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Abstract. In this paper we describe the long-time behaviour of solu-
tions of parabolic equations in the case when some of them may blow
up in a finite or infinite time. This is done by providing a maximal
compact invariant set attracting each initial data for which the corre-
sponding solution does not blow up. The abstract result is applied to
the Frank-Kamenetskii equation and the N–dimensional Navier-Stokes
system where small external force is considered.

1. Introduction

In this paper we study the asymptotic behaviour of parabolic equations
when some solutions may blow up in a finite or infinite time. Hereafter we
consider Xα solutions as in [C-D1] and earlier in [HE] with the modification
given in [MI]. In our investigation we make use of the theory of semilinear
abstract parabolic equations given in e.g. [HE], [HA] or [CZ].

The situation that for some initial data the corresponding solution blows
up often occurs in physical applications. For a detailed mathematical de-
scription of this phenomenon we refer the reader to [G-V]. Here we only
mention a particular problem with a parameter λ > 0

{
ut = △u + λeu, t > 0,

u(0) = u0,

which comes from combustion theory and is known under the name of solid
fuel ignition model, exponential reaction-diffusion equation or, lastly, Frank-
Kamenetskii equation, the latter name being used from now on in this paper.
Among many other results concerning this problem (see e.g. [GE], [J-L],
[B-E]) it was shown in [FU] that for specially chosen initial data u0 the
corresponding solution blows up. On the other hand, there also exist par-
abolic problems with so far unknown global solvability for all initial data.
A typical example in this group is the famous N–dimensional Navier-Stokes
system, N ≥ 3, that has been investigated now for more than a century.

The mentioned specific circumstances do not allow us to describe the
asymptotics by using the notion of a global attractor in the large space
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of initial data as in [HA], [LA], [C-D1]. Instead, we consider the maxi-
mal compact invariant set attracting each initial condition for which the
corresponding solution does not blow up. We first describe all these ideas
abstractly considering in Section 2 a Cauchy problem for a semilinear secto-
rial equation in a Banach space. Next in Section 3 we discuss two particular
examples: the one-dimensional version of Frank-Kamenetskii equation and
the N–dimensional Navier-Stokes system in the case of small external force.

2. Abstract parabolic problems with possible blow-up

Consider an abstract parabolic problem

(2.1)

{
ut + Au = F (u), t > 0,

u(0) = u0,

where X is a Banach space and A : X ⊃ dom(A) → X is a positive sectorial
operator with compact resolvent. Moreover, assume that F : Xα → X
(α ∈ [0, 1) is fixed from now on) is Lipschitz continuous on bounded subsets
of the fractional power space Xα = dom(Aα) (cf. [HE], [AM]).

Under the above assumptions the theory of semilinear parabolic equations
given e.g. in [HE] ensures for each u0 ∈ Xα the existence of a unique local
Xα solution defined on a maximal interval of existence [0, τu0

). Therefore
we know that

u ∈ C([0, τu0
), Xα) ∩ C((0, τu0

), X1) ∩ C1((0, τu0
), X)

and (2.1) is satisfied in X. Moreover, we have either τu0
= ∞ or τu0

< ∞
and

lim sup
t→τu0

‖u(t, u0)‖Xα = ∞.

Since the problem (2.1) is autonomous, the uniqueness of solutions allows
us to construct a local semiflow on Xα. We thus have

u(s, u(t, u0)) = u(s + t, u0), u0 ∈ Xα, s, t ≥ 0, s + t < τu0
,

and the solutions of (2.1) are continuous with respect to their initial data
on compact time intervals (cf. [HE, Theorem 3.4.1] or [C-D1, Proposi-
tion 2.3.2]).

For our further investigations let us define a metric space

(2.2) V = {u0 ∈ Xα : sup
t∈[0,∞)

‖u(t, u0)‖Xα < ∞}

and assume that V is nonvoid.
Consider a C0–semigroup T (t) : V → V defined by

(2.3) T (t)u0 = u(t, u0), t ≥ 0, u0 ∈ V.

Note that we do not know in advance whether V is a closed subset of Xα.
Thus it is unknown if V , being the natural phase space for the problem (2.1),
is a complete metric space or not. Therefore the assumption of the com-
pact resolvent does not have to imply the compactness of the semigroup
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{T (t) : t ≥ 0} on V . Nevertheless, we shall show below that this semigroup
is asymptotically smooth in the sense of [HA].

