Operator Exponentials on Hilbert Spaces

Christoph Schmoeger

Abstract

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{L}(\mathcal{H})$ be the Banach algebra of all bounded linear operators on \mathcal{H}. In this paper we consider the following class of operators: $$
\begin{aligned} \hat{\Sigma}(\mathcal{H})= & \{S \in \mathcal{L}(\mathcal{H}): S \text { is a scalar type operator and } \\ & \sigma(S) \cap \sigma(S+2 k \pi i) \subseteq\{k \pi i\} \text { for } k=1,2, \ldots\} \end{aligned}
$$

The main results of this paper read as follows:

1. If $T, S \in \hat{\Sigma}(\mathcal{H})$ and $e^{T} e^{S}=e^{S} e^{T}$ then $T^{2} S^{2}=S^{2} T^{2}$.
2. If $S \in \hat{\Sigma}(\mathcal{H}), T \in \mathcal{L}(\mathcal{H})$ and $e^{T}=e^{S}$ then $T S^{2}=S^{2} T$.

Math. Subject Classification: 47A10, 47A60
Key words and phrases: scalar type operators, exponentials

1 Terminology and results

Throughout this paper let \mathcal{H} denote a complex Hilbert space and $\mathcal{L}(\mathcal{H})$ the Banach algebra of all bounded linear operators on \mathcal{H}. For $A \in \mathcal{L}(\mathcal{H})$ the spectrum and the spectral radius of A are denoted by $\sigma(A)$ and $r(A)$, respectively. The set of eigenvalues of A is denoted by $\sigma_{p}(A)$. For the resolvent set of A we write $\rho(A)$. We use $N(A)$ and $A(\mathcal{H})$ to denote the kernel and the range of A, respectively.

An operator $S \in \mathcal{L}(\mathcal{H})$ is called a scalar type operator if S admits a representation

$$
S=\int_{\sigma(S)} \lambda E(d \lambda),
$$

where $E(d \lambda)$ denotes integration with respect to a spectral measure $E(\cdot)$ on \mathcal{H}. See [1], [2] and [14] for properties of spectral measures and scalar type operators.

If $A \in \mathcal{L}(\mathcal{H})$ is normal $\left(A A^{*}=A^{*} A\right)$ then A is a scalar type operator and the values of the spectral measure of A are selfadjoint projections (see [1], Theorem 7.18).
J. Wermer [14] has shown that the scalar type operators on \mathcal{H} are those operators which are similar to normal operators. More precisely, Wermer has shown that for every finite set S_{1}, \ldots, S_{n} of commuting scalar type operators on \mathcal{H} there is a selfadjoint operator
$B \in \mathcal{L}(\mathcal{H})$ with a bounded everywhere defined inverse such that the operators $B S_{i} B^{-1}$, $i=1, \ldots, n$, are all normal.
We write $\Sigma(\mathcal{H})$ for the class of all scalar type operators on \mathcal{H}. In the present paper we consider the following class of operators:

$$
\hat{\Sigma}(\mathcal{H})=\{S \in \Sigma(\mathcal{H}): \sigma(S) \cap \sigma(S+2 k \pi i) \subseteq\{k \pi i\} \text { for } k=1,2, \ldots\}
$$

Now we state the main results. Proofs will be given in Section 3, in Section 4 we present some corollaries.

Theorem 1.1 If $T \in \hat{\Sigma}(\mathcal{H}), S \in \mathcal{L}(\mathcal{H})$ and $e^{T} e^{S}=e^{S} e^{T}$ then $e^{S} T^{2}=T^{2} e^{S}$. If in addition $\sigma_{p}(T) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$ then $e^{S} T=T e^{S}$.

Theorem 1.2 If $T, S \in \hat{\Sigma}(\mathcal{H})$ and $e^{T} e^{S}=e^{S} e^{T}$ then $T^{2} S^{2}=S^{2} T^{2}$.
Theorem 1.3 Suppose that $T, S \in \hat{\Sigma}(\mathcal{H})$ and that $e^{T} e^{S}=e^{S} e^{T}$.
(a) If $\sigma_{p}(T) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$ then $T S^{2}=S^{2} T$.
(b) If $\sigma_{p}(T) \cap\{k \pi i: k=1,2, \ldots\}=\sigma_{p}(S) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$ then $T S=S T$.

