any m ∈ N we write

ρ∞(m,ψ) = lim sup
n→∞

∥∥v(nω+;mω+, ψ)
∥∥ 1

n

Xα = lim sup
n→∞

∥∥∥T̂ (nω+,mω+)ψ
∥∥∥ 1

n

Xα
.

Let Λ be the set of all nonnegative numbers r such that

σ(T+
ω+) ∩ {z ∈ C : |z| = r} 6= ∅.

We also set rj = |λj|, j ≥ 0. For any integer j ≥ 0 and m ∈ N we define the spaces

F+
j (m) = {ψ ∈ Xα : ρ∞(m,ψ) ≤ rj}.

From [5, Corollary B.3] it follows that for every ψ ∈ Xα and m ∈ N there exists
r ∈ Λ such that

lim
n→∞

∥∥v(nω+;mω+, ψ)
∥∥ 1

n

Xα = r.

Therefore, we have

Xα = F+
0 (m) ⊃ F+

1 (m) ⊃ F+
2 (m) ⊃ . . . .

Since it is well-known that linear equations like (8.1) do not possess nontrivial
solutions decaying faster than any exponential (see [15]), as in [5, Theorem 3.1] we
see that for all ψ 6= 0 and m ∈ N we have ρ∞(m,ψ) > 0. In other words, we get

∞⋂
j=0

F+
j (m) = {0},

because ρ∞(m, 0) = 0, m ∈ N.
From the asymptotic behavior of the solution v(nω+;mω+, ψ) we are able to

characterize the zero number z(ψ) of the initial condition ψ. Assume that

lim
n→∞

∥∥v(nω+;mω+, ψ)
∥∥ 1

n

Xα = rj.

We have the following two cases. If j is odd and rj > rj+1, then ψ ∈ F+
j (m)\F+

j+1(m)
and by [5, Theorems B.2, B.4] there exists φ ∈ E j+1

2
(Π+), ‖φ‖Xα = 1 and a sub-

sequence {tnk
} ⊂ {nω+ : n ≥ m} such that

v(tnk
;mω+, ψ)

‖v(tnk
;mω+, ψ)‖Xα

→ φ.

Therefore, we have for large k ∈ N

z(ψ) ≥ z(v(tnk
;mω+, ψ)) = z

(
v(tnk

;mω+, ψ)

‖v(tnk
;mω+, ψ)‖Xα

)
= z(φ) = j + 1.

If j is even, then ψ ∈ F+
j (m) \F+

j+1(m) and by [5, Theorems B.2,B.4] there exists
φ ∈ E j

2
(Π+), ‖φ‖Xα = 1 and a subsequence {tnk

} ⊂ {nω+ : n ≥ m} such that

v(tnk
;mω+, ψ)

‖v(tnk
;mω+, ψ)‖Xα

→ φ.

Therefore, we have for large k ∈ N

z(ψ) ≥ z(v(tnk
;mω+, ψ)) = z

(
v(tnk

;mω+, ψ)

‖v(tnk
;mω+, ψ)‖Xα

)
= z(φ) = j.
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Fix m ∈ N, ψ ∈ F+
k (m), ψ 6= 0 and let j ≥ k be such that ψ ∈ F+

j (m) \F+
j+1(m).

Suppose that k is even. If j is even, then z(ψ) ≥ j ≥ k, whereas if j is odd, then
z(ψ) ≥ j+1 ≥ k. Suppose now that k is odd. If j is even, then z(ψ) ≥ j ≥ k+1 due
to the difference of parity of k and j. Moreover, if j is odd, then z(ψ) ≥ j+1 ≥ k+1.

Since the local stable manifold W s
loc(Π

+) of the hyperbolic periodic orbit Π+

coincides locally with the local center-stable manifold W cs
loc(a

+) of a fixed point
a+ ∈ Π+ for the map S(ω+), it follows from [5, Theorem C.4] that

Tu0W
s
loc(Π

+) = {ψ ∈ Xα : lim sup
n→∞

∥∥v(nω+; 0, ψ)
∥∥ 1

n

Xα ≤ 1}.

If i(Π+) = 2N+, then r2N+ = λ2N+ = 1 and by [5, Theorem B.7] for suf-
ficiently large m0 ∈ N we see that Tu(m0ω+;u0)W

s
loc(Π

+) = F+
2N+(m0) is isomor-

phic to clXα(span{p+
t (0; a+)} ⊕ EN++1(Π

+) ⊕ . . .). Therefore, z(ψ) ≥ 2N+ for
ψ ∈ Tu(m0ω+;u0)W

s
loc(Π

+) \ {0} and codimTu(m0ω+;u0)W
s
loc(Π

+) = 2N+.
If i(Π+) = 2N+ − 1, then r2N+−1 = λ2N+−1 = 1 and by [5, Theorem B.7]

for sufficiently large m0 ∈ N we see that Tu(m0ω+;u0)W
s
loc(Π

+) = F+
2N+−1(m0) is

isomorphic to clXα(EN+(Π+) ⊕ EN++1(Π
+) ⊕ . . .). Therefore, z(ψ) ≥ 2N+ for

ψ ∈ Tu(m0ω+;u0)W
s
loc(Π

+) and codimTu(m0ω+;u0)W
s
loc(Π

+) = 2N+ − 1.

