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Operator Exponentials on Hilbert Spaces

Christoph Schmoeger

Abstract

Let ‘H be a complex Hilbert space and let £(H) be the Banach algebra of all
bounded linear operators on H. In this paper we consider the following class of
operators:

S(H) = {S € L(H): S is a scalar type operator and
o(S)Nao(S+ 2kmi) C {kmi} for k=1,2,...}.

The main results of this paper read as follows:

1. If T, S € 3(H) and eTe’ = e%eT then T252 = S2T2.
2. If S € X(H), T € L(H) and eT = &% then T'S? = ST
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1 Terminology and results

Throughout this paper let H denote a complex Hilbert space and £(H) the Banach algebra
of all bounded linear operators on H. For A € L(H) the spectrum and the spectral radius
of A are denoted by o(A) and r(A), respectively. The set of eigenvalues of A is denoted
by 0,(A). For the resolvent set of A we write p(A). We use N(A) and A(H) to denote the
kernel and the range of A, respectively.

An operator S € L(H) is called a scalar type operator if S admits a representation

S = / NE(d)),
(S)

where E(d)) denotes integration with respect to a spectral measure E(-) on H. See [1],
[2] and [14] for properties of spectral measures and scalar type operators.

If A e L(H) is normal (AA* = A*A) then A is a scalar type operator and the values of
the spectral measure of A are selfadjoint projections (see [1], Theorem 7.18).

J. Wermer [14] has shown that the scalar type operators on H are those operators which
are similar to normal operators. More precisely, Wermer has shown that for every finite
set S1,...,5, of commuting scalar type operators on H there is a selfadjoint operator
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B € L(H) with a bounded everywhere defined inverse such that the operators BS;B™1,
t=1,...,n, are all normal.

We write X(H) for the class of all scalar type operators on H. In the present paper we
consider the following class of operators:

S(H) = {S € %(H) : 0(S) N o (S + 2kmi) C {kmi} for k=1,2,...}.

Now we state the main results. Proofs will be given in Section 3, in Section 4 we present
some corollaries.

Theorem 1.1 IfT € $(H), S € L(H) and eTe® = e5eT then e5T? = T2e5. If in addition
op(T)N{kmi: k=1,2,...} =0 then 5T = Te".

Theorem 1.2 If T, S € S(H) and eTe’ = e5eT then T2S? = S>T2.
Theorem 1.3 Suppose that T, S € S(H) and that eTeS = e%eT .
(a) If o,(T)N{kmi: k=1,2,...} =0 then TS* = S*T
(b) Ifo,(T)N{kmi: k=1,2,...} =0,(S)N{kmi: k=1,2,...} =0 then TS = ST.

For related results concerning the equation e‘e? = ePe? see [10], [11], [12] and [15].

Theorem 1.4 Suppose that T,S € L(H), T + S € X(H) and that

If o, (T+ S)N{kmi: k=1,2,...} =0 then TS = ST.

Theorem 1.5 If S € (M), T € L(H) and T = €5 then TS* = S*T
If in addition 0,(S) N {kmi: k=1,2,...} =0 then TS = ST.

For related results concerning the equation e = e? see [3], [9] and [11].

2 Preparations

In this section we collect some results which we need for the proofs of the theorems in
Section 1.

Proposition 2.1 Suppose that A € L(H) is normal.

(a) If p € C then (A —p)(H) = (A" =) (H).



(b) If B € L(H) then
E(o(A)nao(B))(H)

I
D
=
>
=

where E(-) denotes the spectral measure of A.

Proof. (a) Since A is normal, A — p is normal. Exercise 12.36 in [8] gives the result.
(b) is shown in [7, Theorem 1], see also [6]. |

Let A € L(H). The map 04 : L(H) — L(H), defined by
4(C)=CA—-AC (C e L(H))

is called the inner derivation determined by A. It is clear that d4 is a bounded linear
operator on L(H) with ||04] < 2||A].

Throughout this paper let f denote the entire function f : C — C given by

2 Her—1), if 240,
f(z):{l, ( | ifziO.
Let My ={A€cd(da): f(N) =0}.
Proposition 2.2 Let A € L(H).
(a) If My =0, then f(d4) is an invertible operator on L(H).
(b) If A € M4 then X is a simple zero of f and there is j € Z \ {0} with A\ = 2jmi.
(¢) Ma is a finite set, My C {£2mi, £4mi,...}.
(d) If Ma # 0 and Mg = {\1,..., \,} with X\j # X\ for j # k then
N(f(6a) =N@as—= M) D ... B N4~ \).

(€) o(da) ={A—p: Apeo(A)}.

