
DYNAMICALLY EQUIVALENT PERTURBATIONS OF LINEAR
PARABOLIC EQUATIONS

RADOSÃLAW CZAJA

Abstract. A family of abstract parabolic equations with sectorial operator is
studied in this paper. The conditions are provided to show that the global at-
tractors for each equation exist and coincide. Although the common dynamics
is simple, the examples presented in the final part of the paper indicate that the
considered family may contain a linear equation together with a large number of
its nonlinear perturbations. The mentioned examples include both scalar second
order equations and the celebrated Cahn-Hilliard system.

1. Introduction

We consider a family of autonomous abstract parabolic equations

(1.1) ut + Au = Fλ(u), t > 0,

in a Banach space X, where −A generates a strongly continuous analytic semigroup.
Our aim is to formulate a general abstract setting for the coincidence of global
attractors for a wide class of nonlinear perturbations with the global attractor for
the linear problem. This goal is achieved by the use of the semigroup theory for
semilinear abstract parabolic equations developed in [HE], [C-D 2]. The global
attractor is obtained in a metric subspace V of a certain fractional power space Xα

defined by the operator A appearing in the main part of the equation (1.1) (cf. [AM],
[HE]). It is then interesting to consider the situation when (1.1) is synchronized in
the sense that all attractors Aλ coincide (cf. [HA]). We describe it in some special
case, in which the dynamics is determined by the ω-limit sets of points, or even by
the stationary solutions.

The above-mentioned abstract results are presented in Section 1. They are sup-
ported by some examples provided in Section 2. The first one deals with the scalar
second order equation, while the second one is devoted to the Cahn-Hilliard system
describing the evolution of a molten multi-component alloy. The case of binary al-
loys, which reduces the problem to a single equation, has been widely investigated in
the literature (cf. e.g. [C-D 2], [R-H], [GR] and the references therein). In compari-
son with the equation, the Cahn-Hilliard system has not been studied so intensively
(cf. e.g. [C-D 1], [L-Z]). Here we follow [C-D 2] to obtain the global solutions of
the Cahn-Hilliard system under the assumption of the semiconvexity of the bulk
free energy λ of the alloy. However, in order to obtain such a simple dynamics we
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further assume that λ is convex. What surprises is the wide range of admissible
perturbations as well as the lack of their impact on the global attractor. The third
example indicates that the abstract results can also be applied to pseudodifferential
equations.

Notation used in the paper is standard. Here we point out that |Ω| denotes
the n–dimensional Lebesgue measure of a set Ω ⊂ Rn, while dom(A) and im(A)
stand for the domain and the range of an operator A, respectively. Moreover, D(A)
means dom(A) endowed with the graph norm. We also write tr(B) for the trace of
a matrix B, i.e. the sum of the elements in the leading diagonal. Other notation
will be explained further in the text.

2. Abstract results

Consider a family of autonomous abstract parabolic equations (1.1) in a complex
Banach space X, where λ ∈ Λ (Λ is a certain set of indices). Assume that

(A.1) A : X ⊃ dom(A) → X is a sectorial operator (cf. [HE, Definition 1.3.1],
[CZ, Definition 2.2.2]) with compact resolvent, i.e. (zI −A)−1 ∈ L(X,X) is
a compact operator for all z ∈ ρ(A),

(A.2) Fλ : Xα → X (where α ∈ [0, 1) is fixed from now on) is Lipschitz continuous
on bounded subsets of Xα for each λ ∈ Λ, where Xα denotes the fractional
power space corresponding to the operator A (cf. [HE], [AM], [C-D 2]),

(A.3) unique local Xα solutions uλ(·, u0) of (1.1) with uλ(0, u0) = u0 ∈ Xα exist
globally in time.

Note that (A.1) is equivalent to the requirement that −A : X ⊃ dom(A) → X
is an infinitesimal generator of a strongly continuous compact analytic semigroup
(cf. [PA, Theorem 2.3.3]). Observe also that the existence and uniqueness of local
Xα solutions for u0 ∈ Xα, mentioned in (A.3), is due to the theory given e.g. in
[C-D 2], [HE] or [CZ]. Recalling [C-D 2, Theorem 3.3.1], we can state

Proposition 2.1. Under the assumptions (A.1)-(A.3) the problem (1.1) defines
a family of compact C0 semigroups {Tλ(t) : t ≥ 0} on Xα such that Tλ(t)u0 coincides
with a global solution uλ(t, u0) to (1.1) satisfying the initial condition uλ(0, u0) = u0.

Here and subsequently, Sλ ⊂ Xα stands for the set consisting of all stationary
points of {Tλ(t) : t ≥ 0} on Xα.

Let us denote by V any complete metric subspace of Xα which is positively
{Tλ(t)}-invariant for each λ ∈ Λ, i.e. Tλ(t)V ⊂ V , λ ∈ Λ. Throughout the remainder
of this section we limit ourselves to {Tλ(t)} restricted to V . Now it is a family of
compact C0 semigroups on V . Let us introduce further assumptions:

(A.4) positive orbits of points γ+
λ (u0) = {Tλ(t)u0 : t ≥ 0}, u0 ∈ V , are bounded

subsets of V ,
(A.5) there exist continuous Lyapunov functions Lλ : V → R, λ ∈ Λ, such that for

any u0 ∈ V the function t 7→ Lλ(Tλ(t)u0) is nonincreasing for t > 0 and

if Lλ(Tλ(t)u0) = L(u0) for all t ≥ 0, then u0 ∈ Sλ ∩ V,
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(A.6) there exist a metric space M and continuous functions lλ : V → M , λ ∈ Λ,
which are one-to-one on Sλ ∩ V and

lλ(Tλ(t)u0) = lλ(u0), t ≥ 0, u0 ∈ V.

We underline that the Lyapunov functions in (A.5) need not have to be bounded
below. Moreover, (A.5) ensures that the functions t 7→ Lλ(Tλ(t)u0) are nonincreas-
ing for all t ≥ 0.

Remark 2.2. If one of the assumptions (A.4)-(A.6) is satisfied with V = Xα, then it
holds for any complete metric subspace of Xα which is positively {Tλ(t)}-invariant
for each λ ∈ Λ.

Following [LA], we recall that a complete trajectory of a point v ∈ V for a semi-
group {S(t) : t ≥ 0} is the curve φ : R→ V satisfying the following conditions:

(i) φ(0) = v,
(ii) S(t)φ(s) = φ(s + t), s ∈ R, t ≥ 0.

