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1. Vector spaces: injectivity equivalent to surjectivity

We propose to study analogs and generalizations of the following simple fact
from linear algebra.

Proposition 1. Let V be a finite dimensional vector space over an arbitrary
field K. If h : V → V is an endomorphism of V , then h is injective if and only if h
is surjective.

Proof. h is injective if and only if dim ker h = 0, and h is surjective if and only
if dim im h = dim V . Since

dim ker h + dim im h = dim V,

we see that dim ker h = 0 if and only if dim im h = dim V . �

The finiteness of dimension of vector space is a decisive hypothesis. For infi-
nite dimensional vector spaces surjectivity and injectivity of an endomorphism are
independent properties.

Example 1. For an arbitrary field K, the differentiation on the vector space
K[X] of polynomials over K is a surjective endomorphism K[X] → K[X] but it is
not injective.
On the other hand multiplication by X is an injective endomorphism of the vector
space K[X] but it is not surjective.

2. Free modules: injectivity does not imply surjectivity

We want to generalize the setup and study relation between injectivity and
surjectivity of an endomorphism of a module M over a ring A. To keep close to
the case of vector spaces we first consider free modules. A free module M over A
has a basis which is a linearly independent set spanning M . A vector space always
has a basis and so is automatically a free module (over the underlying field). At
the first sight, working with free modules, we are in almost the same situation as
in vector spaces. However there are remarkable differences. First, for free modules
of finite rank we cannot use the technique of the proof of Proposition 1, since for
an endomorphism h : An → An of the free A−module An there does not exist any
corresponding result to the theorem on the sum of dimensions of the kernel and of
the image of an endomorphism of a (finite dimensional) vector space. Submodules
ker h and im h of the module An are not, in general, free modules. For example,
direct summands of An, that is, projective modules, are not in general free modules.

But this is not only the matter of proof. Simply injectivity of an endomorphism
of a free module (of finite rank) does not imply its surjectivity. This is shown in the
following example.
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Example 2. Let A be an integral domain and let a ∈ A be a non-invertible
nonzero element of A. Then the principal ideal (a) = aA is a proper ideal (that is
(a) 6= A) and is an A−module isomorphic to A. The map

A → aA, x 7→ ax

is an isomorphism. It can be viewed as an injective endomorphism of the free
A−module A of rank 1. But it is not surjective. So injectivity does not imply
surjectivity.

3. Finitely generated modules: surjectivity implies injectivity

The question that still makes sense is the following: does surjectivity of an
endomorphism of an A−module imply injectivity of the endomorphism? The answer
turns out to be yes for all finitely generated A−modules and for all rings A. Before
going on we make the following remark on the image of an endomorphism of a f.g.
module.

Remark 1. Let h : M → M be an endomorphism of a f.g. A−module M . To
be more specific assume that M is generated by the elements x1, . . . , xn. Then we
can write

h(xi) =
n∑

j=1

aijxj for some aij ∈ A.

Consider now the ideal

I = (a11, . . . , aij, . . . , ann) = a11A + · · ·+ aijA + · · ·+ annA

of the ring A generated by all the coefficients aij. Then for any element m =∑
cixi ∈ M , where ci ∈ A, we have

h(m) =
∑

i

cih(xi) =
∑

i

ci

∑
j

aijxj =
∑

j

(
∑

i

ciaij)xj.

The coefficients
∑

i ciaij all belong to the ideal I and so h(m) belongs to the sub-
module

IM =
{∑

aimi : ai ∈ I, mi ∈ M
}

of the module M (here, of course, we consider only finite sums of elements of M).
Thus h(M) ⊆ IM . We have shown that for each endomorphism h : M → M of an
A−module M there always exists an ideal I of the ring A such that h(M) ⊆ IM .
For example, if h is surjective, I = A will do.

We now proceed to the proof of theorem saying that for finitely generated mod-
ules surjectivity of an endomorphism implies injectivity of the endomorphism. The
proof is based on Nakayama Lemma and the proof of the latter uses the following
lemma.

Lemma 1. Let M be a finitely generated A−module and suppose it is generated
by n < ∞ elements. Let h : M → M be an endomorphism of M and let I be an
ideal in A such that h(M) ⊆ IM . Then there are ai ∈ I satisfying

(1) hn + a1h
n−1 + · · ·+ an−1h + an1M = 0M ,

where 1M and 0M are the identity and zero endomorphism, respectively.

Proof. We give a typical proof taken from [1, Prop. 2.4] (see also [2, Theorem
2.1]). Let x1, . . . , xn be a set of generators for the module M . Since h(M) ⊆ IM ,
for each xi there are elements aij ∈ I such that

h(xi) =
n∑

j=1

aijxj.