Since the adjoint operator of the evolution operator T̂ (m0ω
+, 0) is injective (thus

T̂ (m0ω
+, 0) has dense range by [13, Theorem 7.3.3]) and Tu0W

s
loc(Π

+) is the preimage

of Tu(m0ω+;u0)W
s
loc(Π

+) under T̂ (m0ω
+, 0), we see that if i(Π+) = 2N+, then

codimTu0W
s
loc(Π

+) = codimF+
2N+(0) = 2N+

and z(ψ) ≥ 2N+ for ψ ∈ Tu0W
s
loc(Π

+) \ {0}, whereas if i(Π+) = 2N+ − 1, then

codimTu0W
s
loc(Π

+) = codimF+
2N+−1(0) = 2N+ − 1

and z(ψ) ≥ 2N+ for ψ ∈ Tu0W
s
loc(Π

+) \ {0}.
In both cases of i(Π+) we now consider r2N++1 < 1 and the subspace F+

2N++1(0)
of Tu0W

s
loc(Π

+), which is isomorphic to clXα(EN++1(Π
+) ⊕ . . .). Then we have

z(ψ) ≥ 2N+ + 2 for ψ ∈ F+
2N++1(0) \ {0} and codimF+

2N++1(0) = 2N+ + 1.
From the above considerations the following result follows.

Lemma 8.1. We have

z(v) ≥ 2N+, v ∈ Tu0W
s
loc(Π

+) \ {0}.
Moreover, there exists a subspace W+ of Tu0W

s
loc(Π

+) such that

z(v) ≥ 2N+ + 2, v ∈ W+ \ {0}
and codimW+ = 2N+ + 1.

Using Lemma 8.1 we finally prove the main result of the paper.

Theorem 8.2. The stable and unstable manifolds of two hyperbolic periodic orbits
Π± for the problem (1.1) have a transversal intersection

W u(Π−) ∩ W s
loc(Π

+),

i.e. if u0 ∈ S(τ)W u
loc(Π

−) ∩W s
loc(Π

+) with some τ ≥ 0, then

Tu0S(τ)W u
loc(Π

−) + Tu0W
s
loc(Π

+) = Xα.
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Proof. The proof is in the same vein as the proof of Lemma 8.1 and is based on the
description of the tangent space to the global unstable manifold.

First assume i(Π+) = 2N+− 1. Thus we have codimW s
loc(Π

+) = 2N+− 1. From
the inequality N− ≥ N+ (see Theorem 7.3) we see, in a similar way as in the
local stable manifold case, that for sufficiently large m0 ∈ N there exists a subspace
F−

m0,N+ of Tu(−m0ω−;u0)S(τ)W u
loc(Π

−) such that

dimF−
m0,N+ = dim

(
E0(Π

−)⊕ . . .⊕ EN+−1(Π
−)
)

= 2N+ − 1,

z(v) ≤ 2N+ − 2, v ∈ F−
m0,N+ \ {0}.

Now note that F−
0,N+ = T̂ (0,−m0ω

−)F−
m0,N+ is a subspace of Tu0S(τ)W u

loc(Π
−) with

dimF−
0,N+ = dimF−

m0,N+ and z(v) ≤ 2N+ − 2, v ∈ F−
0,N+ \ {0},

since the evolution operator T̂ (·, ·) for the linearized equation around the solution
u(·;u0) is injective and does not increase the zero number. Thus we have

dimF−
0,N+ = 2N+ − 1 = codimW s

loc(Π
+)

and F−
0,N+ ∩ Tu0W

s
loc(Π

+) = {0}, since z(v) ≤ 2N+ − 2 for v ∈ F−
0,N+ \ {0} and by

Lemma 8.1 we have z(v) ≥ 2N+ for v ∈ Tu0W
s
loc(Π

+) \ {0}. This proves that

Tu0S(τ)W u
loc(Π

−) + Tu0W
s
loc(Π

+) = Xα

in this case.
Let now i(Π+) = 2N+. Then by Theorem 7.3 we have N− ≥ N+ + 1 and

we see again that for sufficiently large m0 ∈ N there exists a subspace F−
m0,N+ of

Tu(−m0ω−;u0)S(τ)W u
loc(Π

−) such that

dimF−
m0,N+ = dim

(
E0(Π

−)⊕ . . .⊕ EN+(Π−)
)

= 2N+ + 1,

z(v) ≤ 2N+, v ∈ F−
m0,N+ \ {0}.