We shall denote by Φv
λ (respectively Γv

λ) the set of all (bounded) complete trajec-
tories of a point v ∈ V for the semigroup {Tλ(t) : t ≥ 0}, whereas Cλ (respectively
Cb

λ) shall stand for the set of all points v ∈ V for which there exists at least one
(bounded) complete trajectory of the point v for the semigroup {Tλ(t) : t ≥ 0}.
Observe that since {Tλ(t) : t ≥ 0} is a C0 semigroup, then a complete trajectory φ
of a point v is a continuous function. Moreover, we have Tλ(t)v = φ(t), t ≥ 0.

We define the ω-limit set of a set B ⊂ V for the semigroup {Tλ(t) : t ≥ 0} by

ωλ(B) =
⋂
t≥0

clV
⋃
s≥t

Tλ(s)B.

If v ∈ Cλ and φ ∈ Φv
λ, then we define the α-limit set of the point v along the

trajectory φ by

αλ,φ(v) =
⋂
t≤0

clV
⋃
s≤t

{φ(s)}.

Following [S-Y, Lemma 22.3] and [C-D 2, Proposition 1.1.2], we recall

Proposition 2.3. Assume that the assumptions (A.1)-(A.3) and (A.5) hold and
λ ∈ Λ. If v ∈ V and γ+

λ (v) = {Tλ(t)v : t ≥ 0} is bounded in V , then ωλ(v) is
a nonempty subset of Sλ ∩ V and attracts v. Moreover, if v ∈ Cλ, φ ∈ Φv

λ and
γ−λ,φ(v) = {φ(t) : t ≤ 0} is bounded in V , then αλ,φ(v) is a nonempty subset of
Sλ ∩ V .

We also recall that by the global attractor for the semigroup {Tλ(t) : t ≥ 0} we
mean a nonempty, compact and {Tλ(t)}-invariant subset of V which attracts each
bounded subset of V .

Proposition 2.4. If the assumptions (A.1)-(A.5) hold and Sλ ∩ V is independent
of λ ∈ Λ, then {Tλ(t) : t ≥ 0} on V possesses a global attractor for certain λ = λ0

if and only if it possesses a global attractor for all λ ∈ Λ.

Proof. If {Tλ0(t) : t ≥ 0} has a global attractor, then
⋃

u0∈V ωλ0(u0) is a nonempty
bounded set, since it is contained in the attractor (see [C-D 2, Corollary 1.1.1]).
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Moreover, we have
⋃

u0∈V ωλ0(u0) = Sλ0 ∩ V as a consequence of (A.1)-(A.5). Fix
arbitrarily λ ∈ Λ. Again the assumptions (A.1)-(A.5) and the coincidence of the
sets of stationary points guarantee that

⋃
u0∈V

ωλ(u0) = Sλ ∩ V = Sλ0 ∩ V

is a nonempty bounded subset of V . Since it attracts every point of V , we see
that {Tλ(t) : t ≥ 0} is point dissipative. Hence the semigroup {Tλ(t) : t ≥ 0},
being compact and point dissipative, possesses a global attractor (cf. [C-D 2, Corol-
lary 1.1.6]). ¤

From the proof of the above proposition we obtain

Corollary 2.5. Let the assumptions (A.1)-(A.5) hold and Sλ∩V , λ ∈ Λ, be bounded
subsets of V . Then the semigroup of global solutions corresponding to (1.1) on V
possesses a global attractor Aλ for each λ ∈ Λ.

We next focus on the situation, when (1.1) is synchronized in the sense that all
attractors Aλ coincide (cf. [HA]). Theorem 2.6 below describes it in a special case
where the dynamics is determined by the ω-limit sets of points, or equivalently by
the stationary points (this is due to (A.6)).

Theorem 2.6. Let the assumptions (A.1)-(A.6) hold and Sλ∩V be independent of
λ ∈ Λ and bounded in V . Then we have

Aλ =
⋃

u0∈V

ωλ(u0) = Sλ ∩ V =: A, λ ∈ Λ.

Proof. Fix λ ∈ Λ. As follows from Corollary 2.5, each semigroup {Tλ(t) : t ≥ 0}
on V possesses a global attractor Aλ. Then we know that

Aλ =
⋃

u0∈Cb
λ

⋃

φ∈Γ
u0
λ

φ(R)

(see [LA, Proposition 2.2] or [C-D 2, Corollary 1.1.1]). It is sufficient to show that
Aλ ⊂ Sλ∩V . To this end, fix u0 ∈ Cb

λ and φ ∈ Γu0
λ . Take any v ∈ αλ,φ(u0) ⊂ Sλ∩V

and any w ∈ ωλ(u0) ⊂ Sλ∩V , their existence being ensured by the fact that φ ∈ Γu0
λ

and Proposition 2.3. From (A.6) we know that the continuous function lλ is constant
along the complete trajectory φ so we have lλ(v) = lλ(u0) = lλ(w) and thus v = w.
We shall prove that φ(R) = {u0}. Note that (A.5) ensures that Lλ is nonincreasing
along the complete trajectory φ. We claim that, in fact, Lλ is constant along φ.
Suppose now, contrary to our claim, that there exist t1 < t2, t1, t2 ∈ R, such that
Lλ(φ(t1)) > L(φ(t2)). For t, s positive and large enough we have

Lλ(φ(−s)) ≥ Lλ(φ(t1)) > Lλ(φ(t2)) ≥ Lλ(φ(t)),

which leads to the absurd relation Lλ(v) > Lλ(w) = Lλ(v). Consequently,

Lλ(φ(t)) = L(u0) for all t ∈ R.

Fix t0 ∈ R. Then we know that

Lλ(Tλ(t)φ(t0)) = Lλ(φ(t + t0)) = Lλ(u0) = Lλ(φ(t0)) for all t ≥ 0.
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Thus (A.5) ensures that φ(t0) ∈ Sλ∩V . Hence we obtain φ(R) ⊂ Sλ∩V . Moreover,
φ(R) cannot contain two distinct stationary points, since φ is a complete trajectory.
Thus φ(R) = {u0}. This clearly forces

Aλ = Sλ ∩ V =
⋃

u0∈V

ωλ(u0) = A, λ ∈ Λ.

¤
Note that under the assumptions (A.1)-(A.6) each bounded complete trajectory

for the semigroup {Tλ(t) : t ≥ 0} is a singleton, i.e. a single stationary point. More-
over, each ωλ(u0), u0 ∈ V , is a singleton. Nevertheless, the global attractor may
still contain infinitely many elements and (A.1)-(A.6) are satisfied in a number of
interesting examples as shown in Section 3.

Remark 2.7. Consider a family of parabolic abstract equations

(2.1)

{
vt + µAv = Fλ(v), t > 0,

v(0) = u0,

where µ ∈ (0,∞) and λ ∈ Λ (a certain set of indices). We remark that u satisfies

(2.2)

{
ut + Au = 1

µ
Fλ(u), t > 0,

u(0) = u0

if and only if v(t) = u(µt), t ≥ 0, satisfies (2.1). Hence the global attractor con-
structed for the semigroup of Xα solutions of (2.2) coincides with the global attrac-
tor for the problem (2.1).

