Let X be a Banach space. We ask whether there exists a constant $\nu(X) < +\infty$ (depending only on X) such that:

For any set $\Omega \neq \emptyset$, any algebra $F \subset 2^\Omega$, and any function $\nu : F \to X$ satisfying

\[\| \nu(A \cup B) - \nu(A) - \nu(B) \| \leq 1 \]

for $A, B \in F$, $A \cap B = \emptyset$, there exists a vector measure $\mu : F \to X$ such that

\[\| \nu(A) - \mu(A) \| \leq \nu(X) \]

for $A \in F$. If the above condition is valid, then we say that X has the SVM property.
Let X be a Banach space. We ask whether there exists a constant $\nu(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \to X$ satisfying
\[
\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \quad A \cap B = \emptyset,
\]
there exists a vector measure $\mu: \mathcal{F} \to X$ such that
\[
\|\nu(A) - \mu(A)\| \leq \nu(X) \quad \text{for } A \in \mathcal{F}.
\]
If the above condition is valid, then we say that X has the SVM property.
Let X be a Banach space. We ask whether there exists a constant $\nu(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \to X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \ A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \to X$ such that $\|\nu(A) - \mu(A)\| \leq \nu(X)$ for $A \in \mathcal{F}$. If the above condition is valid, then we say that X has the SVM property.
Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $\nu(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \to X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \ A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \to X$ such that

$$\|\nu(A) - \mu(A)\| \leq \nu(X) \quad \text{for } A \in \mathcal{F}.$$
Formulation of the problem

Let X be a Banach space. We ask whether there exists a constant $\nu(X) < +\infty$ (depending only on X) such that: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{F} \subset 2^\Omega$, and any function $\nu: \mathcal{F} \to X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \to X$ such that

$$\|\nu(A) - \mu(A)\| \leq \nu(X) \quad \text{for } A \in \mathcal{F}.$$

If the above condition is valid, then we say that X has the SVM property.
Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property:
The Kalton–Roberts theorem

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \to \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1$$

for $A, B \in \mathcal{A}$, $A \cap B = \emptyset$, there exists an additive set function $\mu: \mathcal{A} \to \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K$$

for $A \in \mathcal{A}$. This means, in our terminology, that the space \mathbb{R} has the SVM property. As an obvious consequence, the finite-dimensional spaces \mathbb{R}^n, as well as the space ℓ_∞, also have the SVM property.
Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \to \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, \ A \cap B = \emptyset,$$

there exists an additive set function $\mu: \mathcal{A} \to \mathbb{R}$ such that $|\nu(A) - \mu(A)| \leq K$ for $A \in \mathcal{A}$. This means, in our terminology, that the space \mathbb{R} has the SVM property. As an obvious consequence, the finite-dimensional spaces \mathbb{R}^n, as well as the space ℓ_∞, also have the SVM property.
The Kalton–Roberts theorem

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \rightarrow \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, \ A \cap B = \emptyset,$$

there exists an additive set function $\mu: \mathcal{A} \rightarrow \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K \quad \text{for } A \in \mathcal{A}.$$
Motivation
The Kalton–Roberts theorem

Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu : \mathcal{A} \to \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, \ A \cap B = \emptyset,$$

there exists an additive set function $\mu : \mathcal{A} \to \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K \quad \text{for } A \in \mathcal{A}.$$

This means, in our terminology, that the space \mathbb{R} has the SVM property.
Theorem (Kalton & Roberts, 1983). There exists an absolute constant $K < 45$ with the following property: for any set $\Omega \neq \emptyset$, any algebra $\mathcal{A} \subset 2^\Omega$, and any function $\nu: \mathcal{A} \to \mathbb{R}$ satisfying

$$|\nu(A \cup B) - \nu(A) - \nu(B)| \leq 1 \quad \text{for } A, B \in \mathcal{A}, \ A \cap B = \emptyset,$$

there exists an additive set function $\mu: \mathcal{A} \to \mathbb{R}$ such that

$$|\nu(A) - \mu(A)| \leq K \quad \text{for } A \in \mathcal{A}.$$

This means, in our terminology, that the space \mathbb{R} has the SVM property. As an obvious consequence, the finite-dimensional spaces \mathbb{R}^n, as well as the space ℓ_∞, also have the SVM property.
Let κ be a cardinal number. We say that a Banach space X has the \textbf{κ-SVM property} if and only if there exists a constant $\nu(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^\Omega$ of cardinality less than κ, and any map $\nu: \mathcal{F} \to X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \ A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \to X$ such that

$$\|\nu(A) - \mu(A)\| \leq \nu(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$
SVM character

Let \(\kappa \) be a cardinal number. We say that a Banach space \(X \) has the \(\kappa \)-SVM property if and only if there exists a constant \(v(\kappa, X) < \infty \) (depending only on \(\kappa \) and \(X \)) such that given any algebra \(\mathcal{F} \subset 2^\Omega \) of cardinality less than \(\kappa \), and any map \(\nu: \mathcal{F} \to X \) satisfying

\[
\| \nu(A \cup B) - \nu(A) - \nu(B) \| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \ A \cap B = \emptyset,
\]

there exists a vector measure \(\mu: \mathcal{F} \to X \) such that

\[
\| \nu(A) - \mu(A) \| \leq v(\kappa, X) \quad \text{for } A \in \mathcal{F}.
\]

If \(X \) is a Banach space which does not have the SVM property, then by the SVM character of \(X \) we mean the minimal cardinal number \(\kappa \) such that \(X \) does not have the \(\kappa \)-SVM property, and we denote it by \(\tau(X) \).
SVM character

Let κ be a cardinal number. We say that a Banach space X has the κ-SVM property if and only if there exists a constant $\nu(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^{\Omega}$ of cardinality less than κ, and any map $\nu: \mathcal{F} \to X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \ A \cap B = \emptyset,$$

there exists a vector measure $\mu: \mathcal{F} \to X$ such that

$$\|\nu(A) - \mu(A)\| \leq \nu(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$

If X is a Banach space which does not have the SVM property, then by the SVM character of X we mean the minimal cardinal number κ such that X does not have the κ-SVM property, and we denote it by $\tau(X)$.

Remark. Note that $\tau(X)$ is properly defined for every Banach space not enjoying the SVM property.
Let κ be a cardinal number. We say that a Banach space X has the **κ-SVM property** if and only if there exists a constant $\nu(\kappa, X) < \infty$ (depending only on κ and X) such that given any algebra $\mathcal{F} \subset 2^\Omega$ of cardinality less than κ, and any map $\nu : \mathcal{F} \to X$ satisfying

$$\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, \ A \cap B = \emptyset,$$

there exists a vector measure $\mu : \mathcal{F} \to X$ such that

$$\|\nu(A) - \mu(A)\| \leq \nu(\kappa, X) \quad \text{for } A \in \mathcal{F}.$$

If X is a Banach space which does not have the SVM property, then by the **SVM character** of X we mean the minimal cardinal number κ such that X does not have the κ-SVM property, and we denote it by $\tau(X)$.