For related results concerning the equation $e^{A} e^{B}=e^{B} e^{A}$ see [10], [11], [12] and [15].

Theorem 1.4 Suppose that $T, S \in \mathcal{L}(\mathcal{H}), T+S \in \hat{\Sigma}(\mathcal{H})$ and that

$$
e^{T+S}=e^{T} e^{S}=e^{S} e^{T}
$$

If $\sigma_{p}(T+S) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$ then $T S=S T$.
Theorem 1.5 If $S \in \hat{\Sigma}(\mathcal{H}), T \in \mathcal{L}(\mathcal{H})$ and $e^{T}=e^{S}$ then $T S^{2}=S^{2} T$.
If in addition $\sigma_{p}(S) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$ then $T S=S T$.
For related results concerning the equation $e^{A}=e^{B}$ see [3], [9] and [11].

2 Preparations

In this section we collect some results which we need for the proofs of the theorems in Section 1.

Proposition 2.1 Suppose that $A \in \mathcal{L}(\mathcal{H})$ is normal.
(a) If $\mu \in \mathbb{C}$ then $(A-\mu)(\mathcal{H})=\left(A^{*}-\bar{\mu}\right)(\mathcal{H})$.
(b) If $B \in \mathcal{L}(\mathcal{H})$ then

$$
E(\sigma(A) \cap \sigma(B))(\mathcal{H})=\bigcap_{\lambda \in \rho(B)}(A-\lambda)(\mathcal{H}),
$$

where $E(\cdot)$ denotes the spectral measure of A.
Proof. (a) Since A is normal, $A-\mu$ is normal. Exercise 12.36 in [8] gives the result.
(b) is shown in [7, Theorem 1], see also [6].

Let $A \in \mathcal{L}(\mathcal{H})$. The map $\delta_{A}: \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}(\mathcal{H})$, defined by

$$
\delta_{A}(C)=C A-A C \quad(C \in \mathcal{L}(\mathcal{H}))
$$

is called the inner derivation determined by A. It is clear that δ_{A} is a bounded linear operator on $\mathcal{L}(\mathcal{H})$ with $\left\|\delta_{A}\right\| \leq 2\|A\|$.

Throughout this paper let f denote the entire function $f: \mathbb{C} \rightarrow \mathbb{C}$ given by

$$
f(z)= \begin{cases}z^{-1}\left(e^{z}-1\right), & \text { if } z \neq 0 \\ 1, & \text { if } z=0\end{cases}
$$

Let $M_{A}=\left\{\lambda \in \sigma\left(\delta_{A}\right): f(\lambda)=0\right\}$.
Proposition 2.2 Let $A \in \mathcal{L}(\mathcal{H})$.
(a) If $M_{A}=\emptyset$, then $f\left(\delta_{A}\right)$ is an invertible operator on $\mathcal{L}(\mathcal{H})$.
(b) If $\lambda \in M_{A}$ then λ is a simple zero of f and there is $j \in \mathbb{Z} \backslash\{0\}$ with $\lambda=2 j \pi i$.
(c) M_{A} is a finite set, $M_{A} \subseteq\{ \pm 2 \pi i, \pm 4 \pi i, \ldots\}$.
(d) If $M_{A} \neq \emptyset$ and $M_{A}=\left\{\lambda_{1}, \ldots, \lambda_{p}\right\}$ with $\lambda_{j} \neq \lambda_{k}$ for $j \neq k$ then

$$
N\left(f\left(\delta_{A}\right)\right)=N\left(\delta_{A}-\lambda_{1}\right) \oplus \ldots \oplus N\left(\delta_{A}-\lambda_{p}\right)
$$

(e) $\sigma\left(\delta_{A}\right)=\{\lambda-\mu: \lambda, \mu \in \sigma(A)\}$.
(f) $e^{\delta_{A}}(C)=e^{-A} C e^{A}$ for all $C \in \mathcal{L}(\mathcal{H})$.
(g) $f\left(\delta_{A}\right)\left(\delta_{A}(C)\right)=e^{-A} C e^{A}-C$ for all $C \in \mathcal{L}(\mathcal{H})$.

Proof. (a) If $M_{A}=\emptyset$, then $f(\lambda) \neq 0$ for all $\lambda \in \sigma\left(\delta_{A}\right)$, thus $f\left(\delta_{A}\right)$ is invertible.
(b), (c) and (d) are shown in [11].
(e) follows from [4], and Proposition 6.4 .8 in [5] shows that (f) holds.
(g) follows from (f) and $z f(z)=f(z) z=e^{z}-1$.