For B ⊂ V we denote its orbit by γ+(B) =
⋃

t≥0 T (t)B, while its ω–limit
set is given by

ω(B) =
⋂

t≥0

clXα T (t)γ+(B).

We also abbreviate γ+({v}) and ω({v}) to γ+(v) and ω(v), respectively.

Remark 2.1. If B ⊂ V and γ+(B) is bounded, then clXα γ+(B) ⊂ V and
T (t)B is precompact in Xα for any t > 0.

Proof. Let v0 ∈ clXα γ+(B). Then there exist vn ∈ B and tn ≥ 0 such that
T (tn)vn → v0 in Xα. Since

∀s≥0 ‖u(s, T (tn)vn)‖Xα = ‖u(s + tn, vn)‖Xα ≤ Rγ+(B),

the norm ‖u(s, v0)‖Xα cannot blow up so that v0 ∈ V . Also, if γ+(B) is
bounded in Xα, then T (t)B with t > 0 is in fact bounded in Xα+ε, which,
via compactness of the embeddings Xβ ⊂ Xα, β > α, ensures that it is
precompact in Xα. �

Proposition 2.2. The C0–semigroup {T (t) : t ≥ 0} on V is asymptotically
smooth, i.e. each nonvoid closed (in V ) bounded and positively invariant set
W ⊂ V contains a nonvoid compact subset ω(W ), which attracts W .

Proof. Fix a nonvoid closed (in V ) bounded and positively invariant set
W ⊂ V . Since γ+(W ) ⊂ W , we infer from Remark 2.1 that clXα T (1)γ+(W )
is a compact subset of V . We thus see that

ω(W ) =
⋂

t≥0

clXα T (t)γ+(W ) ⊂ clXα T (1)γ+(W ) ⊂ V

is compact as a closed subset of a compact space and is nonvoid as an in-
tersection of a centered family of closed sets in a compact space. Also
ω(W ) ⊂ W , since by our assumptions on W and Remark 2.1 we have

ω(W ) ⊂ clXα W ∩ V = clV W = W.

We now prove that ω(W ) attracts W . We shall show that

d(T (t)W,ω(W )) −→
t→∞

0,

where d denotes the Hausdorff semidistance. Contrary to our claim suppose
that

(2.4) ∃ε>0∃tn→∞∀n∈N d(T (tn)W,ω(W )) > ε.

Since almost all the elements of the sequence {T (tn)xn} belong to the com-
pact set clXα T (1)γ+(W ) it contains a subsequence convergent to an element
of ω(W ), which contradicts the inequality (2.4). �
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Remark 2.3. It is worth noting that Remark 2.1 implies immediately that
if u0 ∈ V , then clXα γ+(u0) is a compact positively invariant subset of V and
the ω–limit set ω(u0) is a nonvoid compact connected and invariant subset
of V , which attracts u0 (cf. [LA, Theorem 2.1]). More generally, since by
Proposition 2.2 the semigroup is asymptotically smooth, we infer that for
∅ 6= B ⊂ V with γ+(B) bounded, the ω–limit set ω(B) is a nonvoid compact
and invariant subset of V attracting B (see [C-D1, Proposition 1.1.1]).

Under an additional assumption of the point dissipativeness of the semi-
group {T (t) : t ≥ 0} we now ensure the existence of a nonvoid compact
and invariant set, which attracts each point of V . Indeed, if B0 is a non-
void bounded subset of V attracting points of V , then any ε-neighbourhood
N (B0) =

⋃
u∈B0

B(u, ε) of B0 in V absorbs each point of V . Consequently,

B̃0 = {v ∈ N (B0) : γ+(v) ⊂ N (B0)}

is a nonvoid bounded positively invariant subset of V absorbing each point

of V . From this and Remark 2.3 it follows that ω(B̃0) is a nonvoid compact
and invariant subset of V attracting each point of V .

Required dissipativeness property can be easily controlled if there exists
a Lyapunov function. Recall that by a Lyapunov function on V we mean
a continuous function L : V → R such that for any u0 ∈ V

(i) the function t 7→ L(u(t, u0)) is nonincreasing in (0,∞),
(ii) if L(u(·, u0)) ≡ L(u0), then u0 ∈ E ,

where by E we denote the set of all stationary solutions of (2.1). Recall
also that from the existence of a Lyapunov function on V we infer that
ω(u0) ⊂ E for each u0 ∈ V . Therefore, if there exists a Lyapunov function
on the metric space V given in (2.2), then the set E is nonvoid and if it is
bounded, it is also compact and attracts each point of V . Thus we get

Corollary 2.4. Suppose that {T (t) : t ≥ 0} is defined on V given in (2.2).
Assume further that {T (t) : t ≥ 0} is point dissipative (for example, there
exists a Lyapunov function on V and E is bounded). Then for any u0 ∈ Xα

the Xα solution u(·, u0) of (2.1) either blows up (in a finite or infinite time)
or stays bounded and approaches a nonvoid compact and invariant set.