Finally, let us sketch how to apply Theorem 2.6 in case our problem is naturally
set in a real Banach space.

Remark 2.8. Owing to the requirement of the sectoriality of the operator A in (1.1)
we are forced to consider the equation in a complex Banach space. Nevertheless, in
applications, unless the operator is complex, we obtain the abstract equations (1.1)
in a real Banach space X. However, we can complexify the operator A (cf. [AM,

p. 4]) and consider Ã(u) = Av + iAw, u = v + iw ∈ X̃ = X + iX. If Ã is a sectorial

operator, then the linear semigroup {e− eAt : t ≥ 0} preserves the space X (see [LU,

Lemma 2.1.3]). Thus we are able to define the space Xα as im(Ã−α|X) and use the
real counterpart of the theory of existence and uniqueness of Xα solutions. There-

fore, if Ã satisfies (A.1) and for (1.1) the conditions (A.2) and (A.3) are satisfied,
then we can still define the semigroup of Xα solutions Tλ(t)u0 = uλ(t, u0), t ≥ 0,
u0 ∈ Xα. Furthermore, if the assumptions (A.4)-(A.6) hold with an appropriate
subspace V ⊂ Xα and Sλ ∩ V is independent of λ ∈ Λ and bounded in V , then
an analogous version of Theorem 2.6 ensures the existence of the global attractor
Aλ = Sλ ∩ V = A, λ ∈ Λ, for the semigroup {Tλ(t) : t ≥ 0} in V.
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3. Examples

Example 3.1. Our first example will be an initial-boundary value problem for
a scalar second order equation




ut(t, x)−4u(t, x) = b(x) · ∇(λ(u(t, x))), t > 0, x ∈ Ω,
∂u
∂N

(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(3.1)

where b ∈ C1(Ω) is a vector field such that

(3.2) div b(x) = 0, x ∈ Ω,

and

(3.3) b(x) ·N(x) = 0, x ∈ ∂Ω.

Here we consider Ω ⊂ Rn, n ≥ 2, with the C2 boundary and λ ∈ Λ = C1+Lip(R).

Rewriting (3.1) in an abstract setting in X = Lp(Ω) with p > n
2
, we obtain

{
ut + Au = Fλ(u), t > 0,

u(0) = u0,
(3.4)

where Fλ(u) = b · ∇(λ(u)) and A = −4N in X with the domain

dom(A) = W 2,p

{ ∂
∂N

}(Ω) = clW 2,p(Ω)

{
φ ∈ C2(Ω):

∂φ

∂N
= 0 on ∂Ω

}
.

It is well-known that {−4N , { ∂
∂N
}, Ω} forms a regular elliptic boundary value

problem. Therefore, −4N is a sectorial operator with compact resolvent (see
[C-D 2, Proposition 1.2.3, Example 1.3.8]).

Fix any max (1
2
, n

2p
) < α < 1 and take into consideration the fractional power

space Xα. The Sobolev embeddings (cf. [HE, Theorem 1.6.1] or [CZ, Theorem
3.0.21]) now yield

Xα ⊂ W 1,p(Ω) and Xα ⊂ C(Ω).

Our considerations in X are justified, since for u ∈ Xα we have Fλ(u) ∈ X.
Indeed, we have bi ∈ C(Ω), λ′(u) ∈ C(Ω) and ∂u

∂xi
∈ X and, in consequence,

b · ∇(λ(u)) =
n∑

i=1

bi
∂(λ(u))

∂xi

=
n∑

i=1

bi
∂u

∂xi

λ′(u) = λ′(u)b · ∇u ∈ X.

Set ‖b‖ =
n∑

i=1

sup
Ω
|bi|, fix a bounded subset B of Xα and let φ, ψ ∈ B. We have

‖Fλ(φ)− Fλ(ψ)‖X ≤ ‖(λ′(φ)− λ′(ψ))b · ∇φ‖X +

+ ‖λ′(ψ)b · ∇(φ− ψ)‖X ≤ c1 ‖b‖
( ‖λ′(φ)− λ′(ψ)‖C(Ω) ‖φ‖W 1,p(Ω) +

+ ‖λ′(ψ)‖C(Ω) ‖φ− ψ‖W 1,p(Ω)

) ≤ Lλ,B,b ‖φ− ψ‖Xα ,

since λ′ is globally Lipschitz continuous on compact subsets of R. This shows that
Fλ : Xα → X is Lipschitz continuous on bounded subsets of Xα. As a consequence,
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there corresponds to any u0 ∈ Xα, α ∈ (max (1
2
, n

2p
), 1), a unique local Xα solution

uλ(·, u0) of (3.4) defined on the maximal interval of existence [0, τu0).
To prove the local Xα solutions exist globally in time we need an additional

a priori estimate of the solutions in an auxiliary Banach space Y . We shall choose
Y = L∞(Ω). Let us denote v(t) = uλ(t, u0), t ∈ [0, τu0). We know that vt(t) ∈ X,
v(t) ∈ W 2,p(Ω), ∂v

∂N
(t) = 0 on ∂Ω for 0 < t < τu0 and in X we have

(3.5) vt(t)−4v(t) = b · ∇(λ(v(t))), 0 < t < τu0 .

Fix any k ∈ N and 0 < t < τu0 . Multiplying (3.5) by v2k−1 and integrating over Ω
we obtain ∫

Ω

vtv
2k−1dx =

∫

Ω

4vv2k−1dx +

∫

Ω

b · ∇(λ(v))v2k−1dx.

Letting gk(s) =
∫ s

0
λ′(z)z2k−1dz, s ∈ R, we have gk ∈ C1(R) and by (3.2)–(3.3)

∫

Ω

b · ∇(λ(v))v2k−1dx =

∫

Ω

n∑
i=1

bi
∂v

∂xi

λ′(v)v2k−1dx =

∫

Ω

n∑
i=1

bi
∂gk(v)

∂xi

dx =

=

∫

∂Ω

n∑
i=1

biNigk(v)dS −
∫

Ω

n∑
i=1

∂bi

∂xi

gk(v)dx = 0.

(3.6)

Hence, because of the boundary condition,

(3.7)
1

2k

d

dt

∫

Ω

v2kdx =

∫

Ω

4vv2k−1dx = −(2k − 1)

∫

Ω

n∑
i=1

(
∂v

∂xi

)2(
vk−1

)2

dx ≤ 0.

Consequently, [0, τu0) 3 t 7→ ‖v(t)‖2k
L2k(Ω) is nonincreasing and

‖uλ(t, u0)‖L2k(Ω) ≤ ‖u0‖L2k(Ω) , u0 ∈ Xα, t ∈ [0, τu0).