As before, note that F−
0,N+ = T (0,−m0ω

−)F−
m0,N+ is a subspace of Tu0S(τ)W u

loc(Π
−)

with

dimF−
0,N+ = dimF−

m0,N+ and z(v) ≤ 2N+, v ∈ F−
0,N+ \ {0}.

Thus we get

dimF−
0,N+ = 2N+ + 1 = codimW+,

where W+ is the subspace of Tu0W
s
loc(Π

+) given in Lemma 8.1. Moreover, we have

F−
0,N+ ∩W+ = {0},

since z(v) ≤ 2N+ for v ∈ F−
0,N+ \ {0} and z(v) ≥ 2N+ + 2 for v ∈ W+ \ {0}, by

Lemma 8.1. Therefore, we obtain F−
0,N+ ⊕W+ = Xα. This shows that

Tu0S(τ)W u
loc(Π

−) + Tu0W
s
loc(Π

+) = Xα

also in this case and concludes the proof. �
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9. Concluding remarks

As pointed out in the introduction, the transversality between stable and unstable
manifolds is one of the main ingredients for the structural stability of the semiflow
generated by (1.1). Furthermore, from the point of view of applications the dis-
cussion of structural stability is essential for dynamical systems. As concluding
remarks we overview here some of the available results dealing with this topic.

The discussion of structural stability involves the characterization of the semiflow
on the global attractor Af and its dependence on the nonlinearity f ∈ C2 consid-
ered as a parameter. In this infinite-dimensional setting it requires the comparison
between different global attractors using topological equivalence (for a reference see
[12]). If Af and Ag denote the global attractors corresponding to the semiflows
generated by (1.1) with nonlinearities f and g, respectively, Af and Ag are orbit
equivalent, Af

∼= Ag, if there exists a homeomorphism h : Af → Ag taking orbits of
(1.1)f to orbits of (1.1)g preserving the time direction. Then, a global attractor Af

is structurally stable if there exists a neighborhood N (f) of f (in the space of C2

functions with the adequate topology) such that Ag
∼= Af for all g ∈ N (f). There-

fore, a structurally stable global attractor Af is invariant up to a homeomorphism
under small perturbations of the nonlinearity f .

Structural stability is known to hold in the class of Morse-Smale semiflows (see
[23] for details). The class of semiflows considered enjoys a number of properties
related to the existence of global attractors and includes many semiflows generated
by partial differential equations, like in our case, and delay or functional differential
equations. For completeness we recall that such a semiflow has the Morse-Smale
property if: (i) the corresponding global attractor Af has only a finite number of
equilibria and periodic orbits, which are all hyperbolic, (ii) all the stable and unsta-
ble manifolds of these critical elements are transversal and (iii) the nonwandering
set Ω(f) (the set of points of Af for which any neighborhood U is visited after an
arbitrarily large time T > 0 by an orbit starting in U) contains only the equilibria
and the periodic orbits. Property (iii) is expected to hold for (1.1) under condition
(i) due to the zero number decay property and the result [7, Theorem 1] men-
tioned in the introduction. Therefore, the verification of the Morse-Smale property
of Af should involve only the confirmation of property (i), which holds generically
in the above space of C2 functions, and property (ii) regarding the transversality
between stable and unstable manifolds of the critical elements. Here, in view of
our transversality result, it only remains to check transversality for pairs of critical
elements where at least one is an equilibrium.

In restricted classes of nonlinear functions f we are able to exhibit the Morse–
Smale property. In fact, this is the case when f = f(u, ux) does not depend explicitly
on x. Then, S1-equivariance of (1.1) forces the global attractor Af to be invariant
under the S1-action and reduces the number of possibilities for the critical elements
of the semiflow. In the generic situation, the set of critical elements is composed
of a finite set of hyperbolic homogeneous equilibria, corresponding to the solutions
of f(e, 0) = 0, and a finite set of hyperbolic rotating waves as mentioned in the
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introduction. From the results in [8] it follows that, in the class of nonlinearities
f = f(u, ux), the generic global attractor Af is structurally stable.

The situation is quite different in the class of x-dependent nonlinearities f =
f(x, u, ux). As pointed out before, the time periodic orbits need not be rotating
waves. Furthermore, Af may contain hyperbolic nonhomogeneous equilibria and
orbits homoclinic to equilibria. The existence of these homoclinic orbits follows
from a result in [29] asserting that the flow of any planar vector field can be real-
ized locally by a flow embedding in a two-dimensional invariant subspace of (1.1).
Therefore, nontransversal intersection between stable and unstable manifolds of
equilibria actually takes place. Also, the occurrence of nonhomogeneous equilibria
is a distinguished important feature, and their heteroclinic connections need to be
analyzed.

Finally, to understand the global geometry of Af when structural stability fails,
it is important to consider local bifurcation problems that explore the boundary
of the structurally stable set of global attractors. Here, in view of the result [29,
Theorem 2], the set of codimension one bifurcations for vector fields in the plane
should play a role.

In conclusion, all these considerations just show that the geometry of the global
attractor of (1.1), in general, is far from understood.
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