We have shown above that the semigroup is asymptotically smooth and
we have also stated natural conditions ensuring its point dissipativeness.
However, these two properties do not guarantee the existence of a compact
global attractor in V . It would be true if we knew the semigroup on V was
compact (cf. [C-D1, Corollary 1.1.6]), which, as we have already discussed,
may not be the case, or if orbits of bounded sets were bounded (cf. [C-D1,
Theorem 1.1.2]). Unfortunately, the latter condition may be difficult to
check in specific examples. As will be seen in Section 3 it is much easier to
examine the boundedness of the set of all (hypothetical) bounded complete
orbits of points.
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Following [LA], we recall that a complete trajectory of a point v ∈ V for
the semigroup {T (t) : t ≥ 0} is the curve φ : R → V satisfying the following
conditions:

(i) φ(0) = v,
(ii) T (t)φ(s) = φ(s + t), s ∈ R, t ≥ 0.

If S denotes the set of all points in V for which there exists at least
one bounded complete trajectory for the semigroup {T (t) : t ≥ 0}, then
T (t)S = S for each t > 0. Also the following result holds.

Theorem 2.5. Suppose that the semigroup {T (t) : t ≥ 0} is defined by (2.3)
on the nonvoid metric space V given in (2.2). Then S is a nonvoid invari-
ant subset of V , which attracts each subset of V with bounded orbit. If S
is bounded, then it is compact and maximal bounded invariant subset of V .
Additionally, if orbits of bounded subsets of V are bounded, then S is a com-
pact global attractor in V .

Proof. As a consequence of Remark 2.3, S is nonvoid whenever V is nonvoid.
Moreover, ω(B) ⊂ S for any ∅ 6= B ⊂ V such that γ+(B) is bounded. It is
next sufficient to note that if S is bounded, then – since it is also invariant
– we obtain that clXα S is a compact subset of V (see Remark 2.1). The
proof is thus complete. �

Corollary 2.6. Suppose A is a sectorial operator in a Banach space X and
A has compact resolvent. Assume that F : Xα → X, with α ∈ [0, 1) fixed,
is Lipschitz continuous on bounded subsets of Xα. Let all (hypothetical)
bounded complete orbits of points be uniformly bounded in Xα. Then for
any u0 ∈ Xα the Xα solution u(·, u0) of (2.1) either blows up (in a finite or
infinite time) or stays bounded and approaches a maximal compact invariant
set.

We recall that similarly as in the case of an ω–limit set we know that the
α–limit set of u0 ∈ S along a bounded complete trajectory φ of u0,

αφ(u0) =
⋂

t≤0

clXα

⋃

s≤t

{φ(s)},

is a nonvoid compact subset of V . If, in addition, there exists a Lyapunov
function on V , then αφ(u0) ⊂ E . In the latter case abstract conditions for
the boundedness of S can be formulated.

Proposition 2.7. Assume that there exists a Lyapunov function L on V .
Then the following conditions are equivalent:

(a) S is a bounded subset of V ,
(b) E is a bounded subset of V and one of the equivalent conditions holds:

(i) if vn ∈ S and ‖vn‖Xα → ∞, then |L(vn)| → ∞ (cf. [HA,
Definition 3.8.1]),

(ii) if B ⊂ S and L(B) is a bounded subset of R, then B is bounded.
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Proof. We shall prove that (b) implies (a). Therefore we assume (b) and
suppose contrary to our claim that there exist vn = φn(tn), where tn ∈ R,
φn are bounded complete trajectories, say of some un, and ‖vn‖Xα → ∞
as n → ∞. We choose αn ∈ αφn

(un) and ωn ∈ ω(un) being the elements
of E . Since the Lyapunov function L is nonincreasing along each complete
trajectory, we see that

max{L(e) : e ∈ E} ≥ L(αn) ≥ L(vn) ≥ L(ωn) ≥ min{L(e) : e ∈ E},
where the maximum and the minimum exist due to the compactness of E .
But this is impossible, because of (i). This shows that S is bounded. �

3. Examples

Example 3.1. Let us consider the Dirichlet problem for Frank-Kamenetskii
equation

(3.1)





ut = ∆u + λeu, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

where λ > 0 is a parameter and Ω = B(0, 1) ⊂ R
N . This problem occurs

in models of thermal explosions, especially in the description of thermal
self-ignition of chemically active mixture contained in some vessel. We refer
the reader to [FK], [GE, §15] and [B-E] for more details.