Letting k →∞ (see [AD, Theorem 2.8]) we obtain

(3.8) ∀u0∈Xα∀0≤t<τu0
‖uλ(t, u0)‖Y ≤ ‖u0‖Y ≤ c2 ‖u0‖Xα .

We now estimate for a fixed 0 ≤ t < τu0

(3.9) ‖Fλ(uλ(t, u0))‖X ≤ c1 ‖b‖ sup
|s|≤‖uλ(t,u0)‖L∞(Ω)

|λ′(s)| ‖uλ(t, u0)‖W 1,p(Ω) .

Fix max (1
2
, n

2p
) < β < α. The moments inequality (cf. [KR, Theorem I.5.2]) yields

‖uλ(t, u0)‖W 1,p(Ω) ≤ c4 ‖uλ(t, u0)‖Xβ ≤ c3c4 ‖uλ(t, u0)‖
β
α
Xα ‖uλ(t, u0)‖1− β

α
X ≤

≤ c5 ‖uλ(t, u0)‖1− β
α

Y

(
1 + ‖uλ(t, u0)‖

β
α
Xα

)
,

since Y = L∞(Ω) ⊂ X. Combining this with (3.9) we conclude that

‖Fλ(uλ(t, u0))‖X ≤

≤ c6 ‖b‖
(

1 + ‖uλ(t, u0)‖
β
α
Xα

)
sup

|s|≤‖uλ(t,u0)‖Y

|λ′(s)| ‖uλ(t, u0)‖1− β
α

Y .
(3.10)
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The estimates (3.8) and (3.10) ensure by [C-D 2, Theorem 3.1.1] that

Tλ(t)u0 = uλ(t, u0), t ≥ 0, u0 ∈ Xα,

forms a C0 semigroup of global Xα solutions having positive orbits of bounded sets
bounded. In particular, γ+

λ (u0) = {Tλ(t)u0 : t ≥ 0} is bounded for any u0 ∈ Xα. So
far we have checked that the conditions (A.1)-(A.4) are satisfied with V = Xα.

Let us now define

L(φ) = Lλ(φ) = ‖φ‖2
L2(Ω) , φ ∈ Xα.

L is continuous, since if φm −→
m→∞

φ in Xα, then φm −→
m→∞

φ in L2(Ω) and thus

L(φm) −→
m→∞

L(φ). Observe that L is nonincreasing along any trajectory (compare

with (3.7) in case k = 1). Assume that L(uλ(t, u0)) = L(u0), t ≥ 0. Then we have

0 =
d

dt
L(uλ(t, u0)) =

d

dt
‖uλ(t, u0)‖2

L2(Ω) = −2
n∑

i=1

∥∥∥∥
∂uλ(t, u0)

∂xi

∥∥∥∥
2

L2(Ω)

, t > 0,

(compare with (3.7) in case k = 1). Thus

(3.11) ∀t>0∀i∈{1,...,n}
∂uλ(t, u0)

∂xi

= 0 a.e. in Ω.

Since uλ(·, u0) ∈ C([0,∞),W 1,p(Ω)), we see that (3.11) holds also for t = 0, i.e.

∀i∈{1,...,n}
∂u0

∂xi

= 0 a.e. in Ω.

Hence u0(x) = const. for a.a. x ∈ Ω. Obviously such u0 is a stationary solution.
Therefore, by uniqueness uλ(t, u0) = u0, t ≥ 0, which shows that (A.5) is valid.
Nevertheless, we have also proved that if uλ(t, u0), t ≥ 0, is a stationary solution,
then t 7→ L(uλ(t, u0)) is constant, so u0 must be a constant function a.e. in Ω. Hence

(3.12) Sλ = {u0 ∈ Xα : ∃const.∈R u0(x) = const. for a.a. x ∈ Ω}.
Note that Sλ is independent of λ.

Let us now define

l(φ) = lλ(φ) =
1

|Ω|
∫

Ω

φ dx, φ ∈ Xα,

which is evidently one-to-one on Sλ. It is also a continuous functional on Xα, since

|l(un)− l(u)| ≤ 1

|Ω| ‖un − u‖L1(Ω) ≤
1

|Ω| ‖un − u‖Xα .

We are going to show that

(3.13) l(uλ(t, u0)) = l(u0), t ≥ 0, u0 ∈ Xα.

Fix u0 ∈ Xα and let v(t) = uλ(t, u0), t ≥ 0. Then we have

d

dt

∫

Ω

v(t)dx =

∫

Ω

vt(t)dx =

∫

Ω

4v(t)dx =

∫

∂Ω

n∑
i=1

∂v(t)

∂xi

NidS = 0, t > 0,

where we used (3.2), (3.3) and the boundary condition for v. This shows that
l(uλ(t, u0)) = c ∈ R for t > 0. Letting t → 0 we obtain (3.13).
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What is left to show is the existence of an appropriate closed and positively
{Tλ(t)}–invariant subset V of Xα such that Sλ ∩ V is bounded in V . Fix r > 0
and set Vr = {u ∈ Xα : |l(u)| ≤ r}. Since |l| is continuous on Xα, Vr is a closed
subset of Xα. Moreover, Vr is positively {Tλ(t)}–invariant, since we have shown,
in particular, that l(Tλ(t)u0) = l(u0), t ≥ 0, u0 ∈ Vr. Therefore, if u0 ∈ Vr,
then |l(Tλ(t)u0)| = |l(u0)| ≤ r, t ≥ 0, which shows that for each λ ∈ Λ we have
Tλ(t)Vr ⊂ Vr for all t ≥ 0. We should yet prove that there exists R > 0 such that
Sλ ∩Vr ⊂ BVr(0, R), but this is obvious, since Sλ ∩Vr consists of constant functions
equibounded by r.

Therefore all assumptions of Theorem 2.6 are satisfied. According to Remark 2.7,
we conclude that for any µ ∈ (0,∞) and any λ ∈ C1+Lip(R) there exists exactly the
same attractor for the problem




ut(t, x)− µ4u(t, x) = b(x) · ∇(λ(u(t, x))), t > 0, x ∈ Ω,
∂u
∂N

(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(3.14)

in Vr, which appears to consist only of all constant functions such that the absolute
value of the constant does not exceed r > 0.

Note that we can choose λ = 0 and µ = 1 in particular. Therefore the dynamics
of the problem (3.14) in Vr with any µ ∈ (0,∞) and any λ ∈ C1+Lip(R) is exactly
the same as the dynamics of the Neumann problem for the heat equation.