Remark. Note that $\tau(X)$ is properly defined for every Banach space not enjoying the SVM property. (That is, if X has the κ-SVM property for each cardinal number κ, then X has the SVM property.)
Let \(\kappa \) be a cardinal number. We say that a Banach space \(X \) has the \(\kappa \)-SVM property if and only if there exists a constant \(v(\kappa, X) < \infty \) (depending only on \(\kappa \) and \(X \)) such that given any algebra \(\mathcal{F} \subset 2^{\Omega} \) of cardinality less than \(\kappa \), and any map \(\nu : \mathcal{F} \to X \) satisfying

\[
\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for} \ A, B \in \mathcal{F}, \ A \cap B = \emptyset,
\]

there exists a vector measure \(\mu : \mathcal{F} \to X \) such that

\[
\|\nu(A) - \mu(A)\| \leq v(\kappa, X) \quad \text{for} \ A \in \mathcal{F}.
\]

If \(X \) is a Banach space which does not have the SVM property, then by the SVM character of \(X \) we mean the minimal cardinal number \(\kappa \) such that \(X \) does not have the \(\kappa \)-SVM property, and we denote it by \(\tau(X) \).

By writing \(\tau(X) > \kappa \) we simply mean that \(X \) has the \(\kappa \)-SVM property.
Let us recall our basic assumption on a given function $\nu: \mathcal{F} \rightarrow X$:

\[(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset \]
Let us recall our basic assumption on a given function $\nu : \mathcal{F} \to X$:

\[
(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset
\]

- $\tau(X) \geq \omega$ for every Banach space X.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function $\nu: \mathcal{F} \to X$:

\[(\ast) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset\]

- $\tau(X) \geq \omega$ for every Banach space X. [Proof] Let $\mathcal{F} \subset 2^\Omega$ be a finite algebra of sets and $\nu: \mathcal{F} \to X$ satisfy (\ast). We may assume that $\mathcal{F} = 2^\Omega$ and let $n = |\Omega|$. By a simple induction we get the inequality

$$\left\|\nu(A) - \sum_{a \in A} \nu\{a\}\right\| \leq |A| - 1 \quad \text{for } A \in \mathcal{F},$$

thus the measure $\mu: \mathcal{F} \to X$, defined by $\mu\{a\} = \nu\{a\}$ for $a \in \Omega$, does the job. Consequently, for every Banach space X we have $\tau(X) \geq \omega$ and $\nu(2^n, X) \leq n - 1$ for each $n \in \mathbb{N}$.

Tomasz Kochanek (University of Silesia)
Stability of vector measures...
Basic observations concerning the SVM character

Let us recall our basic assumption on a given function $\nu: \mathcal{F} \rightarrow X$:

\[
(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset
\]

- $\tau(X) \geq \omega$ for every Banach space X.
- If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ, then $v(X) \leq \lambda v(\omega, X)$.

Basic observations concerning the SVM character

Let us recall our basic assumption on a given function $\nu: \mathcal{F} \to X$:

\[(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset \]

- $\tau(X) \geq \omega$ for every Banach space X.
- If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ, then $v(X) \leq \lambda v(\omega, X)$.

[Proof] Let \mathcal{F} be an arbitrary algebra of sets and let Γ be the set of all finite subalgebras of \mathcal{F}, directed by the inclusion. We use the assumption $\tau(X) > \omega$ and the compactness of the unit ball of X^{**} with respect to the w^*-topology to produce an approximating measure with values in X^{**}. Next we just have to project it onto X.

Tomasz Kochanek (University of Silesia) Stability of vector measures...
Basic observations concerning the SVM character

Let us recall our basic assumption on a given function \(\nu: \mathcal{F} \to X \):

\[
(\ast) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset
\]

- \(\tau(X) \geq \omega \) for every Banach space \(X \).
- If \(\tau(X) > \omega \) and \(X \) is complemented in its bidual, then \(X \) has the SVM property. Moreover, if there is a projection of \(X^{**} \) onto \(X \) with norm not exceeding \(\lambda \), then \(v(X) \leq \lambda v(\omega, X) \).
- \(\tau(c_0) > \omega \), i.e. \(c_0 \) satisfies the \(\omega \)-SVM property.
Let us recall our basic assumption on a given function \(\nu: F \to X \):

\((*)\) \[\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in F, A \cap B = \emptyset \]

- \(\tau(X) \geq \omega \) for every Banach space \(X \).
- If \(\tau(X) > \omega \) and \(X \) is complemented in its bidual, then \(X \) has the SVM property. Moreover, if there is a projection of \(X^{**} \) onto \(X \) with norm not exceeding \(\lambda \), then \(v(X) \leq \lambda v(\omega, X) \).
- \(\tau(c_0) > \omega \), i.e. \(c_0 \) satisfies the \(\omega \)-SVM property. [Proof] Let \(F \) be a finite algebra. Choose any \(\varepsilon \in (0, 1) \) and pick an \(n \in \mathbb{N} \) such that \(|e_j^*(\nu(A))| < \varepsilon \) for each \(j > n \) and \(A \in F \). For each \(j \)th coordinate \((1 \leq j \leq n) \) there is an additive set function \(\mu_j: F \to \mathbb{R} \) satisfying \(|e_j^*(\nu(A)) - \mu_j(A)| \leq K \) for \(A \in F \). Then the measure \(\mu: F \to c_0 \) defined by \(\mu(A) = (\mu_1(A), \ldots, \mu_n(A), 0, 0, \ldots) \) satisfies \(\|\nu(A) - \mu(A)\| \leq K \) for \(A \in F \). We get \(\nu(\omega, c_0) = K \).
Basic observations concerning the SVM character

Let us recall our basic assumption on a given function $\nu: \mathcal{F} \rightarrow X$:

$$(\ast) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset$$

- $\tau(X) \geq \omega$ for every Banach space X.
- If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ, then $\nu(X) \leq \lambda \nu(\omega, X)$.
- $\tau(c_0) > \omega$, i.e. c_0 satisfies the ω-SVM property.
- $\tau(C[0,1]) > \omega$, i.e. $C[0,1]$ satisfies the ω-SVM property.
Basic observations concerning the SVM character

Let us recall our basic assumption on a given function $\nu: \mathcal{F} \to X$:

\[(*) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset\]

- $\tau(X) \geq \omega$ for every Banach space X.
- If $\tau(X) > \omega$ and X is complemented in its bidual, then X has the SVM property. Moreover, if there is a projection of X^{**} onto X with norm not exceeding λ, then $\nu(X) \leq \lambda \nu(\omega, X)$.
- $\tau(c_0) > \omega$, i.e. c_0 satisfies the ω-SVM property.
- $\tau(C[0,1]) > \omega$, i.e. $C[0,1]$ satisfies the ω-SVM property.