Proposition 2.3 Let A be a normal operator in $\mathcal{L}(\mathcal{H})$ and let $E(\cdot)$ be its spectral measure. If $\lambda_{0} \in \mathbb{C}, C \in N\left(\delta_{A}-\lambda_{0}\right), D \in N\left(\delta_{A}+\lambda_{0}\right)$ then

$$
C(\mathcal{H}) \subseteq E\left(\sigma(A) \cap \sigma\left(A-\lambda_{0}\right)\right)(\mathcal{H})
$$

and

$$
D^{*}(\mathcal{H}) \subseteq E\left(\sigma(A) \cap \sigma\left(A-\lambda_{0}\right)\right)(\mathcal{H})
$$

Proof. From $C A-A C=\lambda_{0} C$ we get $A C=C\left(A-\lambda_{0}\right)$. Put $B=A-\lambda_{0}$. Now take $\mu \in \rho(B)$. Then

$$
\begin{aligned}
(A-\mu) C(B-\mu)^{-1} & =A C(B-\mu)^{-1}-\mu C(B-\mu)^{-1} \\
& =C B(B-\mu)^{-1}-\mu C(B-\mu)^{-1} \\
& =C(B-\mu)(B-\mu)^{-1}=C,
\end{aligned}
$$

thus $C(\mathcal{H}) \subseteq(A-\mu)(\mathcal{H})$. Since $\mu \in \rho(B)$ was arbitrary, we derive

$$
C(\mathcal{H}) \subseteq \bigcap_{\mu \in \rho(B)}(A-\mu)(\mathcal{H})
$$

Proposition 2.1(b) implies now that

$$
C(\mathcal{H}) \subseteq E(\sigma(A) \cap \sigma(B))(\mathcal{H})=E\left(\sigma(A) \cap \sigma\left(A-\lambda_{0}\right)\right)(\mathcal{H})
$$

Now suppose that $D \in N\left(\delta_{A}+\lambda_{0}\right)$, hence $D A=\left(A-\lambda_{0}\right) D=B D$. Therefore $D^{*} B^{*}=$ $A^{*} D^{*}$. A similar computation as above shows that for $\mu \in \rho\left(B^{*}\right)$ we have

$$
\left(A^{*}-\mu\right) D^{*}\left(B^{*}-\mu\right)^{-1}=D^{*},
$$

thus

$$
D^{*}(\mathcal{H}) \subseteq \bigcap_{\mu \in \rho\left(B^{*}\right)}\left(A^{*}-\mu\right)(\mathcal{H})
$$

Since $\rho\left(B^{*}\right)=\{\bar{\lambda}: \lambda \in \rho(B)\}$, we get from Proposition 2.1 that

$$
\begin{aligned}
D^{*}(\mathcal{H}) & \subseteq \bigcap_{\lambda \in \rho(B)}(A-\lambda)^{*}(\mathcal{H})=\bigcap_{\lambda \in \rho(B)}(A-\lambda)(\mathcal{H}) \\
& =E(\sigma(A) \cap \sigma(B))(\mathcal{H})=E\left(\sigma(A) \cap \sigma\left(A-\lambda_{0}\right)\right)(\mathcal{H}) .
\end{aligned}
$$

The following propositions are of central importance for our investigations.

Proposition 2.4 Let A be a normal operator in $\mathcal{L}(\mathcal{H})$ and suppose that

$$
\sigma(A) \cap \sigma(A+2 k \pi i) \subseteq\{k \pi i\} \quad \text { for } \quad k=1,2, \ldots
$$

If $k \in \mathbb{N} \backslash\{0\}, C \in N\left(\delta_{A}+2 k \pi i\right)$ and $D \in N\left(\delta_{A}-2 k \pi i\right)$ then

$$
A C=k \pi i C=-C A
$$

and

$$
D A=k \pi i D=-A D .
$$

Proof. Put $\lambda_{0}=-2 k \pi i$. From $C \in N\left(\delta_{A}-\lambda_{0}\right)$ we get from Proposition 2.3 that

$$
C(\mathcal{H}) \subseteq E(\sigma(A) \cap \sigma(A+2 k \pi i))(\mathcal{H})
$$