Remark 3.2. In the above considerations we have chosen as the phase space Lp(Ω)
with p > n

2
. Nevertheless, we need not to be so restrictive. Assuming that n

3
< p ≤ n

2
and p > 1, we can still prove the coincidence of attractors for the problem (3.14)
in the subspace of Xα with n+p

4p
< α < 1 for any µ ∈ (0,∞) and for all functions

λ ∈ C1(R) satisfying

(3.15) ∃c>0∀s,s∈R |λ′(s)− λ′(s)| ≤ c |s− s| (|s|r−1 + |s|r−1 + 1
)
,

where 1 ≤ r < p(2α−1)
n−2αp

. This is achieved by the similar argument as in the example,

while the lack of embedding Xα ⊂ C(Ω) is substituted by the embedding of Xα

into an appropriate Lebesgue space. Moreover, the a priori estimate (3.8) as well
as the subordination condition (3.10) are also obtained in Y = Lq(Ω) with properly
chosen q.

Example 3.3. As a second example we will consider the Cahn-Hilliard system
known as a phase separation model in the decomposition of a multicomponent alloy
(cf. e.g. [C-D 1], [L-Z] and the references therein):




ut(t, x) = −4 [Γ4u(t, x)−∇uλ(u(t, x))] , t > 0, x ∈ Ω,

∇u(t, x)N(x) = ∇(∆u(t, x))N(x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(3.16)

where u : [0,∞) × Ω → Rm, uT = (u1, . . . , um), Γ = [Γij] ∈ Rm×m is a symmetric
and positive definite matrix, i.e.

(3.17) ∃c0>0∀a∈Rm aT Γa ≥ c0 |a|2 .
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Furthermore, Ω is a bounded domain in Rn, where n ≤ 3, having C4+ε regular
boundary ∂Ω. Here ∇u =

[
∂ui

∂xj

]
is a gradient m × n matrix, while N denotes an

outward normal vector to ∂Ω. We assume that λ ∈ Λ, where Λ denotes the set of
all functions satisfying the following conditions:

(B.1) λ ∈ C3+Lip(Rm),
(B.2) λ is bounded below, i.e. there exists Mλ > 0 such that

∀u∈Rm λ(u) ≥ −Mλ,

(B.3) λ is semiconvex, i.e. there exists Nλ > 0 such that

∀u∈Rm∀a∈Rm aT λ′′(u)a ≥ −Nλ |a|2 ,

(B.3’) λ is convex, i.e.

∀u∈Rm∀a∈Rm aT λ′′(u)a ≥ 0.

Obviously, the condition (B.3’) implies (B.3), but we distinguish them, since we
prove most of the required properties under the weaker (and more natural physi-
cally) condition.

Let us now introduce the following notation:

Ck = [Ck(Ω)]m, Lp = [Lp(Ω)]m, Hk = [Hk(Ω)]m, Wk,p = [W k,p(Ω)]m,

where k ∈ N ∪ {0} and 1 ≤ p ≤ ∞.
We consider (3.16) as an abstract Cauchy problem

{
ut(t) + Au(t) = Fλ(u(t)), t > 0,

u(0) = u0,
(3.18)

in X = L2, where A = Γ42 with the domain

dom(A) = [H4
{ ∂

∂N
, ∂4
∂N

}(Ω)]m = clH4{u ∈ C4 : ∇uN = ∇(4u)N = 0 on ∂Ω}.
Moreover, Fλ : H2 → X is given by

Fλ(u) = 4∇uλ(u), u ∈ H2.

Key Sobolev embeddings and Lipschitz continuity of right hand side.
From the Sobolev embeddings for n ≤ 3 we infer that

(3.19) H2 ⊂ C0 and H2 ⊂ W1,4.

They guarantee that Fλ is well-defined on H2. Since the Sobolev embeddings (3.19)
hold and λ satisfies (B.1), it follows that Fλ is Lipschitz continuous on bounded
subsets of H2 (cf. [C-D 1, p. 280]).

Sectoriality of linear operator. It is well-known that there exists d0 > 0
such that 42 +d0I is a symmetric isomorphism of [H4

{ ∂
∂N

, ∂4
∂N

}(Ω)]m onto X (cf. [TR,

Theorem 5.5.1]). Since Γ is a symmetric isomorphism of X onto itself and commutes
with 42 + d0I, we have

〈Γ(42 + d0I)u,v〉X = 〈(42 + d0I)u, Γv〉X = 〈u, (42 + d0I)Γv〉X =

= 〈u, Γ(42 + d0I)v〉X , u,v ∈ dom(A).
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Therefore, Γ42 + d0Γ is a symmetric operator with its range being the whole X.
Hence, Γ42 + d0Γ is a self-adjoint operator in X. Since d0Γ is a bounded self-
adjoint operator on X, we infer that Γ42 is self-adjoint (cf. [ML, p. 119]). Fixing
any d1 > 0, we see by the same argument that Γ42 + d1I is a self-adjoint operator
in X. Note that

〈(Γ42 + d1I)u,u〉X = 〈Γ42u,u〉X + d1 ‖u‖2
X =

∫

Ω

(4u)T Γ(4u)dx + d1 ‖u‖2
X ≥

≥ c0 ‖4u‖2
X + d1 ‖u‖2

X ≥ d1 ‖u‖2
X , u ∈ dom(A).

This shows that Γ42 + d1I is a positive definite self-adjoint operator, so by [C-D 2,
Proposition 1.3.3] it is a positive sectorial operator in X.

Compactness of resolvent. Observe that for some positive constants c1, c2

and c3 we have
c1 ‖u‖H4 ≤ c2

∥∥(42 + d0I)u
∥∥

X
≤

≤
∥∥(Γ42 + d1I + (d0Γ− d1I))u

∥∥
X
≤

∥∥(Γ42 + d1I)u
∥∥

X
+ c3 ‖u‖X , u ∈ dom(A).

This estimate and the compactness of embedding H4 ⊂ X ensure that the resolvent
of Γ42 is compact.

Description of key Xα spaces. Since Γ42 + d1I is a positive definite self-
adjoint operator in X, we infer from [TR, Section 1.18.10], [C-D 2, p. 50] and [C-C,
Proposition 2] that

Xα = D((Γ42 + d1I)α) = [X,D(Γ42 + d1I)]α = [[L2(Ω)]m, [H4
{ ∂

∂N
, ∂4
∂N

}(Ω)]m]α =

= [[L2(Ω), H4
{ ∂

∂N
, ∂4
∂N

}(Ω)]α]m

{
= [H2

{ ∂
∂N

}(Ω)]m, α = 1
2
,

= [H3
{ ∂

∂N
}(Ω)]m, α = 3

4
.