[Proof] We use the uniform continuity of $\nu(A) \in C[0,1]$ (for $A \in \mathcal{F}$).
Basic observations concerning the SVM character

Let us recall our basic assumption on a given function \(\nu : \mathcal{F} \to X \):

\[
\|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset
\]

- \(\tau(X) \geq \omega \) for every Banach space \(X \).
- If \(\tau(X) > \omega \) and \(X \) is complemented in its bidual, then \(X \) has the SVM property. Moreover, if there is a projection of \(X^{**} \) onto \(X \) with norm not exceeding \(\lambda \), then \(\nu(X) \leq \lambda \nu(\omega, X) \).
- \(\tau(c_0) > \omega \), i.e. \(c_0 \) satisfies the \(\omega \)-SVM property.
- \(\tau(C[0,1]) > \omega \), i.e. \(C[0,1] \) satisfies the \(\omega \)-SVM property.
- Is every cardinal number equal to the SVM character of some Banach space?
Basic observations concerning the SVM character

Let us recall our basic assumption on a given function
\(\nu: \mathcal{F} \to X: \)

\[
(\ast) \quad \|\nu(A \cup B) - \nu(A) - \nu(B)\| \leq 1 \quad \text{for } A, B \in \mathcal{F}, A \cap B = \emptyset
\]

- \(\tau(X) \geq \omega \) for every Banach space \(X \).
- If \(\tau(X) > \omega \) and \(X \) is complemented in its bidual, then \(X \) has the SVM property. Moreover, if there is a projection of \(X^{**} \) onto \(X \) with norm not exceeding \(\lambda \), then \(\nu(X) \leq \lambda \nu(\omega, X) \).
- \(\tau(c_0) > \omega \), i.e. \(c_0 \) satisfies the \(\omega \)-SVM property.
- \(\tau(C[0,1]) > \omega \), i.e. \(C[0,1] \) satisfies the \(\omega \)-SVM property.
- Is every cardinal number equal to the SVM character of some Banach space? We shall give a partial answer to this question in what follows.
Twisted sums machinery

Exact sequences

Let X, Y, Z be F-spaces. A short **exact sequence** is a diagram

\[(*) \quad 0 \longrightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \longrightarrow 0,\]

where $i : Y \to Z$ is a one-to-one operator with a closed range (embedding) and $q : Z \to X$ is a surjective operator such that $\text{im}(i) = \text{ker}(q)$.
Twisted sums machinery

Exact sequences

Let X, Y, Z be F-spaces. A short exact sequence is a diagram

\[(*) \quad 0 \rightarrow Y \xrightarrow{i} Z \xrightarrow{q} X \rightarrow 0,\]

where $i: Y \rightarrow Z$ is a one-to-one operator with a closed range (embedding) and $q: Z \rightarrow X$ is a surjective operator such that $\text{im}(i) = \text{ker}(q)$.

In other words, Z contains a closed subspace $Y_1 \simeq Y$ (isomorphically) such that the quotient space $Z/Y_1 \simeq X$.
Let X, Y, Z be F-spaces. A short **exact sequence** is a diagram

\[(*) \quad 0 \to Y \xrightarrow{i} Z \xrightarrow{q} X \to 0,\]

where $i: Y \to Z$ is a one-to-one operator with a closed range (embedding) and $q: Z \to X$ is a surjective operator such that $\text{im}(i) = \ker(q)$.

In other words, Z contains a closed subspace $Y_1 \simeq Y$ (isomorphically) such that the quotient space $Z/Y_1 \simeq X$. We then say that Z is a **twisted sum** of Y and X (in this order!), or that Z is an **extension** of X by Y.
In fact, twisted sums are identified via the following natural equivalence relation:
In fact, twisted sums are identified via the following natural equivalence relation:

We say that two exact sequences of F-spaces $0 \to Y \to Z_1 \to X \to 0$ and $0 \to Y \to Z_2 \to X \to 0$ are **equivalent**, if there exists an operator $T : Z_1 \to Z_2$ such that the diagram

$$
\begin{array}{cccccc}
0 & \longrightarrow & Y & \longrightarrow & Z_1 & \longrightarrow & X & \longrightarrow & 0 \\
| & & | & \downarrow{T} & | & & | & & | \\
0 & \longrightarrow & Y & \longrightarrow & Z_2 & \longrightarrow & X & \longrightarrow & 0
\end{array}
$$

is commutative.
For any two F-spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \to Y \to Y \oplus X \to X \to 0$$

produced by the direct sum, jointly with the natural embedding and projection.
For any two F-spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \to Y \to Y \oplus X \to X \to 0$$

produced by the direct sum, jointly with the natural embedding and projection.

We say that exact sequence (\ast) \textbf{splits} if and only if it is equivalent to (\oplus).
For any two F-spaces X and Y we have always the trivial exact sequence:

\[
(\oplus) \quad 0 \to Y \to Y \oplus X \to X \to 0
\]

produced by the direct sum, jointly with the natural embedding and projection.

We say that exact sequence (\ast) \textbf{splits} if and only if it is equivalent to (\oplus). Equivalently: the copy $i(Y)$ of Y, inside Z, is complemented in Z.
For any two F-spaces X and Y we have always the trivial exact sequence:

$$(\oplus) \quad 0 \rightarrow Y \rightarrow Y \oplus X \rightarrow X \rightarrow 0$$

produced by the direct sum, jointly with the natural embedding and projection.

We say that exact sequence (\ast) **splits** if and only if it is equivalent to (\oplus). Equivalently: the copy $i(Y)$ of Y, inside Z, is complemented in Z. In such a case we must have $Z \cong X \oplus Y$.
Now, we focus on the case where X and Y are Banach spaces.
Now, we focus on the case where X and Y are Banach spaces. The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all \textbf{locally convex} twisted sums of Y and X, modulo the equivalence relation defined earlier.
Twisted sums machinery
Functor ‘Ext’

Now, we focus on the case where X and Y are Banach spaces. The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all \textit{locally convex} twisted sums of Y and X, modulo the equivalence relation defined earlier.

In other words, $\text{Ext}(X, Y)$ is the class of all \textbf{Banach spaces} Z (identified by the equivalence relation defined earlier) which produce an exact sequence of the form

$$0 \to Y \to Z \to X \to 0.$$
Twisted sums machinery

Functor ‘Ext’

Now, we focus on the case where X and Y are Banach spaces. The functor Ext assigns, to every pair (X, Y) of Banach spaces, the class of all \textbf{locally convex} twisted sums of Y and X, modulo the equivalence relation defined earlier.

In other words, $\text{Ext}(X, Y)$ is the class of all \textbf{Banach spaces} Z (identified by the equivalence relation defined earlier) which produce an exact sequence of the form

\[(*) \quad 0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0.\]

We write $\text{Ext}(X, Y) = 0$ if every exact sequence $(*)$, where Z is a Banach space, splits.
Let X, Y and Z be F-spaces. Assume they form an exact sequence

$$0 \to Y \to Z \to X \to 0,$$
Let X, Y and Z be F-spaces. Assume they form an exact sequence

$$0 \to Y \to Z \to X \to 0,$$

and that X and Y satisfy some property (P). Does it imply that the “middle” space Z also satisfies (P)?
History behind twisted sums
The three-space problem (3SP problem)

Let X, Y and Z be F-spaces. Assume they form an exact sequence

$$0 \to Y \to Z \to X \to 0,$$

and that X and Y satisfy some property (P). Does it imply that the “middle” space Z also satisfies (P)?