Since $\sigma(A) \cap \sigma(A+2 k \pi i) \subseteq\{k \pi i\}$,

$$
E(\sigma(A) \cap \sigma(A+2 k \pi i))(\mathcal{H}) \subseteq E(\{k \pi i\}) .
$$

From Theorem 12.29 in [8] it follows that $E(\{k \pi i\})=N(A-k \pi i)$. Thus

$$
C(\mathcal{H}) \subseteq N(A-k \pi i)
$$

hence $A C=k \pi i C$. From $C A-A C=-2 k \pi i C$ we conclude that $C A=-k \pi i C=-A C$.
For $D \in N\left(\delta_{A}-2 k \pi i\right)=N\left(\delta_{A}+\lambda_{0}\right)$ we get from Proposition 2.3 that

$$
D^{*}(\mathcal{H}) \subseteq E(\sigma(A) \cap \sigma(A+2 k \pi i))(\mathcal{H}) \subseteq N(A-k \pi i)
$$

Thus $A D^{*}=k \pi i D^{*}$. Therefore $A D^{*} x=k \pi i D^{*} x$ for each $x \in \mathcal{H}$. The normality of A gives $A^{*} D^{*} x=-k \pi i D^{*} x$, hence $A^{*} D^{*}=-k \pi i D^{*}$, thus $D A=k \pi i D$. From $D A-A D=2 k \pi i$ we derive

$$
A D=D A-2 k \pi i=-k \pi i D=-D A .
$$

Proposition 2.5 Suppose that $S \in \hat{\Sigma}(\mathcal{H})$ and $k \in \mathbb{N} \backslash\{0\}$.
(a) If $C \in N\left(\delta_{S}+2 k \pi i\right)$ then $S C=k \pi i C=-C S$.
(b) If $D \in N\left(\delta_{S}-2 k \pi i\right)$ then $D S=k \pi i D=-S D$.
(c) If $U \in N\left(f\left(\delta_{S}\right)\right)$ then $S U+U S=0$.
(d) If $\sigma_{p}(S) \cap\{n \pi i: n=1,2, \ldots\}=\emptyset$ then $N\left(f\left(\delta_{S}\right)\right)=\{0\}$.

Proof. We know that there are operators X and A in $\mathcal{L}(\mathcal{H})$ such that X is invertible in $\mathcal{L}(\mathcal{H}), A$ is normal and

$$
S=X^{-1} A X
$$

Therefore we have $S-\lambda=X^{-1}(A-\lambda) X$ for each $\lambda \in \mathbb{C}$ and $\sigma(S)=\sigma(A)$ and $\sigma(S-\lambda)=$ $\sigma(A-\lambda)$. Since $S \in \Sigma(\mathcal{H})$, we derive that

$$
\begin{equation*}
\sigma(A) \cap \sigma(A+2 n \pi i) \subseteq\{n \pi i\} \tag{*}
\end{equation*}
$$

for $n=1,2, \ldots$.
(a) From $C S-S C=-2 k \pi i C$, we get

$$
C X^{-1} A X-X^{-1} A X C=-2 k \pi i C
$$

therefore $\left(X C X^{-1}\right) A-A\left(X C X^{-1}\right)=-2 k \pi i\left(X C X^{-1}\right)$. This shows that $X C X^{-1} \in$ $N\left(\delta_{A}+2 k \pi i\right)$. From (*) and Proposition 2.4 we see that

$$
A X C X^{-1}=k \pi i X C X^{-1}=-X C X^{-1} A
$$

hence $S C=k \pi i C=-C S$.
(b) Similar.
(c) Follows from (a), (b) and Proposition 2.2(d).
(d) Let $n \in \mathbb{N} \backslash\{0\}$. Since $n \pi i \notin \sigma_{p}(S)$, we see from (a) that $N\left(\delta_{S}+2 n \pi i\right)=\{0\}$. In view of Proposition $2.2(\mathrm{~d})$ it remains to show that $N\left(\delta_{S}-2 n \pi i\right)=\{0\}_{\text {. }}$. Take $D \in N\left(\delta_{S}-2 n \pi i\right)$ and put $\tilde{D}=X D X^{-1}$. As in the proof of (a) we see that $\tilde{D} \in N\left(\delta_{A}-2 n \pi i\right)$. From Proposition 2.3 it follows that

$$
\tilde{D}^{*}(\mathcal{H}) \subseteq E(\sigma(A) \cap \sigma(A+2 n \pi i))(\mathcal{H}) .
$$

By $(*)$ we get $\tilde{D}^{*}(\mathcal{H}) \subseteq E(\{n \pi i\})=N(A-n \pi i)$. Since $\sigma_{p}(A)=\sigma_{p}(S)$ and $n \pi i \notin \sigma_{p}(S)$, it follows that $N(A-n \pi i)=\{0\}$. Thus $\tilde{D}^{*}=0$, hence $D=0$.