Local solutions. We can from now on consider the nonlinearity Fλ : Xα → X
for α ∈ [1

2
, 1). Then Fλ is Lipschitz continuous on bounded subsets of Xα for

α ∈ [1
2
, 1). As a consequence to any u0 ∈ Xα, α ∈ [1

2
, 1), there corresponds a unique

local Xα solution of (3.18) uλ(t,u0), 0 ≤ t < τu0 , where τu0 denotes the lifetime
of the solution. Therefore we have already shown that conditions (A.1), (A.2) of
Theorem 2.6 are satisfied.

Global solutions and boundedness of orbits of points. We are now in
a position to prove that the local solutions are in fact global ones. This problem
was first solved in case λ satisfied some growth conditions (see [C-D 1]) and later
those limitations were overcome in [L-Z]. In case of the Cahn-Hilliard equation
(i.e. m = 1), the global existence of Xα solutions was shown in [C-D 2]. Here we
follow this monograph to show that the same method applies to the system.

Step 1. Let us consider L2 as a subspace of H∗ = [
(
H1(Ω)

)∗
]m. Thus for u ∈ L2

we have

‖u‖2
∗ =

m∑

k=1

(
sup {〈wk, uk〉L2(Ω) : ‖wk‖H1(Ω) = 1}

)2

,

where uT = (u1, . . . , um). Let

m(u) = [m(uk)] =

[
1

|Ω|
∫

Ω

ukdx

]
.
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Observe that for a fixed u ∈ L2 the Neumann problem

(3.20)





−4z(x) = u(x)−m(u), x ∈ Ω,

∇z(x)N(x) = 0, x ∈ ∂Ω,

m(z) = 0

possesses a unique solution z ∈ H2, which we shall denote by z = N (u). Let us
define

〈u1,u2〉N = 〈N (u1),u2〉L2 + |Ω|m(u1) ·m(u2), u1,u2 ∈ L2.

Note that this defines a scalar product on L2 and thus a norm

‖u‖2
N = 〈u,u〉N , u ∈ L2.

One can easily show that the norms ‖·‖N and ‖·‖∗ are equivalent on L2 (cf. [GR,
p. 12]). Using the Poincaré inequality we obtain

(3.21) ‖u‖2
L2 ≤ c4

√√√√
m∑

k=1

‖∇uk‖2
L2(Ω) ‖u‖N = c4 ‖∇u‖L2 ‖u‖N

for u ∈ H1 such that m(u) = 0.
Step 2. Fix α ∈ [1

2
, 1) and u0 ∈ Xα. We denote

(3.22) v(t) = uλ(t,u0), t ∈ [0, τu0).

We know that v(t) ∈ dom(A), t ∈ (0, τu0). For 0 < t < τu0 we estimate

c0 ‖4v(t)‖2
L2 ≤

∫

Ω

[4v(t)]T Γ4v(t)dx =

= −
∫

Ω

[4v(t)]T (−Γ4v(t) +∇vλ(v(t))) dx +

∫

Ω

[4v(t)]T∇vλ(v(t))dx.

(3.23)

Integrating by parts we obtain

(3.24)

∫

Ω

[4v(t)]T∇vλ(v(t))dx = −
∫

Ω

tr
(
(∇v(t))T λ′′(v(t))∇v(t)

)
dx.

Moreover, setting

(3.25) K(v(t)) = −Γ4v(t) +∇vλ(v(t)),

we get owing to integration by parts and the regularity of v(t)

(3.26)

∫

Ω

[4v(t)]T K(v(t))dx = −
∫

Ω

tr
(
(∇v(t))T∇K(v(t))

)
dx.

Combining (3.24) and (3.26) with (3.23), we conclude that

c0 ‖4v(t)‖2
L2 ≤

∫

Ω

tr
(
(∇v(t))T∇K(v(t))

)
dx−

∫

Ω

tr
(
(∇v(t))T λ′′(v(t))∇v(t)

)
dx.
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Using assumption (B.3) and the Cauchy inequality we obtain

c0 ‖4v(t)‖2
L2 ≤ 1

2

∫

Ω

tr
(
(∇K(v(t)))T∇K(v(t))

)
dx+

+

(
Nλ +

1

2

) ∫

Ω

tr
(
(∇v(t))T∇v(t)

)
dx.

(3.27)

Step 3. Let v and K be given by (3.22) and (3.25). Observe that integration by
parts yields for 0 < t < τu0

1

2

d

dt

∫

Ω

tr
(
(∇K(v(t)))T∇K(v(t))

)
dx = −

∫

Ω

[4K(v(t))]T (K(v(t)))tdx =

= −
∫

Ω

[vt(t)]
T (K(v(t)))tdx =

∫

Ω

[vt(t)]
T (Γ4v(t))tdx−

∫

Ω

[vt(t)]
T (∇vλ(v(t)))tdx.

Using integration by parts again we get

(3.28)

∫

Ω

[vt(t)]
T (Γ4v(t))tdx = −

∫

Ω

tr
(
(∇vt(t))

T Γ∇vt(t)
)
dx.

Since we also have

(3.29)

∫

Ω

[vt(t)]
T (∇vλ(v(t)))tdx =

∫

Ω

[vt(t)]
T λ′′(v(t))vt(t)dx,

this together with (3.28) yields

1

2

d

dt

∫

Ω

tr
(
(∇K(v(t)))T∇K(v(t))

)
dx =

= −
∫

Ω

tr
(
(∇vt(t))

T Γ∇vt(t)
)
dx−

∫

Ω

[vt(t)]
T λ′′(v(t))vt(t)dx.

(3.30)

Using assumption (B.3) and (3.17) we conclude that

(3.31)
1

2

d

dt

∫

Ω

tr
(
(∇K(v(t)))T∇K(v(t))

)
dx ≤ −c0 ‖∇vt(t)‖2

L2 + Nλ ‖vt(t)‖2
L2 .

Step 4. Let v and K be given as in (3.22) and (3.25). Note that for 0 < t < τu0

the equation is satisfied and v(t) ∈ dom(A), so integration by parts yields

(3.32) m(vt(t)) = 0.

Additionally, (3.32) and the continuity of the spatial average m on L1 give

(3.33) m(v(t)) = m(v(0)), 0 ≤ t < τu0 .

Since vt(t) ∈ H1 and m(vt(t)) = 0 for 0 < t < τu0 , it follows from (3.21) that

(3.34) ‖vt(t)‖2
L2 ≤ c4 ‖∇vt(t)‖L2 ‖vt(t)‖N .

Thus (3.31) gives

1

2

d

dt

∫

Ω

tr
(
(∇K(v(t)))T∇K(v(t))

)
dx ≤

≤ −c0 ‖∇vt(t)‖2
L2 + Nλc4 ‖∇vt(t)‖L2 ‖vt(t)‖N .
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Using Cauchy inequality and integrating over [ε, t] for some fixed sufficiently small
ε > 0 we obtain

1

2

∫

Ω

tr
(
(∇K(v(t)))T∇K(v(t))

)
dx ≤

≤ 1

2

∫

Ω

tr
(
(∇K(v(ε)))T∇K(v(ε))

)
dx+

N2
λc2

4

4c0

∫ t

ε

‖vt(s)‖2
N ds.