In other words, we suppose that Z contains a closed subspace $Y_1 \cong Y$, and such that the quotient space $Z/Y_1 \cong X$.
Let X, Y and Z be F-spaces. Assume they form an exact sequence

$$0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0,$$

and that X and Y satisfy some property (P). Does it imply that the “middle” space Z also satisfies (P)?

In other words, we suppose that Z contains a closed subspace $Y_1 \cong Y$, and such that the quotient space $Z/Y_1 \cong X$. If both Y_1 and Z/Y_1 satisfies (P), does Z also have to satisfy (P)?
History behind 3SP problem
The three-space problem (3SP problem)

0 \rightarrow Y \rightarrow Z \rightarrow X \rightarrow 0

History behind 3SP problem
The three-space problem (3SP problem)

\[0 \to Y \to Z \to X \to 0 \]

- \(X, Y \) are (super)reflexive \(\Rightarrow \) \(Z \) is (super)reflexive;
History behind 3SP problem
The three-space problem (3SP problem)

\[0 \to Y \to Z \to X \to 0 \]

- X, Y are (super)reflexive \Rightarrow Z is (super)reflexive;
- X, Y are Hilbert spaces $\not\Rightarrow$ Z is (isomorphic to) a Hilbert space (!)
We say that an F-space X is a \mathcal{K}-space if and only if for any other F-space Z which gives an exact sequence $0 \to \mathbb{R} \to Z \to X \to 0$ such a sequence splits. In other words, X cannot be represented as a quotient by \mathbb{R} of any non-locally convex F-space.
We say that an F-space X is a **\mathcal{K}-space** if and only if for any other F-space Z which gives an exact sequence $0 \to \mathbb{R} \to Z \to X \to 0$ such a sequence splits. In other words, X cannot be represented as a quotient by \mathbb{R} of any non-locally convex F-space.

The question, which was of special interest in around 1977-78, was: is ℓ_1 a \mathcal{K}-space, or in other words: given an exact sequence

$$0 \to \mathbb{R} \to Z \to \ell_1 \to 0,$$

does Z have to be locally convex?
We say that an F-space X is a \mathcal{K}-space if and only if for any other F-space Z which gives an exact sequence $0 \to \mathbb{R} \to Z \to X \to 0$ such a sequence splits. In other words, X cannot be represented as a quotient by \mathbb{R} of any non-locally convex F-space.

The question, which was of special interest in around 1977-78, was: is ℓ_1 a \mathcal{K}-space, or in other words: given an exact sequence

$$0 \to \mathbb{R} \to Z \to \ell_1 \to 0,$$

does Z have to be locally convex?

The negative answer was given independently by N.J. Kalton, M. Ribe and J.W. Roberts.
Let X, Y be a quasi-normed spaces.
History behind twisted sums
Quasi-linear and zero-linear maps

Let X, Y be a quasi-normed spaces. A homogeneous mapping $F : X \rightarrow Y$ is called quasi-linear, if it satisfies
Let X, Y be a quasi-normed spaces. A **homogeneous** mapping $F: X \to Y$ is called **quasi-linear**, if it satisfies

$$
\|F(x + y) - F(x) - F(y)\| \leq c(\|x\| + \|y\|) \quad \text{for } x, y \in X,
$$

with some constant $c < +\infty$. It is called **zero-linear**, if it satisfies

$$
\left\|F\left(\sum_{i=1}^n x_i\right) - \sum_{i=1}^n F(x_i)\right\| \leq C \sum_{i=1}^n \|x_i\| \quad \text{for } x_i \in X,
$$

with some constant $C < +\infty$.
Let X, Y be a quasi-normed spaces. A **homogeneous** mapping $F: X \to Y$ is called **quasi-linear**, if it satisfies

$$
\|F(x + y) - F(x) - F(y)\| \leq c(\|x\| + \|y\|) \quad \text{for } x, y \in X,
$$

with some constant $c < +\infty$.
Let X, Y be a quasi-normed spaces. A **homogeneous** mapping $F : X \to Y$ is called **quasi-linear**, if it satisfies

$$\|F(x + y) - F(x) - F(y)\| \leq c(\|x\| + \|y\|)$$

for $x, y \in X$, with some constant $c < +\infty$. It is called **zero-linear**, if it satisfies
Let X, Y be a quasi-normed spaces. A **homogeneous** mapping $F: X \to Y$ is called **quasi-linear**, if it satisfies

$$\|F(x + y) - F(x) - F(y)\| \leq c(\|x\| + \|y\|)$$

for $x, y \in X$, with some constant $c < +\infty$. It is called **zero-linear**, if it satisfies

$$\left\|F \left(\sum_{i=1}^{n} x_i \right) - \sum_{i=1}^{n} F(x_i) \right\| \leq C \sum_{i=1}^{n} \|x_i\|$$

for $x_i \in X$, with some constant $C < +\infty$.
History behind twisted sums
The map constructed by Kalton, Ribe and Roberts

We shall define a special quasi-linear map acting between ℓ_1 and \mathbb{R}.

Put $f(t) = t \log |t|$ for $t \in \mathbb{R}$ (with the convention $0 \cdot \log 0 = 0$).

Then $|f(s + t) - f(s) - f(t)| \leq (|s| + |t|) \cdot \log 2$ for $s, t \in \mathbb{R}$.

Let $c_{00} = \{x \in \ell_1 : x_i \neq 0$ for finitely many $i \in \mathbb{N}\}$.

Define $F : c_{00} \to \mathbb{R}$ by $F(x) = \sum x_i \log |x_i| - (\sum x_i) \log \left| \sum x_i \right|$.

Then F is homogeneous and for all $x, y \in c_{00}$ we have $|F(x + y) - F(x) - F(y)| \leq 2 \log 2 \cdot (\|x\| + \|y\|)$.
History behind twisted sums
The map constructed by Kalton, Ribe and Roberts

We shall define a special quasi-linear map acting between ℓ_1 and \mathbb{R}. Put $f(t) = t \log |t|$ for $t \in \mathbb{R}$ (with the convention $0 \cdot \log 0 = 0$).
History behind twisted sums
The map constructed by Kalton, Ribe and Roberts

We shall define a special quasi-linear map acting between ℓ_1 and \mathbb{R}.