3 Proofs

Proof of Theorem 1.1. Use Proposition 2.2(g) to see that

$$
f\left(\delta_{T}\right)\left(\delta_{T}\left(e^{S}\right)\right)=e^{-T} e^{S} e^{T}-e^{S}=0
$$

hence $V=\delta_{T}\left(e^{S}\right)=e^{S} T-T e^{S} \in N\left(f\left(\delta_{T}\right)\right)$. Proposition 2.5(c) shows that

$$
0=T V+V T=T e^{S} T-T^{2} e^{S}+e^{S} T^{2}-T e^{S} T=e^{S} T^{2}-T^{2} e^{S} .
$$

If $\sigma_{p}(T) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$, then by Proposition 2.5(d), $V=0$, thus $e^{S} T=T e^{S}$.

Proof of Theorem 1.2. It follows from Theorem 1.1 that $T^{2} e^{S}=e^{S} T^{2}$. By Proposition $2.2(\mathrm{~g})$ we derive

$$
f\left(\delta_{S}\right)\left(\delta_{S}\left(T^{2}\right)\right)=e^{-S} T^{2} e^{S}-T^{2}=0
$$

hence $U=\delta_{S}\left(T^{2}\right)=T^{2} S-S T^{2} \in N\left(f\left(\delta_{S}\right)\right)$. Proposition 2.5(c) gives now

$$
0=S U+U S=S T^{2}-S^{2} T^{2}+T^{2} S^{2}-S T^{2}=T^{2} S^{2}-S^{2} T^{2}
$$

Proof of Theorem 1.3.

(a) We know from Theorem 1.1 that $e^{S} T=T e^{S}$, thus

$$
f\left(\delta_{S}\right)\left(\delta_{S}(T)\right)=e^{-S} T e^{S}-T=0
$$

therefore $T S-S T \in N\left(f\left(\delta_{S}\right)\right)$. Use again Proposition 2.5(c) to see that

$$
0=S(T S-S T)+(T S-S T) S=T S^{2}-S^{2} T
$$

(b) Proposition 2.5(d) gives $N\left(f\left(\delta_{S}\right)\right)=\{0\}$. Hence $T S=S T$.

Proof of Theorem 1.4. Proposition 2.2(g) shows that

$$
\begin{aligned}
f\left(\delta_{T+S}\right)\left(\delta_{T+S}\left(e^{T}\right)\right) & =e^{-(T+S)} e^{T} e^{T+S}-e^{T} \\
& =e^{-S} e^{-T} e^{T} e^{T+S}-e^{T} \\
& =e^{-S} e^{S} e^{T}-e^{T}=0,
\end{aligned}
$$

therefore $U=e^{T}(T+S)-(T+S) e^{T}=e^{T} S-S e^{T} \in N\left(f\left(\delta_{T+S}\right)\right)$. Since $N\left(f\left(\delta_{T+S}\right)\right)=\{0\}$ (Proposition 2.5(d)), it follows that $U=0$, hence $e^{T} S=S e^{T}$, therefore

$$
\begin{aligned}
f\left(\delta_{T+S}\right)\left(\delta_{T+S}(S)\right) & =e^{-(T+S)} S e^{T+S}-S \\
& =e^{-S} e^{-T} S e^{T} e^{S}-S \\
& =0
\end{aligned}
$$

Hence we see that $S(T+S)-(T+S) S=S T-T S \in N\left(f\left(\delta_{T+S}\right)\right)=\{0\}$.
Proof of Theorem 1.5. Since

$$
f\left(\delta_{S}\right)\left(\delta_{S}(T)\right)=e^{-S} T e^{S}-T=e^{-T} T e^{T}-T=0
$$

we have $T S-S T \in N\left(f\left(\delta_{S}\right)\right)$, thus, by Proposition 2.5(c)

$$
0=S(T S-S T)+(T S-S T) S=T S^{2}-S^{2} T
$$

hence $T S^{2}=S^{2} T$.
If $\sigma_{p}(S) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset$, we see from Proposition $2.5(\mathrm{~d})$ that $N\left(f\left(\delta_{S}\right)\right)=\{0\}$, thus $T S=S T$.