(f) €4(C) = e ACe” for all C € L(H).

(g) f(54)(64(C)) = e ACer — C for all C € L(H).
Proof. (a) If M4 =0, then f(X) # 0 for all A € 0(d4), thus f(d4) is invertible.
b), (c¢) and (d) are shown in [11].

(
(e) follows from [4], and Proposition 6.4.8 in [5] shows that (f) holds.
(g) follows from (f) and zf(z) = f(2)z = €* — 1. |



Proposition 2.3 Let A be a normal operator in L(H) and let E(-) be its spectral measure.
If M €C,CeN(a—Ny), DEN(a+ No) then

CH) C E(c(A)Na(A—X))(H)
and

D*(H) € E(o(A) Na(A = o)) (H).

Proof. From CA — AC = \C we get AC = C(A — \g). Put B = A — )\y. Now take
p € p(B). Then

(A=p)C(B-p)™ = ACB—p)™" —pC(B —p)™"
= CB(B—p)™ —pC(B —p)~"
C(B—p)(B—p)"'=C,

thus C(H) C (A — u)(H). Since pu € p(B) was arbitrary, we derive
CH)C () (A= m(H).
nep(B)

Proposition 2.1(b) implies now that
C(H) € E(o(A) Na(B))(H) = E(a(A) Na(A=A))(H).

Now suppose that D € N(d4 + Ag), hence DA = (A — \g)D = BD. Therefore D*B* =
A*D*. A similar computation as above shows that for p € p(B*) we have

(A* o M)D*(B* o M)—l — D*,

thus
Dy C () (A" - p)(H),

nep(B*)

Since p(B*) = {\: XA € p(B)}, we get from Proposition 2.1 that

D*H) C [} (A=NH)= [) (A=N(H)
Aep(B) Aep(B)

= E(0(A)nao(B))(H) = E(a(A) Na(A = o))(H).

The following propositions are of central importance for our investigations.



Proposition 2.4 Let A be a normal operator in L(H) and suppose that
o(A)No(A+2kmi) C{kmi} for k=1,2,....
If k e N\ {0}, C € N(64 + 2kmi) and D € N (64 — 2kmi) then
AC = kmiC = —CA

and

DA = kmiD = —-AD.

Proof. Put A\g = —2kmi. From C' € N(d04 — A\o) we get from Proposition 2.3 that
C(H) C E(c(A)No(A+ 2kmi))(H).
Since o(A) No (A + 2kni) C {kmi},
E(o(A) N oA+ 2kmi))(H) C E({kri}).
From Theorem 12.29 in [8] it follows that E({kmi}) = N(A — kmi). Thus
C(H) C N(A — kmi),

hence AC = kmiC. From CA — AC = —2kwiC we conclude that CA = —kmiC = —AC.
For D € N(64 — 2kmi) = N(d4 + A\o) we get from Proposition 2.3 that

D*(H) C E(o(A) No(A+ 2kmi))(H) C N(A — kmi).

Thus AD* = kwiD*. Therefore AD*x = kwiD*x for each x € H. The normality of A gives
A*D*x = —kmiD*x, hence A*D* = —kmwiD*, thus DA = kniD. From DA — AD = 2kmi

we derive

AD = DA — 2krmi = —kmiD = —DA. [ |

Proposition 2.5 Suppose that S € 2(H) and k € N\ {0}.

(a) If C € N(8s + 2kni) then SC = kriC = —CS.

(b) If D € N(6s — 2kni) then DS = kmiD = —SD.

(¢) IfU € N(f(3s)) then SU +US = 0.

(d) Ifo,(S)N{nmi: n=1,2,...} =0 then N(f(5s)) = {0}.



Proof. We know that there are operators X and A in £(H) such that X is invertible in
L(H), A is normal and
S=X"1AX.

Therefore we have S —X = X' (A—X)X for each A € C and ¢(S) = o(A) and o(S—\) =
(A —)). Since S € 3(H), we derive that

(%) g(A)No(A+2nmi) C {nmi}
forn=1,2,....
(a) From C'S — SC = —2kmiC, we get

CX'AX — X'AXC = —2kriC,

therefore (XCX 1A — A(XCX™') = —2kmi(XCX™'). This shows that XCX~! €
N(64 + 2kmi). From (x) and Proposition 2.4 we see that

AXCX ' =kmiXCX ' = —-XCX A,

hence SC = kmiC' = -CS.
(b) Similar.
(¢) Follows from (a), (b) and Proposition 2.2(d).