(3.35)

Combining (3.35) with (3.27) we conclude that for 0 < ε < t < τu0

c0 ‖4v(t)‖2
L2 ≤ 1

2

∫

Ω

tr
(
(∇K(v(ε)))T∇K(v(ε))

)
dx+

+
N2

λc2
4

4c0

∫ t

ε

‖vt(s)‖2
N ds +

(
Nλ +

1

2

)
‖∇v(t)‖2

L2 .

(3.36)

Step 5. Let v and K be given by (3.22) and (3.25). Using (3.32) we compute
for 0 < t < τu0

−‖vt(t)‖2
N = −〈N (vt(t)),vt(t)〉L2 = 〈K(v(t))−m(K(v(t))),vt(t)〉L2 =

= 〈K(v(t)),vt(t)〉L2 =
d

dt

(
1

2

∫

Ω

tr
(
(∇v(t))T Γ∇v(t)

)
dx +

∫

Ω

λ(v(t))dx

)
,

(3.37)

where we used the symmetry of Γ and integration by parts. Defining

(3.38) Lλ(u) =
1

2

∫

Ω

tr
(
(∇(u))T Γ∇(u)

)
dx +

∫

Ω

λ(u)dx

for u ∈ Xα, α ∈ [1
2
, 1), we see that Lλ : Xα → R is continuous and t 7→ Lλ(uλ(t,u0))

is nonincreasing for 0 < t < τu0 .
Step 6. We now assume that α ∈ [3

4
, 1), u0 ∈ Xα and v, K are given as before.

We know that v(t) ∈ [H3
{ ∂

∂N
}(Ω)]m, 0 ≤ t < τu0 . From (3.36) and (3.37) we get

c0 ‖4v(t)‖2
L2 ≤ 1

2

∫

Ω

tr
(
(∇K(v(0)))T∇K(v(0))

)
dx+

+
N2

λc2
4

4c0

(Lλ(v(0))− Lλ(v(t))
)

+

(
Nλ +

1

2

)
‖∇v(t)‖2

L2 , t ∈ (0, τu0).

(3.39)

We shall now show that Lλ(v(t)) and ‖∇v(t)‖2
L2 are bounded. Indeed, from (3.17)

and the assumption (B.2) it follows that

Lλ(v(0)) ≥ Lλ(v(t)) ≥ 1

2
c0 ‖∇v(t)‖2

L2 +

∫

Ω

λ(v(t))dx ≥

≥ 1

2
c0 ‖∇v(t)‖2

L2 −Mλ |Ω| ≥ −Mλ |Ω| .
(3.40)

Hence from (3.39), (3.40) and (3.33) we obtain

‖4v(t)‖2
L2 + (m(v(t)))2 ≤ 1

2c0

∫

Ω

tr
(
(∇K(v(0)))T∇K(v(0))

)
dx+

+

[
N2

λc2
4 + 8Nλ + 4

4c2
0

] (L(v(0)) + Mλ |Ω|
)

+ (m(v(0)))2 , t ∈ (0, τu0).

(3.41)
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After simple computations one can see that

‖4v(t)‖2
L2 + (m(v(t)))2 ≤ ϕλ(‖v(0)‖H3), t ∈ (0, τu0),

where ϕλ : [0,∞) → [0,∞) is a certain nondecreasing function. However, note that

‖u‖H2 is equivalent to
( ‖4u‖2

L2 +(m(u))2 ) 1
2 for u ∈ X

1
2 (cf. [TE, Lemma III.4.2]).

In consequence, for α ∈ [3
4
, 1) we get

(3.42) ‖uλ(t,u0)‖H2 ≤ c5

(‖4uλ(t,u0)‖2
L2 + (m(uλ(t,u0)))

2) 1
2 ≤ ψλ(‖u0‖Xα)

for all t ∈ (0, τu0), where ψλ : [0,∞) → [0,∞) is a certain nondecreasing function.
Step 7. Since Γ42 + d1I is a positive sectorial operator, we estimate

‖Fλ(uλ(t,u0)) + d1uλ(t,u0)‖L2 ≤
≤ ‖4∇uλ(uλ(t,u0))‖L2 + d1 ‖uλ(t,u0)‖H2 , t ∈ (0, τu0).

Let v(t) denote uλ(t,u0). Then we have for t ∈ (0, τu0)

‖4∇vλ(v(t))‖L2 ≤ c6

m∑
r=1

m∑
j=1

m∑

k=1

∥∥∥∥∥
n∑

i=1

∂vj(t)

∂xi

∂3λ

∂vr∂vj∂vk

(v(t))
∂vk(t)

∂xi

∥∥∥∥∥
L2(Ω)

+

+
m∑

r=1

m∑
j=1

∥∥∥∥
∂2λ

∂vr∂vj

(v(t))4vj(t)

∥∥∥∥
L2(Ω)

≤ c8

(
max

1≤j,k,r≤m
sup

|s|≤c7‖v(t)‖H2

∣∣∣∣
∂3λ

∂vr∂vj∂vk

(s)

∣∣∣∣ +

+ max
1≤j,r≤m

sup
|s|≤c7‖v(t)‖H2

∣∣∣∣
∂2λ

∂vr∂vj

(s)

∣∣∣∣
) (

1 + ‖v(t)‖2
H2

)
,

where we used the Hölder inequality and the Sobolev embeddings (3.19). Hence

(3.43) ‖Fλ(uλ(t,u0)) + d1uλ(t,u0)‖L2 ≤ Ψλ(‖uλ(t,u0)‖H2), t ∈ (0, τu0),

where Ψλ : [0,∞) → [0,∞) is a certain nondecreasing function.
It follows from (3.42), (3.43) and [C-D 2, Theorem 3.1.1] that for any u0 ∈ Xα

with α ∈ [3
4
, 1) we have τu0 = ∞. Moreover, the global Xα solutions for α ∈ [3

4
, 1)

constitute a C0 semigroup on Xα having orbits of bounded sets bounded. Fix now
α ∈ [1

2
, 3

4
). We know that the local Xα solutions exist. Hence if u0 ∈ Xα, then

uλ(t,u0), 0 < ε ≤ t < τu0 , is an X
3
4 solution uλ(t − ε,uλ(ε,u0)). Thus τu0 = ∞

and the relation

(3.44) Tλ(t) = uλ(t,u0), t ≥ 0,

defines a C0 semigroup of global Xα solutions having orbits of points bounded for
α ∈ [1

2
, 1). The above considerations establish (A.3)-(A.4) with V = Xα, α ∈ [1

2
, 1).