4 Corollaries

Corollary 4.1 If $A \in \mathcal{L}(\mathcal{H})$ then

$$
A \quad \text { is normal } \Leftrightarrow e^{A} e^{A^{*}}=e^{A+A^{*}}=e^{A^{*}} e^{A} .
$$

Proof. The implication " \Rightarrow " is clear.
$" \Leftarrow^{\text {" }}$: Since $A+A^{*}$ is selfadjoint, $\sigma\left(A+A^{*}\right) \subseteq \mathbb{R}$. Thus $A+A^{*} \in \hat{\Sigma}(\mathcal{H})$ and $\sigma_{p}\left(A+A^{*}\right) \cap$ $\{k \pi i: k=1,2, \ldots\}=\emptyset$. Theorem 1.4 shows now that $A A^{*}=A^{*} A$.

Corollary 4.2 If $A, B \in \mathcal{L}(\mathcal{H})$ are selfadjoint then

$$
A=B \quad \Leftrightarrow \quad e^{A}=e^{B} .
$$

Proof. The implication \Rightarrow " is clear.
$» \Leftarrow^{"}:$ Since $A \in \hat{\Sigma}(\mathcal{H})$ and $\sigma_{p}(A) \cap\{k \pi i: k=1,2, \ldots\}$ we see from Theorem 1.5 that $A B=B A$. Thus $A-B$ is selfadjoint and $e^{A-B}=I$. Take $\lambda \in \sigma(A-B)$. Thus $\lambda \in \mathbb{R}$ and $e^{\lambda}=1$, hence $\lambda=0$. This gives $\sigma(A-B)=\{0\}$. From $\|A-B\|=r(A-B)=0$ we get $A=B$.

Corollary 4.3 Suppose that A and B are normal operators in $\mathcal{L}(\mathcal{H})$ and that $e^{A}=e^{B}$. Then

$$
A+A^{*}=B+B^{*}
$$

Proof. Use Corollary 4.1 to see that $e^{A+A^{*}}=e^{B+B^{*}}$. By Corollary 4.2, $A+A^{*}=B+B^{*}$.

Corollary 4.4 If $A \in \mathcal{L}(\mathcal{H})$ is normal then

$$
A=-A^{*} \quad \Leftrightarrow \quad e^{A} \quad \text { is unitary. }
$$

Proof. The implication \Rightarrow " is clear.
$„ \Leftarrow$ ": Since A is normal,

$$
e^{A+A^{*}}=e^{A} e^{A^{*}}=e^{A}\left(e^{A}\right)^{*}=I=e^{0} .
$$

Now use Corollary 4.2 to derive $A+A^{*}=0$.

For our next result we need the following lemma (see also [8, Theorem 12.37]).

Lemma 4.1 If $T \in \mathcal{L}(\mathcal{H})$ is invertible then there are selfadjoint operators A and B in $\mathcal{L}(\mathcal{H})$ such that

$$
T=e^{i A} e^{B}, \quad \sigma(A) \subseteq[-\pi, \pi] \quad \text { and } \quad \pi \notin \sigma_{p}(A) .
$$

Proof. If T is invertible, so are T^{*} and $T^{*} T$. Theorem 12.33 in [8] shows that the positive square root $\left(T^{*} T\right)^{1 / 2}$ is also invertible. By [8, Theorem 12.35] there is a unitary $U \in \mathcal{L}(\mathcal{H})$ with $T=U\left(T^{*} T\right)^{1 / 2}$. Since $\sigma\left(\left(T^{*} T\right)^{1 / 2}\right) \subseteq(0, \infty)$, log is a continuous real function on $\sigma\left(\left(T^{*} T\right)^{1 / 2}\right)$. Thus the symbolic calculus for selfadjoint operators shows that there is a selfadjoint $B \in \mathcal{L}(\mathcal{H})$ such that $\left(T^{*} T\right)^{1 / 2}=e^{B}$. A. Wintner has shown in [16] that there is a selfadjoint $A \in \mathcal{L}(\mathcal{H})$ such that $U=e^{i A}, \sigma(A) \subseteq[-\pi, \pi]$ and $\pi \notin \sigma_{p}(A)$.