NAK AND INJECTIVITY OF SURJECTIONS 3

Thus we get n equalities of the form
n∑

j=1

(hδij − aij)xj = 0, 1 ≤ i ≤ n.

Here the entries of the matrix H := [hδij − aij] are viewed as endomorphisms of the
module M . They belong to the commutative subring A[h] of the ring of all endo-
morphisms of M (here we identify the ring A with the ring of scalar endomorphisms
{a1M : a ∈ A}). Let Hij be the cofactor of the entry hδij − aij of the matrix H and
let d = det H. So d is an endomorphism of M . We shall show that d is the zero
endomorphism. Fix k and multiply each of the above equalities by Hik. On adding
we get dxk = 0. Hence the endomorphism d sends each generator of the module M
to zero and so d = 0 is the zero endomorphism. Computing now d = det H using
row and column expansions we get the equality (1). �

The main tool used in the solution of our surjectivity-implies-injectivity-problem
is Nakayama Lemma. There are several versions of the Lemma and we reproduce
here the following general version from [2, Theorem 2.2, p. 8]. Matsumura points out
that Nakayama himself maintained that this result was earlier known to Azumaya
and Krull. To acknowledge the priorities Matsumura uses the short form NAK
for the result suggesting that he thinks of it as Nakayama-Azumaya-Krull Lemma.
Alternatively, NAK is a short form of Nakayama’s name as well.

Lemma 2 (NAK Lemma). Let M be a finitely generated A−module and let I be
an ideal in A. If M = IM , then there is an a ∈ A such that

aM = 0 and a ≡ 1 (mod I).

Proof. Take h = 1M to be the identity endomorphism. Since M = IM we
have h(M) = M ⊆ IM and so we can use Lemma 1. So we get the equality

1M + a11M + · · ·+ an1M = 0M

with some ai ∈ I. Put now

a := 1 + a1 + · · ·+ an ∈ A.

Then aM = (a1M)M = 0 and a ≡ 1 (mod I). �

Now we are ready to prove the following definitive result. This is proved in [2,
Theorem 2.4, p. 9] and is ascribed there to Vasconcelos.

Theorem 1. Let M be a finitely generated A−module and let h : M → M be
an endomorphism. If h is surjective, then h is injective.

Proof. M can be viewed as an A[X]−module when for F (X) ∈ A[X] and
m ∈ M we define the product by setting

F (X) ·m = F (h)(m).

In particular X ·m = h(m) and since h is assumed to be surjective we have XM =
M , that is (X) · M = M for the principal ideal I = (X) = X · A[X]. Clearly
A[X]−module M is finitely generated hence by Nakayama Lemma there is an a ∈
A[X] such that aM = 0 and a ≡ 1 (mod X). Hence a = 1 + XY for a certain
polynomial Y ∈ A[X] and (1 + XY ) ·M = 0. If u ∈ ker h, then

0 = (1 + XY )u = u + Y · h(u) = u

because h(u) = 0. Hence u = 0, ker h = 0 and so h is injective, as desired. �

We state the result in the particular case of Z−modules, that is, abelian groups.

Corollary 1. Let M be a finitely generated abelian group and let h : M → M
be an endomorphism. If h is surjective, then h is injective.
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4. Noetherian rings: surjectivity implies injectivity

It turns out that a result similar to Theorem 1 can also be proved for rings. The
following theorem is proposed as an exercise in Matsumura’s book [2, Ex. 3.6, p.
19].

Theorem 2. Let A be a noetherian ring and let h : A → A be a ring homomor-
phism. If h is surjective, then h is injective.

Proof. Consider the iterates h1 = h, h2 = h ◦ h, . . . , hn+1 = hn ◦ h of the
endomorphism h. It is easy to observe that, first, they are all surjective maps, and
second, the kernels ker hi form an ascending chain of ideals in the ring A:

ker h ⊆ ker h2 ⊆ · · · ⊆ ker hn ⊆ · · · .

Since A is noetherian, there is a natural number n such that

ker hn = ker hn+1.

Take now an arbitrary element a ∈ ker h. Since hn is surjective, there is b ∈ A such
that a = hn(b). Then

0 = h(a) = h(hn(b)) = hn+1(b).

Hence b ∈ ker hn+1 = ker hn and so a = hn(b) = 0. Thus ker h = 0 and h is an
injective homomorphism. �

Remark 2. The ring A can be viewed as a free A−module of rank 1. One
could expect that Theorem 2 should follow from Theorem 1. This is not so and the
reason is that a ring endomorphism of A is not in general an endomorphism of the
A−module A (and vice versa). For the ring endomorphism we have

h(ab) = h(a)h(b) for a, b ∈ A

and for the A−module endomorphism we have

h(ab) = ah(b) for a, b ∈ A

so that, in general, the two maps do not act in the same way on the products of
elements in A.
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