Put $f(t) = t \log |t|$ for $t \in \mathbb{R}$ (with the convention $0 \cdot \log 0 = 0$). Then

$$|f(s + t) - f(s) - f(t)| \leq (|s| + |t|) \cdot \log 2 \quad \text{for } s, t \in \mathbb{R}.$$
We shall define a special quasi-linear map acting between ℓ_1 and \mathbb{R}. Put $f(t) = t \log |t|$ for $t \in \mathbb{R}$ (with the convention $0 \cdot \log 0 = 0$). Then

$$|f(s + t) - f(s) - f(t)| \leq (|s| + |t|) \cdot \log 2 \quad \text{for } s, t \in \mathbb{R}.$$

Let

$$c_{00} = \{ x \in \ell_1 : x_i \neq 0 \text{ for finitely many } i \in \mathbb{N} \}.$$
We shall define a special quasi-linear map acting between ℓ_1 and \mathbb{R}.

Put $f(t) = t \log |t|$ for $t \in \mathbb{R}$ (with the convention $0 \cdot \log 0 = 0$). Then

$$|f(s + t) - f(s) - f(t)| \leq (|s| + |t|) \cdot \log 2 \quad \text{for } s, t \in \mathbb{R}.$$

Let

$$c_{00} = \{x \in \ell_1 : x_i \neq 0 \text{ for finitely many } i \in \mathbb{N}\}.$$

Define $F : c_{00} \rightarrow \mathbb{R}$ by

$$F(x) = \sum x_i \log |x_i| - \left(\sum x_i\right) \log \left|\sum x_i\right|.$$
History behind twisted sums

The map constructed by Kalton, Ribe and Roberts

We shall define a special quasi-linear map acting between ℓ_1 and \mathbb{R}.

Put $f(t) = t \log |t|$ for $t \in \mathbb{R}$ (with the convention $0 \cdot \log 0 = 0$). Then

$$|f(s + t) - f(s) - f(t)| \leq (|s| + |t|) \cdot \log 2 \quad \text{for } s, t \in \mathbb{R}.$$

Let

$$c_{00} = \{ x \in \ell_1 : x_i \neq 0 \text{ for finitely many } i \in \mathbb{N} \}.$$

Define $F : c_{00} \rightarrow \mathbb{R}$ by

$$F(x) = \sum x_i \log |x_i| - \left(\sum x_i \right) \log \left| \sum x_i \right|.$$

Then F is homogeneous and for all $x, y \in c_{00}$ we have

$$|F(x + y) - F(x) - F(y)| \leq 2 \log 2 \cdot (\|x\| + \|y\|).$$

Every quasi-linear map, acting on a dense subspace of some quasi-normed space, admits an extension to a quasi-linear map defined on the whole space!
History behind twisted sums
The map constructed by Kalton, Ribe and Roberts

So, we extend the quasi-linear map $F : c_{00} \to \mathbb{R}$ to a quasi-linear map $\tilde{F} : \ell_1 \to \mathbb{R}$.
History behind twisted sums
The map constructed by Kalton, Ribe and Roberts

So, we extend the quasi-linear map $F : c_{00} \to \mathbb{R}$ to a quasi-linear map
$\tilde{F} : \ell_1 \to \mathbb{R}$.

What could we do with this?
So, we extend the quasi-linear map $F : c_{00} \to \mathbb{R}$ to a quasi-linear map $	ilde{F} : \ell_1 \to \mathbb{R}$.

What could we do with this?

$$0 \to \mathbb{R} \to Z \to \ell_1 \to 0$$
So, we extend the quasi-linear map $F: c_{00} \to \mathbb{R}$ to a quasi-linear map
\[\tilde{F}: \ell_1 \to \mathbb{R} \]

What could we do with this?

\[0 \to \mathbb{R} \to Z \to \ell_1 \to 0 \]

Define (algebraically):
\[Z = \mathbb{R} \oplus \ell_1 \]
So, we extend the quasi-linear map $F : c_{00} \to \mathbb{R}$ to a quasi-linear map $\tilde{F} : \ell_1 \to \mathbb{R}$.

What could we do with this?

$$0 \to \mathbb{R} \to Z \to \ell_1 \to 0$$

Define (algebraically):

$$Z = \mathbb{R} \oplus \ell_1$$

and equip that linear space with the quasi-norm

$$\| (t, x) \| := \| x \| + | t - \tilde{F}(x) |.$$
History behind twisted sums
The map constructed by Kalton, Ribe and Roberts

So, we extend the quasi-linear map \(F : c_{00} \to \mathbb{R} \) to a quasi-linear map \(\tilde{F} : \ell_1 \to \mathbb{R} \).

What could we do with this?

\[
0 \to \mathbb{R} \to Z \to \ell_1 \to 0
\]

Define (algebraically):

\[
Z = \mathbb{R} \oplus \ell_1
\]

and equip that linear space with the quasi-norm

\[
\|(t, x)\| := \|x\| + |t - \tilde{F}(x)|.
\]

This yields a quasi-normed space \(Z \) which gives the exact sequence above.
So, we extend the quasi-linear map $F : c_{00} \to \mathbb{R}$ to a quasi-linear map $	ilde{F} : \ell_1 \to \mathbb{R}$.

What could we do with this?

$$0 \to \mathbb{R} \to Z \to \ell_1 \to 0$$

Define (algebraically):

$$Z = \mathbb{R} \oplus \ell_1$$

and equip that linear space with the quasi-norm

$$\| (t, x) \| := \| x \| + |t - \tilde{F}(x)|.$$

This yields a quasi-normed space Z which gives the exact sequence above. However, it may be checked that Z would be locally convex if and only if $	ilde{F}$ was zero-linear.
So, we extend the quasi-linear map $F : c_{00} \to \mathbb{R}$ to a quasi-linear map $\tilde{F} : \ell_1 \to \mathbb{R}$.

What could we do with this?

$$0 \to \mathbb{R} \to Z \to \ell_1 \to 0$$

Define (algebraically):

$$Z = \mathbb{R} \oplus \ell_1$$

and equip that linear space with the quasi-norm

$$\|(t, x)\| := \|x\| + |t - \tilde{F}(x)|.$$

This yields a quasi-normed space Z which gives the exact sequence above. However, it may be checked that Z would be locally convex if and only if \tilde{F} was zero-linear. But it is not!
In fact, we have

\[F \left(\sum_{i=1}^{n} e_i \right) = n \log n, \]
In fact, we have

\[F \left(\sum_{i=1}^{n} e_i \right) = n \log n, \]

\[F(e_n) = 0, \]
In fact, we have

\[
F \left(\sum_{i=1}^{n} e_i \right) = n \log n,
\]

\[
F(e_n) = 0,
\]

\[
\sum_{i=1}^{n} \|e_i\| = n \quad \text{for every } n \in \mathbb{N}.
\]
In fact, we have

\[F \left(\sum_{i=1}^{n} e_i \right) = n \log n, \]

\[F(e_n) = 0, \]

\[\sum_{i=1}^{n} \|e_i\| = n \quad \text{for every } n \in \mathbb{N}. \]

Therefore, we have constructed a \textbf{non-locally convex} quasi-normed space \(Z \) such that \(Z/\mathbb{R} \simeq \ell_1 \). This was possible due to the failure of the stability effect for quasi-linear maps acting between \(\ell_1 \) and \(\mathbb{R} \).
Let us recall that:

Any F-space Z giving an exact sequence $0 \to Y \to Z \to X \to 0$ is called a **twisted sum** of Y and X. By $\text{Ext}(X, Y)$ we denote the family of all **locally convex** twisted sums of Y and X (equipped with some natural equivalence relation). By $\text{Ext}(X, Y) = 0$ we mean that every locally convex twisted sum of Y and X is trivial, i.e. isomorphic to $Y \oplus X$.