(d) Let n € N\{0}. Since nmi & 0,(S5), we see from (a) that N(dg+2nmi) = {0}. In view of
Proposition 2.2(d) it remains to show that N(dg — 2nmi) = {0}. Take D € N(dg — 2nmi)
and put D = XDX!. As in the proof of (a) we see that D € N (04 — 2nmi). From
Proposition 2.3 it follows that

D*(H) C E(a(A) No(A+ 2nmi))(H).

By () we get D*(H) C E({nri}) = N(A —nmi). Since 0,(A) = 0,(S) and n7wi ¢ 0,(5),
it follows that N(A — nmi) = {0}. Thus D* =0, hence D = 0. |

3 Proofs
Proof of Theorem 1.1. Use Proposition 2.2(g) to see that
f(67)(67(e%)) = e Tefe! —e¥ =0,
hence V = dp(e”) = 5T — Te® € N(f(67)). Proposition 2.5(c) shows that
0=TV 4+ VT =Te°T — T?e” + ¢°T% — TeT = T — T?¢”.

If o,(T) N {kmi: k=1,2,...} =0, then by Proposition 2.5(d), V = 0, thus T = Te".
|



Proof of Theorem 1.2. It follows from Theorem 1.1 that T2%e® = ¢5T2. By Propositi-

on 2.2(g) we derive
T2 =,

f(85)(ds(T?)) = e™°T%% —
hence U = §5(T?%) = T?S — ST? € N(f(ds)). Proposition 2.5(c) gives now

0=SU+US =ST? — S*T* + T*S* — ST* = T*5* — S°T".
|

Proof of Theorem 1.3.

(a) We know from Theorem 1.1 that e5T = Te”, thus

f(65)(0s(T)) = e Te® =T =0,
therefore T'S — ST € N(f(dg)). Use again Proposition 2.5(c) to see that
0=S(TS—ST)+ (TS~ ST)S =TS* - S°T
|

(b) Proposition 2.5(d) gives N(f(ds)) = {0}. Hence T'S = ST.

Proof of Theorem 1.4. Proposition 2.2(g) shows that
~(T+8) T, T+S _ T

f(0r1s)(0rys(eh)) = e

S =T eT eT+S €T

e_SeSeT —el' =0,

=el'S—Sel € N(f(6r45)). Since N(f(6745)) = {0}

therefore U = e (T +S)— (T +S)e”
(Proposition 2.5(d)), it follows that U = 0, hence 7S = SeT, therefore

6_(T+S)SGT+S . S
e %e TSeleS — §

f(0rss)(0rys(S)) =

0.
Hence we see that S(T'+S) — (I'+5)S = ST —TS € N(f(dr+s)) = {0}. |
Proof of Theorem 1.5. Since
f(65)(05(T)) = e Te® =T = e 'Te! —T =0,
we have T'S — ST € N(f(ds)), thus, by Proposition 2.5(c)
0=S(TS—ST)+ (TS —ST)S =TS5* - ST,
hence T'S% = S*T.
If o,(S)N{kmi: k=1,2,...} =0, we see from Proposition 2.5(d) that N(f(ds)) = {O}

thus 7S = ST.



4 Corollaries

Corollary 4.1 If A € L(H) then

A isnormal &  elet = AT = AT,

Proof. The implication ,,=* is clear. A
,<=%: Since A+ A* is selfadjoint, o(A + A*) C R. Thus A+ A* € ¥(H) and o,(A+ A*)N
{kmi:k=1,2,...} = 0. Theorem 1.4 shows now that AA* = A*A. |

Corollary 4.2 If A, B € L(H) are selfadjoint then

A=B & 4=¢P.

Proof. The implication ,,=* is clear.

,<=“: Since A € B(H) and 0,(A) N {kmi : k = 1,2,...} we see from Theorem 1.5 that
AB = BA. Thus A — B is selfadjoint and eA~% = I. Take A € 0(A — B). Thus X € R and
e* =1, hence A = 0. This gives 0(A — B) = {0}. From ||A — B|| = 7(A — B) = 0 we get
A=B. |

Corollary 4.3 Suppose that A and B are normal operators in L(H) and that et = eP.

Then
A+ A= B+ B*.

Proof. Use Corollary 4.1 to see that eAt4" = ¢B+B" By Corollary 4.2, A+ A* = B + B*.

|
Corollary 4.4 If A € L(H) is normal then
A=—-A" < ¢4 s unitary.
Proof. The implication ,,=* is clear.
,<="“: Since A is normal,
eMA = et = MM =T =€,
Now use Corollary 4.2 to derive A + A* = 0. [

For our next result we need the following lemma (see also [8, Theorem 12.37]).