Rewriting the problem (3.1) in an abstract setting we consider

(3.2)

{
ut + Au = F (u), t > 0,

u(0) = u0

in the Hilbert space X = L2(Ω), where A = −∆D : X ⊃ dom(A) → X with
its domain dom(A) = H2(Ω) ∩ H1

0 (Ω). It is well-known that this operator
is a positive sectorial operator in X with compact resolvent. Although the
Frank-Kamenetskii equation is also interesting and complex for dimensions
3 ≤ N ≤ 9 (especially because of an infinite number of stationary solutions
for λ = 2(N−2), see e.g. [J-L], [B-E, Theorem 2.19], [F-P], [N-S]), we restrict
our attention to N = 1 for the purpose of this example. Nevertheless, we
still use the general notation.

Fix 3
4

< α < 1 so that Xα ⊂ C1(Ω). Evidently, if u ∈ Xα, then we

have u ∈ C1(Ω), F (u) = λeu ∈ C1(Ω), and F : Xα → X is Lipschitz
continuous on bounded sets. Consequently, (3.1) generates a local semiflow
of Xα solutions. Denoting then by V the set of all initial data for which
the solution stays bounded in Xα we see that

(3.3) L(u) =
1

2

∫

Ω

|∇u|2 dx −
∫

Ω

λeudx

is a Lyapunov function on V .
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Stationary solutions and their Morse indices. If w ∈ dom(A) is
a stationary solution, then w satisfies

(3.4)

{
−∆w = λew, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω,

which is also known in the literature under the names of Emden-Fowler
equation or Gelfand problem. From the regularity theory of elliptic operators
(cf. [TR, Theorem 5.4.1]) it follows that the stationary solutions are smooth
and in particular they belong to C2([−1, 1]). Also, all solutions of (3.4) are
positive, and thus radially symmetric by the result of [G-N-N]. We recall
(see [B-E, Theorem 2.19]) that there exists λ∗ > 0, λ∗ ≈ 0.878, such that

(a) for each λ ∈ (0, λ∗) there are two solutions,
(b) for λ = λ∗ there is a unique solution,
(c) for λ > λ∗ there are no solutions.

Moreover, each solution w has to satisfy

(3.5) w(x) = w(0) − 2 ln cosh

(
1

2

√
2λew(0)x

)
, −1 ≤ x ≤ 1.

0.5 1 1.5 2

1

2

3

4

5

Figure 1. Dependence between w(0) and λ

If λ ∈ (0, λ∗), then from [FU] we infer that there exists the minimal
solution. Let us denote it by w+ and the maximal solution by w−. We
know that there exists γ > 0 such that

γρ(x) ≤ w−(x) − w+(x), x ∈ Ω,

where ρ(x) is the distance from x to ∂Ω. Consequently, the curves shown
in Figure 1 represent the solution curves

{(λ,w) ∈ (0,∞) × C(Ω) : (λ,w) satisfies (3.4)}.
We remark that, as shown in [FU, Theorem 6] (see also the refinement

in [FI, Remark 2.5]), if λ ∈ (0, λ∗), w−(x) ≤ u0(x) for x ∈ Ω and u0 6≡ w−,
then the solution u of (3.1) blows up in a finite time.
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Consider now the linearization of (3.4) at w

(3.6)

{
∆v + λewv = 0, x ∈ Ω,

v(x) = 0, x ∈ ∂Ω,

and observe that σ(−∆ − λew) consists only of real eigenvalues. We say
that w is a hyperbolic stationary solution if 0 /∈ σ(−∆−λew). Furthermore,
the number of negative eigenvalues of −∆ − λew is called the Morse index
ind(w) of the stationary solution w. Although 0 ∈ σ(−∆ − λ∗ew), it is
known that if λ ∈ (0, λ∗), then w− and w+ are both hyperbolic stationary
solutions. Additionally, we have ind(w+) = 0 and ind(w−) = 1 (for details
see [C-R, Proposition 2.15] and [N-S, Section 2]).