Theorem (Kalton & Peck, 1979) Every twisted sum is produced by some quasi-linear mapping. Every locally convex twisted sum is produced by some zero-linear mapping.
History behind twisted sums

The theorem of Kalton and Peck

Let us recall that:

Any F-space Z giving an exact sequence $0 \to Y \to Z \to X \to 0$ is called a **twisted sum** of Y and X. By $\text{Ext}(X, Y)$ we denote the family of all **locally convex** twisted sums of Y and X (equipped with some natural equivalence relation). By $\text{Ext}(X, Y) = 0$ we mean that every locally convex twisted sum of Y and X is trivial, i.e. isomorphic to $Y \oplus X$.

Theorem (Kalton & Peck, 1979)

Every twisted sum is produced by some quasi-linear mapping.
Let us recall that:

Any F-space Z giving an exact sequence $0 \to Y \to Z \to X \to 0$ is called a **twisted sum** of Y and X. By $\text{Ext}(X, Y)$ we denote the family of all **locally convex** twisted sums of Y and X (equipped with some natural equivalence relation). By $\text{Ext}(X, Y) = 0$ we mean that every locally convex twisted sum of Y and X is trivial, i.e. isomorphic to $Y \oplus X$.

Theorem (Kalton & Peck, 1979)

Every twisted sum is produced by some quasi-linear mapping. Every locally convex twisted sum is produced by some zero-linear mapping.
History behind twisted sums

Some examples

- $\ell_2 \oplus \ell_2$ does not split (Enflo, Lindenstrauss, Pisier, 1975).

- (ℓ_1, \mathbb{R}) does not split, i.e. ℓ_1 is not a K-space (Kalton, Ribe, Roberts, 1977-79).

- ℓ_p is a K-space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).

- (ℓ_p, ℓ_p) always fails to split, for $0 < p < \infty$ (Kalton, Peck, 1979).

- c_0 and ℓ_∞, as well as all L_∞-spaces, are K-spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!

- $\operatorname{Ext}(X, \ell_\infty) = 0$ for any Banach space X (by the injectivity of ℓ_∞).

- $\operatorname{Ext}(X, c_0) = 0$ for every separable Banach space X (Sobczyk’s theorem).
History behind twisted sums

Some examples

- \((\ell_2, \ell_2)\) **does not** split (Enflo, Lindenstrauss, Pisier, 1975).
- \((\ell_1, \mathbb{R})\) **does not** split, i.e. \(\ell_1\) is not a \(\mathcal{K}\)-space (Kalton, Ribe, Roberts, 1977-79). Obviously, \(\text{Ext}(\ell_1, \mathbb{R}) = 0\) by the Hahn-Banach theorem.
History behind twisted sums

Some examples

- \((\ell_2, \ell_2)\) does not split (Enflo, Lindenstrauss, Pisier, 1975).
- \((\ell_1, \mathbb{R})\) does not split, i.e. \(\ell_1\) is not a \(\mathcal{K}\)-space (Kalton, Ribe, Roberts, 1977-79). Obviously, \(\text{Ext}(\ell_1, \mathbb{R}) = 0\) by the Hahn-Banach theorem.
- \(\ell_p\) is a \(\mathcal{K}\)-space for any \(0 < p < \infty, p \neq 1\) (Kalton, 1977).
History behind twisted sums

Some examples

- \((l_2, l_2)\) does not split (Enflo, Lindenstrauss, Pisier, 1975).
- \((l_1, \mathbb{R})\) does not split, i.e. \(l_1\) is not a \(K\)-space (Kalton, Ribe, Roberts, 1977-79). Obviously, \(\text{Ext}(l_1, \mathbb{R}) = 0\) by the Hahn-Banach theorem.
- \(l_p\) is a \(K\)-space for any \(0 < p < \infty, p \neq 1\) (Kalton, 1977).
- \((l_p, l_p)\) always fails to split, for \(0 < p < \infty\) (Kalton, Peck, 1979).
History behind twisted sums

Some examples

- \((\ell_2, \ell_2)\) does not split (Enflo, Lindenstrauss, Pisier, 1975).
- \((\ell_1, \mathbb{R})\) does not split, i.e. \(\ell_1\) is not a \(K\)-space (Kalton, Ribe, Roberts, 1977-79). Obviously, \(\text{Ext}(\ell_1, \mathbb{R}) = 0\) by the Hahn-Banach theorem.
- \(\ell_p\) is a \(K\)-space for any \(0 < p < \infty, p \neq 1\) (Kalton, 1977).
- \((\ell_p, \ell_p)\) always fails to split, for \(0 < p < \infty\) (Kalton, Peck, 1979).
- \(c_0\) and \(\ell_\infty\), as well as all \(L_\infty\)-spaces, are \(K\)-spaces (Kalton, Roberts, 1983);
History behind twisted sums

Some examples

- \((\ell_2, \ell_2)\) does not split (Enflo, Lindenstrauss, Pisier, 1975).
- \((\ell_1, \mathbb{R})\) does not split, i.e. \(\ell_1\) is not a \(K\)-space (Kalton, Ribe, Roberts, 1977-79). Obviously, \(\text{Ext} (\ell_1, \mathbb{R}) = 0\) by the Hahn-Banach theorem.
- \(\ell_p\) is a \(K\)-space for any \(0 < p < \infty, p \neq 1\) (Kalton, 1977).
- \((\ell_p, \ell_p)\) always fails to split, for \(0 < p < \infty\) (Kalton, Peck, 1979).
- \(c_0\) and \(\ell_\infty\), as well as all \(L_\infty\)-spaces, are \(K\)-spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!
History behind twisted sums

Some examples

- \((\ell_2, \ell_2)\) does not split (Enflo, Lindenstrauss, Pisier, 1975).
- \((\ell_1, \mathbb{R})\) does not split, i.e. \(\ell_1\) is not a \(\mathcal{K}\)-space (Kalton, Ribe, Roberts, 1977-79). Obviously, \(\text{Ext}(\ell_1, \mathbb{R}) = 0\) by the Hahn-Banach theorem.
- \(\ell_p\) is a \(\mathcal{K}\)-space for any \(0 < p < \infty, p \neq 1\) (Kalton, 1977).
- \((\ell_p, \ell_p)\) always fails to split, for \(0 < p < \infty\) (Kalton, Peck, 1979).
- \(c_0\) and \(\ell_\infty\), as well as all \(L_\infty\)-spaces, are \(\mathcal{K}\)-spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!
- \(\text{Ext}(X, \ell_\infty) = 0\) for any Banach space \(X\) (by the injectivity of \(\ell_\infty\)).
History behind twisted sums