Lemma 4.1 If T € L(H) is invertible then there are selfadjoint operators A and B in
L(H) such that

T =eeP, o(A) C[-mn] and 7 ¢&o,(A).

Proof. If T is invertible, so are T* and T*T. Theorem 12.33 in [8] shows that the positive
square root (T*T)/? is also invertible. By [8, Theorem 12.35] there is a unitary U € L(H)
with T = U(T*T)"2. Since o((T*T)"?) C (0,00), log is a continuous real function on
o((T*T)"/?). Thus the symbolic calculus for selfadjoint operators shows that there is a
selfadjoint B € L£(H) such that (T*T)Y/? = e¢B. A. Wintner has shown in [16] that there
is a selfadjoint A € L(H) such that U = €', 0(A) C [—m, 7] and 7 & 0,(A). u

Remarks.
(1) It is shown in [13] that if U € L(H) is unitary then there is a unique selfadjoint
operator A € L(H) such that

U=¢e" o(A) Cl-m,n] and 7 ¢ o,(A).

For related results see [9].

(2) Lemma 4.1 shows that an invertible operator in £(H) is the product of two expo-
nentials. It is natural to ask whether every invertible operator is an exponential, rather
than merely the product of two exponentials. The answer is affirmative if dimH < oo, as
a consequence of [8, Theorem 10.30]. But in general the answer is negative, as one can
see from [8, Theorem 12.38]. For normal and invertible operators we have the following
results.

Corollary 4.5 Suppose thatT € L(H) is invertible. The following assertions are equiva-
lent:

(a) T is normal.

(b) There is some normal S € L(H) such that T = .

Proof. (b) = (a): Clear.

(a) = (b): By Lemma 4.1 there are selfadjoint operators A, B € L(H) such that
T = eeP

and

(1) o(A) C [—m, 7] and 7 & 0,(A).

From T* = ePe~* and the normality of T we see that
€2B —T*T = TT* = eiAGQBe_iA,

thus



(2) e2BpiA — piA2B

Use (1) to get

(3) iA € 3(H) and 0,(iA) N {kmi: k=1,2,...} = 0.

Since 2B is selfadjoint, we have

(4) 9B € S(H) and 0,(2B) N {kmi : k=1,2,...} = 0.

Therefore it follows from (2), (3), (4) and Theorem 1.3(b) that AB = BA. Thus T' =
e B Put S =4iA+ B. Then T = ¢ and S is normal. u

Corollary 4.6 Suppose that T € L(H) is invertible and normal. Then there is a unique
normal operator S € L(H) such that

T=e% 7r(S—85)<2r and 2mi ¢ o,(S—S%).

Proof. The proof of Corollary 4.5 shows that there is a normal S € £L(H) with T' = e°,
S =1iA+ B, where A and B are selfadjoint, AB = BA, 0(A) C [—7, 7| and 7 & 0,(A).
Since S — S* = 2iA, we get r(S — S*) < 27 and 27i & 0,(S — S*). Now suppose that
R € L(H) is normal, T = ef, r(R — R*) < 27 and 27 & 0,(R — R*). Then there are
selfadjoint operators C, D € L(H) with
R=iC+D and CD = DC.
From R — R* = 2iC we see that
o(C) C [-m,7n] and 7 ¢&o,(C).

It follows from e® = ef that T* = ePe ™4 = ePeC, thus e*f = T*T = e?P. Now use
Corollary 4.2 to derive B = D. From eef = ¢“e” we see that

It is shown in [13] that then A = C' (see Remark (1)). Hence S =T. |

Our final result reads as follows:

Corollary 4.7 For P € L(H) the following assertions are equivalent:
(a) TP = el for all T € L(H).
(b) There is some k € Z such that P = 2kmil.
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Proof. (b) = (a): Clear.
(a) = (b): Take T" € L(H) with »(T") < w. Proposition 2.2(e) shows that r(dr) < 2.
Thus, by Proposition 2.2(c), My = ), hence N(f(dr)) = {0} (Proposition 2.2(a)). From

f(6r)(6p(T + P)) = e (T + P)e" — (T + P)
— e*(T‘FP) (T+ P)eTJrP . (T—i— P)
=0

we see that (T'+ P)T = T(T + P), hence TP = PT. Therefore we have shown that

(5) TP = PT for each T € L(H) with »(T') < 7.

Now take T' € L(H) with r(T") > 7 and put Ty = 577 L- Then r(Ty) = 5. (5) shows that
ToP = PTy. Therefore we have that TP = PT for all T' € L(H). Thus P = ol for some
a € C. Since e’ = I, I = eI, hence e* = 1. |
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