Unstable manifold of w− and description of S. Let λ ∈ (0, λ∗).
Note that w− is a hyperbolic fixed point in the sense of [C-C-H, p. 357].
Then the unstable set W u(w−) is a C1 submanifold of Xα with

dim W u(w−) = ind(w−) = 1

(see [HE, Theorem 6.1.9], [C-C-H, Appendix C]) and by [B-F1, Theorem 2.1]
we have

(3.7) ∀w∈W u(w−) z(w − w−) < dim W u(w−) = 1,

where z(g) denotes the number of sign changes of a continuous function g.
The existence of a Lyapunov function excludes the existence of (non-

constant) homoclinic orbits. Thus we restrict our attention to heteroclinic
orbits. Let φ be a (hypothetical) complete trajectory of u0 ∈ Xα such that
φ(t) → w− as t → −∞ and φ(t) → w+ as t → ∞ in Xα ⊂ C1(Ω). Since
the complete trajectory φ does not blow up, we obtain from (3.7)

∀t∈R∀x∈Ω φ(t)(x) ≤ w−(x).

If we show that

(3.8) ∃t∗<0∀t≤t∗∀x∈Ω w+(x) ≤ φ(t)(x),

by the monotonicity we will then have

∀t∈R∀x∈Ω w+(x) ≤ φ(t)(x) ≤ w−(x).

Hence for the boundedness of S it is sufficient to prove (3.8).
Contrary to our claim, assume that there exist tn → −∞, yn ∈ Ω such

that

(3.9) φ(tn)(yn) < w+(yn).

In fact we can assume that there exists xn → x0 with x0 ∈ Ω and

(3.10) φ(tn)(xn) = w+(xn), n ∈ N.

Indeed, there exists n0 ∈ N such that for n ≥ n0 we have φ(tn)(0) > w+(0).
Since (3.9) holds, the Darboux property ensures the existence of xn ∈ Ω
such that φ(tn)(xn) = w+(xn). By the compactness of Ω we may choose
a convergent subsequence of {xn}, still denoted by {xn}, which we have
required.
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We consider two cases. If x0 ∈ (−1, 1), then φ(tn)(xn) tends to w−(x0)
and w−(x0) = w+(x0), which is impossible. Therefore we have x0 ∈ {−1, 1}.
From (3.5) we get

(w+)′(1) > (w−)′(1) and (w+)′(−1) < (w−)′(−1).

Let us consider x0 = 1. By (3.10) and the mean value theorem we have

w+(xn) − w+(1)

xn − 1
=

φ(tn)(xn) − φ(tn)(1)

xn − 1
= [φ(tn)]′(ξn).

Since the left hand side tends to (w+)′(1) and the right hand side to (w−)′(1),
we get (w+)′(1) = (w−)′(1), a contradiction. The same reasoning applies to
the case x0 = −1. This ends the proof of the boundedness of S.

Observe that if we consider the solution semigroup for u ∈ Xα satisfying
the inequalities w+(x) ≤ u(x) ≤ w−(x) for all x ∈ Ω, then this semigroup is
compact. Hence for this semigroup there exists a compact connected global
attractor. In particular there must exist a heteroclinic orbit connecting w−

to w+.
In fact there exists a unique heteroclinic orbit connecting these two equi-

libria. This can be established using the argument in [B-F3, Lemma 3.5].
Thus we obtain the description of S = {w−, w+, φ(R)}, where φ is the only
complete trajectory connecting w− to w+.

We conclude that S is a maximal compact invariant set attracting any
subset of V possessing bounded orbit. In particular, if u0 ∈ Xα, then the
corresponding Xα solution either blows up or stays bounded and approaches
a maximal compact invariant set.