Some examples

- (ℓ_2, ℓ_2) does not split (Enflo, Lindenstrauss, Pisier, 1975).
- (ℓ_1, \mathbb{R}) does not split, i.e. ℓ_1 is not a \mathcal{K}-space (Kalton, Ribe, Roberts, 1977-79). Obviously, $\text{Ext}(\ell_1, \mathbb{R}) = 0$ by the Hahn-Banach theorem.
- ℓ_p is a \mathcal{K}-space for any $0 < p < \infty$, $p \neq 1$ (Kalton, 1977).
- (ℓ_p, ℓ_p) always fails to split, for $0 < p < \infty$ (Kalton, Peck, 1979).
- c_0 and ℓ_∞, as well as all L_∞-spaces, are \mathcal{K}-spaces (Kalton, Roberts, 1983); this is why Kalton and Roberts proved their theorem on stability of nearly additive real-valued set functions!
- $\text{Ext}(X, \ell_\infty) = 0$ for any Banach space X (by the injectivity of ℓ_∞).
- $\text{Ext}(X, c_0) = 0$ for every separable Banach space X (Sobczyk’s theorem).
Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y, which is an \mathcal{L}_∞-space, the pair (Y, X) splits.
Theorem 1

If \(X \) is a Banach space complemented in its bidual such that \(\tau(X) > \omega \), then for every Banach space \(Y \), which is an \(\mathcal{L}_\infty \)-space, the pair \((Y, X)\) splits.

Theorem 2

Let \(\Gamma \) be a cardinal number. If \(X \) is a Banach space which has the \((2^{\Gamma})^+\)-SVM property (i.e. \(\tau(X) > (2^{\Gamma})^+ \)), then the pair \((\ell_\infty(\Gamma), X)\) splits;
Theorem 1

If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y, which is an \mathcal{L}_∞-space, the pair (Y, X) splits.

Theorem 2

Let Γ be a cardinal number. If X is a Banach space which has the (2^{Γ^+})-SVM property (i.e. $\tau(X) > (2^{\Gamma^+})$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+-SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary:

$\tau(C[0,1]) = \omega_1$.

[Proof] By a result of Cabello Sánchez, Castillo, Kalton and Yost, we have $\text{Ext}(c_0, C[0,1]) \neq 0$, so $\tau(C[0,1]) \leq \omega_1$. On the other hand, we have seen that $\tau(C[0,1]) > \omega_1$. Similarly, $\tau(C[0,\omega]) = \omega_1$.

Tomasz Kochanek (University of Silesia)
SVM property
Necessary conditions

Theorem 1
If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y, which is an \mathcal{L}_∞-space, the pair (Y, X) splits.

Theorem 2
Let Γ be a cardinal number. If X is a Banach space which has the $(2\Gamma)^+$-SVM property (i.e. $\tau(X) > (2\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+-SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary: $\tau(C[0, 1]) = \omega_1$.
SVM property
Necessary conditions

Theorem 1
If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y, which is an \mathcal{L}_∞-space, the pair (Y, X) splits.

Theorem 2
Let Γ be a cardinal number. If X is a Banach space which has the $(2\Gamma)^+\text{-SVM}$ property (i.e. $\tau(X) > (2\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the $\Gamma^+\text{-SVM}$ property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary: $\tau(C[0, 1]) = \omega_1$. [Proof] By a result of Cabello Sánchez, Castillo, Kalton and Yost, we have $\text{Ext}(c_0, C[0, 1]) \neq 0$, so $\tau(C[0, 1]) \leq \omega_1$. On the other hand, we have seen that $\tau(C[0, 1]) > \omega$.
Theorem 1
If X is a Banach space complemented in its bidual such that $\tau(X) > \omega$, then for every Banach space Y, which is an \mathcal{L}_∞-space, the pair (Y, X) splits.

Theorem 2
Let Γ be a cardinal number. If X is a Banach space which has the $(2^\Gamma)^+$-SVM property (i.e. $\tau(X) > (2^\Gamma)^+$), then the pair $(\ell_\infty(\Gamma), X)$ splits; if X is assumed only to have the Γ^+-SVM property (i.e. $\tau(X) > \Gamma^+$), then $(c_0(\Gamma), X)$ splits.

Corollary: $\tau(C[0, 1]) = \omega_1$. [Proof] By a result of Cabello Sánchez, Castillo, Kalton and Yost, we have $\text{Ext}(c_0, C[0, 1]) \neq 0$, so $\tau(C[0, 1]) \leq \omega_1$. On the other hand, we have seen that $\tau(C[0, 1]) > \omega$. Similarly, $\tau(C[0, \omega]) = \omega_1$.
Theorem 3

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

(i) X has the SVM property;
(ii) $\text{Ext}(X^*, \ell_1) = 0$;
(iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;
(iv) $\text{Ext}(c_0, X) = 0$.

Corollary 1: Commutative von Neumann algebras and order-complete $C(K)$-spaces have the SVM property (they are complemented in their biduals and they are L_1-preduals; by a theorem of Lindenstrauss, $\text{Ext}(L_1(\mu), \ell_1) = 0$, so condition (ii) is satisfied).
SVM property
Characterisation of the SVM property for $X \hookrightarrow X^{**}$

Theorem 3
Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

(i) X has the SVM property;
Theorem 3

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

(i) X has the SVM property;
(ii) $\text{Ext}(X^*, \ell_1) = 0$;
Theorem 3

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

(i) X has the SVM property;
(ii) $\text{Ext}(X^*, \ell_1) = 0$;
(iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;

Corollary 1: commutative von Neumann algebras and order-complete $C(K)$-spaces have the SVM property (they are complemented in their biduals and they are L_1-preduals; by a theorem of Lindenstrauss, $\text{Ext}(L_1(\mu), \ell_1) = 0$, so condition (ii) is satisfied);
SVM property

Characterisation of the SVM property for $X \xrightarrow{c} X^{**}$

Theorem 3

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

(i) X has the SVM property;
(ii) $\text{Ext}(X^*, \ell_1) = 0$;
(iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;
(iv) $\text{Ext}(c_0, X) = 0$.

Corollary 1: commutative von Neumann algebras and order-complete $C(K)$-spaces have the SVM property (they are complemented in their biduals and they are L_1-preduals; by a theorem of Lindenstrauss, $\text{Ext}(L_1(\mu), \ell_1) = 0$, so condition (ii) is satisfied);
Theorem 3

Let X be a Banach space complemented in its bidual. Then the following assertions are equivalent:

(i) X has the SVM property;
(ii) $\text{Ext}(X^*, \ell_1) = 0$;
(iii) $\text{Ext}(\ell_\infty, X^{**}) = 0$;
(iv) $\text{Ext}(c_0, X) = 0$.