Lyapunov functions. Observe that we have already defined in (3.38) quantities
that turn out to be Lyapunov functions. We have noticed that Lλ : Xα → R is
continuous and the function t 7→ Lλ(uλ(t,u0)) is nonincreasing for t > 0 with
u0 ∈ Xα, α ∈ [1

2
, 1). Now we merely mention that

Lλ(uλ(t,u0)) ≡ Lλ(u0) implies uλ(t,u0) ≡ u0,

(see [C-D 1, Lemma 1] for more details). This and previous observations ensure
that (A.5) holds with V = Xα, α ∈ [1

2
, 1).
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Stationary solutions under assumption (B.3’). Up to now we have made
our calculations under the assumptions (B.1)-(B.3). Hereafter we are going to use
the stronger assumption (B.3’). We now concentrate on finding Sλ, i.e. all stationary
solutions of (3.18) in Xα, α ∈ [1

2
, 1).

Assume that w ∈ dom(A) is a stationary solution of (3.18). From (3.37) we get

0 =
d

dt

(Lλ(w)
)

= −‖∇K(w)‖2
L2 .

Therefore, we obtain ∇K(w) = 0 a.e. in Ω. The well-known property of the distri-
butional derivative implies that the function under the gradient is independent of
the spatial variable, so we have

(3.45) −Γ4w +∇wλ(w) = a a.e. in Ω

with some a ∈ Rm. Since integration by parts gives m(Γ4w) = 0, it follows that

(3.46) a = m(a) = m(∇wλ(w)).

Computing the scalar product of (3.45) and w in L2 we obtain

(3.47) 〈−Γ4w,w〉L2 + 〈∇wλ(w),w〉L2 = 〈m(∇wλ(w)),w〉L2 .

Note that integration by parts gives

〈−Γ4w,w〉L2 =

∫

Ω

tr
(
(∇w)T Γ∇w

)
dx.

Moreover, we have 〈m(∇wλ(w)),w〉L2 = 〈∇wλ(w),m(w)〉L2 . Thus (3.47) yields

(3.48)

∫

Ω

tr
(
(∇w)T Γ∇w

)
dx = 〈∇wλ(w),m(w)−w〉L2 .

Computing the scalar product of (3.45) and 4w in L2 we get

(3.49) −〈Γ4w,4w〉L2 + 〈∇wλ(w),4w〉L2 = 〈a,4w〉L2 .

Rewriting the first term in (3.49) we see that

〈Γ4w,4w〉L2 =

∫

Ω

(4w)T Γ4wdx.

Lastly, integration by parts ensures that 〈a,4w〉L2 = 0 and

〈∇wλ(w),4w〉L2 = −
∫

Ω

tr
(
(∇w)T λ′′(w)∇w

)
dx.

These computations lead to

(3.50)

∫

Ω

(4w)T Γ4wdx = −
∫

Ω

tr
(
(∇w)T λ′′(w)∇w

)
dx.

Since Γ is positive definite and we assume (B.3’) here, i.e. λ is convex, we obtain

c0 ‖4w‖2
L2 ≤

∫

Ω

(4w)T Γ4wdx ≤ 0.

Hence 4w = 0 a.e. in Ω. Applying this to (3.45) we see that ∇wλ(w) = a a.e. in
Ω. Now it follows from (3.48) and (3.17) that ∇w = 0 a.e. in Ω. Well-known
properties of distributional derivatives guarantee that w(x) = c ∈ Rm for a.a. x ∈ Ω.
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Therefore, we sum up our considerations describing the set of stationary solutions
as

(3.51) Sλ = {w ∈ Xα : ∃c∈Rm w(x) = c for a.a. x ∈ Ω},
since every function constant almost everywhere is a stationary solution of (3.18).
It is worth noticing that Sλ does not depend on λ.

Functions lλ. Let us now define lλ : Xα → Rm by

lλ(u) = m(u) =

[
1

|Ω|
∫

Ω

ukdx

]
, where uT = (u1, . . . , um).

The continuity of the spatial average m on L1 ensures that lλ are continuous func-
tions. Moreover, (3.33) yields

lλ(uλ(t,u0)) = lλ(u0), t ≥ 0, u0 ∈ Xα,

and, by the characterization of Sλ in (3.51), the condition (A.6) holds with V = Xα.
Appropriate subspace V ⊂ Xα. We have already shown that (A.1)-(A.6) are

satisfied with V = Xα. Nevertheless, the set of stationary solutions Sλ is unbounded
in Xα, so we cannot look for a global attractor in Xα. Therefore we need to find
an appropriate closed and positively {Tλ(t)}–invariant subset V of Xα such that
Sλ ∩ V is bounded in V . In the light of our previous discussion it is clear that this
will be satisfied by Vr = {u ∈ Xα : |m(u)| ≤ r} with r > 0.

Therefore all assumptions of Theorem 2.6 are satisfied. According to Remark 2.7,
we conclude that for any µ ∈ (0,∞) and any λ ∈ Λ there exists exactly the same
attractor for the problem




ut(t, x) + µΓ42u(t, x) = 4∇uλ(u(t, x)), t > 0, x ∈ Ω,

∇u(t, x)N(x) = ∇(∆u(t, x))N(x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(3.52)

in Vr ⊂ Xα, α ∈ [1
2
, 1), which consists only of all functions constant almost every-

where in Ω such that the absolute value of the constant does not exceed r > 0.
Observe that Λ contains the zero function so the dynamics of the problem (3.18)

with any λ ∈ Λ is exactly the same as the dynamics of the linear parabolic problem.

Example 3.4. We also mention that from the considerations of [C-D-T] it follows
that all assumptions of Theorem 2.6 are satisfied if we consider the pseudodifferential
parabolic problem




ut(t, x) + (−4D)βu(t, x) = b(x) · ∇(λ(u(t, x))), t > 0, x ∈ Ω ⊂ Rn,

u(t, x) = 0, t > 0, x ∈ ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(3.53)

where b : Rn ⊃ Ω → Rn is a bounded differentiable vector field such that

(3.54) div b(x) = 0, x ∈ Ω.

Here we consider ∂Ω ∈ C2+ε with ε > 0, β ∈ (1
2
, 1) and λ ∈ Λ = C1+Lip(R). Hence

for any λ ∈ Λ there exists exactly the same attractor for the problem (3.53) in the
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whole Xα, α ∈ (1
2
, β), which consists only of the zero function. Here Xα corresponds

to the operator A = (−4D)β considered in X = Lp(Ω) with p > n.
Note that Λ contains the zero function so the dynamics of the problem (3.53)

with any λ ∈ Λ is exactly the same as the dynamics of the linear parabolic problem.
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