Example 3.2. Consider the N–dimensional Navier-Stokes system for in-
compressible viscous fluid flow under the assumption of small perturbation.
We shall show that in this case there exists a Lyapunov function. In our
considerations we follow the paper [C-D2, Section 4]. We consider the prob-
lem

(3.11)





ut = ν△u −∇p − (u · ∇)u + f, t > 0, x ∈ Ω ⊂ R
N ,

div u = 0, t > 0, x ∈ Ω,

u = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

where N ≥ 2, ν > 0 is a viscosity constant and Ω is a bounded domain in
R

N with boundary ∂Ω of class C2+ε.
For any f ∈ [Lp(Ω)]N , p > N , the system can be viewed as an abstract

Cauchy problem

(3.12)

{
ut + Au = F (u), t > 0,

u(0) = u0

in the space

X = cl[Lp(Ω)]N{φ ∈ [C∞
0 (Ω)]N : div φ = 0 in Ω}
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using the projector P given by the decomposition of [Lp(Ω)]N into the spaces
of divergence free vector fields and scalar function gradients (see [F-M] and
[G-M]). Namely, we define A = −νP△ : X ⊃ dom(A) → X with

dom(A) = X ∩ {φ ∈ [W 2,p(Ω)]N : φ = 0 on ∂Ω},
which is a sectorial operator with compact resolvent, and F : Xα → X by

(3.13) F (u) = −P (u · ∇)u + Pf, u ∈ Xα.

Restricting further α to the interval [1
2
, 1) we observe that F in (3.13) is

well-defined and is Lipschitz continuous on bounded subsets of Xα.
Recall that for sufficiently small f ∈ [Lp(Ω)]N (especially if the external

force f is zero)

there exists a stationary solution w ∈ dom(A) of the

Navier-Stokes system such that ‖w‖[W 1,∞(Ω)]N <
ν

C2
Ω

,
(3.14)

where CΩ is a constant in the Poincaré inequality.
Lyapunov function on V and description of S. Assuming further

(3.14) we define V as in (2.2) and consider the functional

(3.15) L(u) =
1

2
‖u − w‖2

[L2(Ω)]N , u ∈ V.

We shall show that L is a Lyapunov function on V . Since p > N ≥ 2, it
follows that L is continuous on V . Fix u0 ∈ V . Letting u(t) = u(t, u0),
t ≥ 0, we have

(3.16) (u−w)t = −A(u−w)−P ((u−w) · ∇)w−P (u · ∇)(u−w), t > 0.

From [F-M] it follows that

Pv = P2v, v ∈ [Lp(Ω)]N ,

where P2 is a selfadjoint bounded projection operator on [L2(Ω)]N . Hence
for v1, v2, v3 ∈ dom(A) we have

〈P (v1 · ∇)v2, v3〉[L2(Ω)]N = 〈P2(v1 · ∇)v2, v3〉[L2(Ω)]N = 〈(v1 · ∇)v2, v3〉[L2(Ω)]N

and
〈Av1, v1〉[L2(Ω)]N = −ν〈△v1, v1〉[L2(Ω)]N .

Multiplying (3.16) by u − w in [L2(Ω)]N we obtain

1

2

d

dt
‖u − w‖2

[L2(Ω)]N ≤ −ν

N∑

i=1

‖∇(ui − wi)‖2
L2(Ω) +

+ ‖w‖[W 1,∞(Ω)]N ‖u − w‖2
[L2(Ω)]N ≤

≤
(
− ν

C2
Ω

+ ‖w‖[W 1,∞(Ω)]N

)
‖u − w‖2

[L2(Ω)]N .

(3.17)

The above inequality proves that t 7→ L(u(t, u0)) is nonincreasing for t > 0.
Moreover, we see that there exists a > 0 such that

‖u − w‖[L2(Ω)]N ≤ ‖u0 − w‖[L2(Ω)]N e−at, t ≥ 0.
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This shows in particular that

(3.18) lim
t→∞

u(t, u0) = w in [L2(Ω)]N .

Our task will be, however, to justify the convergence in Xα. Meanwhile,
assume that L(u(·, u0)) ≡ L(u0). Then we have as in (3.17)

0 =
d

dt
L(u(t, u0)) ≤

(
− ν

C2
Ω

+ ‖w‖[W 1,∞(Ω)]N

)
‖u(t, u0) − w‖2

[L2(Ω)]N ≤ 0.

This implies u0 = w ∈ E and consequently E = {w}.
Suppose that φ is a (hypothetical) bounded complete trajectory of u0.

Since αφ(u0) = {w} and ω(u0) = {w}, we have

L(w) ≥ L(φ(s)) ≥ L(w), s ∈ R,

so that φ(R) = {w}. Hence we obtain S = {w}.
We thus infer that if (3.14) holds, then for any u0 ∈ Xα, α ∈ [1

2
, 1), the

Xα solution u(·, u0) of the Navier-Stokes system either blows up in Xα or
stays bounded and approaches in Xα the maximal compact invariant set
{w}.
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