Corollary 1:

- commutative von Neumann algebras and order-complete $C(K)$-spaces **have the SVM property** (they are complemented in their biduals and they are L_1-preduals; by a theorem of Lindenstrauss, $\text{Ext}(L_1(\mu), \ell_1) = 0$, so condition (ii) is satisfied);
Corollary 2:

\[\tau(\ell_p) = \omega. \]
Corollary 2:

- $\tau(\ell_p) = \omega$. [Proof] If ℓ_p had SVM character greater than ω then, as it is complemented in its bidual, it would have the SVM property. Hence, each of conditions (ii)-(iv) would follow.
Corollary 2:

\[\tau(\ell_p) = \omega. \]

[Proof] If \(\ell_p \) had SVM character greater than \(\omega \) then, as it is complemented in its bidual, it would have the SVM property. Hence, each of conditions (ii)-(iv) would follow. However, according to Cabello Sánchez and Castillo, we have \(\text{Ext}(c_0, \ell_1) \neq 0 \) and \(\text{Ext}(\ell_p, \ell_1) \neq 0 \) for each \(1 < p < \infty \).
Corollary 2:

\(\tau(\ell_p) = \omega \). [Proof] If \(\ell_p \) had SVM character greater than \(\omega \) then, as it is complemented in its bidual, it would have the SVM property. Hence, each of conditions (ii)-(iv) would follow. However, according to Cabello Sánchez and Castillo, we have \(\text{Ext}(c_0, \ell_1) \neq 0 \) and \(\text{Ext}(\ell_p, \ell_1) \neq 0 \) for each \(1 < p < \infty \).

Any Banach space which contains a complemented copy of \(\ell_p \), for some \(1 \leq p < \infty \), has SVM character equal to \(\omega \).
We define a space $m_0(\Gamma)$ as follows:
We define a space $m_0(\Gamma)$ as follows:

- Γ infinite cardinal number;
SVM property
Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- Γ infinite cardinal number;
- $\mathcal{G} = \{ A \subset \Gamma : |A| < \Gamma \}$ filter of subsets of Γ;
We define a space $m_0(\Gamma)$ as follows:

- Γ an infinite cardinal number;
- $\mathcal{G} = \{ A \subset \Gamma : |A| < \Gamma \}$ a filter of subsets of Γ;
- $m_0(\Gamma)$ is a subspace of $\ell_\infty(\Gamma)$ given by

$$m_0(\Gamma) = \{ x \in \ell_\infty(\Gamma) : \lim_{\mathcal{G}} x = 0 \}.$$
SVM property
Is every cardinal number an SVM character of some Banach space?

We define a space $m_0(\Gamma)$ as follows:

- Γ infinite cardinal number;
- $\mathcal{G} = \{ A \subset \Gamma : |A| < \Gamma \}$ filter of subsets of Γ;
- $m_0(\Gamma)$ is a subspace of $\ell_\infty(\Gamma)$ given by

$$m_0(\Gamma) = \{ x \in \ell_\infty(\Gamma) : \lim_{\mathcal{G}} x = 0 \}.$$

Next, following the construction of the Johnson-Lindenstrauss space, we build a non-splitting exact sequence of the form

$$0 \rightarrow m_0(\Gamma) \rightarrow JL_\infty(\Gamma) \rightarrow c_0(\Gamma^+) \rightarrow 0.$$
We define a space $m_0(\Gamma)$ as follows:

- Γ infinite cardinal number;
- $\mathcal{G} = \{ A \subseteq \Gamma : |A| < \Gamma \}$ filter of subsets of Γ;
- $m_0(\Gamma)$ is a subspace of $\ell_\infty(\Gamma)$ given by

$$m_0(\Gamma) = \{ x \in \ell_\infty(\Gamma) : \lim_{\mathcal{G}} x = 0 \}.$$

Next, following the construction of the Johnson-Lindenstrauss space, we build a non-splitting exact sequence of the form

$$0 \rightarrow m_0(\Gamma) \rightarrow JL_\infty(\Gamma) \rightarrow c_0(\Gamma^+) \rightarrow 0.$$

Therefore, by our necessary condition, we infer that $\tau(m_0(\Gamma)) \leq \Gamma^{++}$.
SVM property

Is every cardinal number an SVM character of some Banach space?

\[\tau(m_0(\Gamma)) \leq \Gamma^{++} \]

On the other hand, using a generalisation of Sobczyk’s theorem, due to Hasanov, we may prove the following result.

Consequently, \(\tau(m_0(\Gamma)) \leq \Gamma^{++} \leq \tau(m_0(\Gamma)) \leq \Gamma^{++} \). In particular, if \(\Gamma \) is a regular cardinal, then we have \(\tau(m_0(\Gamma)) = \Gamma^{++} \).

Corollary

For every infinite cardinal \(\Gamma \) we have \(\tau(c_0(\Gamma)) = \omega_2 \).
SVM property

Is every cardinal number an SVM character of some Banach space?

\[\tau(m_0(\Gamma)) \leq \Gamma^{++} \]

On the other hand, using a generalisation of Sobczyk's theorem, due to Hasanov, we may prove the following result.

Theorem 4

Let \(\Gamma \) be an infinite cardinal number. Then the space \(m_0(\Gamma) \) has the \(\text{cf}(\Gamma)^+ \)-SVM property with \(\nu(\text{cf}(\Gamma)^+, m_0(\Gamma)) \leq 16K < 720 \).
Is every cardinal number an SVM character of some Banach space?

\[\tau(m_0(\Gamma)) \leq \Gamma^{++} \]

On the other hand, using a generalisation of Sobczyk's theorem, due to Hasanov, we may prove the following result.

Theorem 4

Let \(\Gamma \) be an infinite cardinal number. Then the space \(m_0(\Gamma) \) has the \(\text{cf}(\Gamma)^+\)-SVM property with \(\nu(\text{cf}(\Gamma)^+, m_0(\Gamma)) \leq 16K < 720 \).

Consequently, \(\text{cf}(\Gamma)^{++} \leq \tau(m_0(\Gamma)) \leq \Gamma^{++} \). In particular, if \(\Gamma \) is a regular cardinal, then we have \(\tau(m_0(\Gamma)) = \Gamma^{++} \).
SVM property
Is every cardinal number an SVM character of some Banach space?

\[\tau(m_0(\Gamma)) \leq \Gamma^{++} \]

On the other hand, using a generalisation of Sobczyk’s theorem, due to Hasanov, we may prove the following result.

Theorem 4

Let \(\Gamma \) be an infinite cardinal number. Then the space \(m_0(\Gamma) \) has the \(\text{cf}(\Gamma)^+ \)-SVM property with \(\nu(\text{cf}(\Gamma)^+, m_0(\Gamma)) \leq 16K < 720 \).

Consequently, \(\text{cf}(\Gamma)^{++} \leq \tau(m_0(\Gamma)) \leq \Gamma^{++} \). In particular, if \(\Gamma \) is a regular cardinal, then we have \(\tau(m_0(\Gamma)) = \Gamma^{++} \).

Corollary

For every infinite cardinal \(\Gamma \) we have

\[\tau(c_0(\Gamma)) = \omega_2. \]