Remarks.

(1) It is shown in [13] that if $U \in \mathcal{L}(\mathcal{H})$ is unitary then there is a unique selfadjoint operator $A \in \mathcal{L}(\mathcal{H})$ such that

$$
U=e^{i A}, \quad \sigma(A) \subseteq[-\pi, \pi] \quad \text { and } \quad \pi \notin \sigma_{p}(A) .
$$

For related results see [9].
(2) Lemma 4.1 shows that an invertible operator in $\mathcal{L}(\mathcal{H})$ is the product of two exponentials. It is natural to ask whether every invertible operator is an exponential, rather than merely the product of two exponentials. The answer is affirmative if $\operatorname{dim} \mathcal{H}<\infty$, as a consequence of [8, Theorem 10.30]. But in general the answer is negative, as one can see from [8, Theorem 12.38]. For normal and invertible operators we have the following results.

Corollary 4.5 Suppose that $T \in \mathcal{L}(\mathcal{H})$ is invertible. The following assertions are equivalent:
(a) T is normal.
(b) There is some normal $S \in \mathcal{L}(\mathcal{H})$ such that $T=e^{S}$.

Proof. (b) \Rightarrow (a): Clear.
(a) \Rightarrow (b): By Lemma 4.1 there are selfadjoint operators $A, B \in \mathcal{L}(\mathcal{H})$ such that

$$
T=e^{i A} e^{B}
$$

and

$$
\begin{equation*}
\sigma(A) \subseteq[-\pi, \pi] \text { and } \pi \notin \sigma_{p}(A) . \tag{1}
\end{equation*}
$$

From $T^{*}=e^{B} e^{-i A}$ and the normality of T we see that

$$
e^{2 B}=T^{*} T=T T^{*}=e^{i A} e^{2 B} e^{-i A}
$$

thus

$$
\begin{equation*}
e^{2 B} e^{i A}=e^{i A} e^{2 B} \tag{2}
\end{equation*}
$$

Use (1) to get

$$
\begin{equation*}
i A \in \hat{\Sigma}(\mathcal{H}) \text { and } \sigma_{p}(i A) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset \tag{3}
\end{equation*}
$$

Since $2 B$ is selfadjoint, we have

$$
\begin{equation*}
2 B \in \hat{\Sigma}(\mathcal{H}) \text { and } \sigma_{p}(2 B) \cap\{k \pi i: k=1,2, \ldots\}=\emptyset \tag{4}
\end{equation*}
$$

Therefore it follows from (2), (3), (4) and Theorem 1.3(b) that $A B=B A$. Thus $T=$ $e^{i A+B}$. Put $S=i A+B$. Then $T=e^{S}$ and S is normal.

Corollary 4.6 Suppose that $T \in \mathcal{L}(\mathcal{H})$ is invertible and normal. Then there is a unique normal operator $S \in \mathcal{L}(\mathcal{H})$ such that

$$
T=e^{S}, \quad r\left(S-S^{*}\right) \leq 2 \pi \quad \text { and } \quad 2 \pi i \notin \sigma_{p}\left(S-S^{*}\right) .
$$

Proof. The proof of Corollary 4.5 shows that there is a normal $S \in \mathcal{L}(\mathcal{H})$ with $T=e^{S}$, $S=i A+B$, where A and B are selfadjoint, $A B=B A, \sigma(A) \subseteq[-\pi, \pi]$ and $\pi \notin \sigma_{p}(A)$. Since $S-S^{*}=2 i A$, we get $r\left(S-S^{*}\right) \leq 2 \pi$ and $2 \pi i \notin \sigma_{p}\left(S-S^{*}\right)$. Now suppose that $R \in \mathcal{L}(\mathcal{H})$ is normal, $T=e^{R}, r\left(R-R^{*}\right) \leq 2 \pi$ and $2 \pi i \notin \sigma_{p}\left(R-R^{*}\right)$. Then there are selfadjoint operators $C, D \in \mathcal{L}(\mathcal{H})$ with

$$
R=i C+D \quad \text { and } \quad C D=D C
$$

From $R-R^{*}=2 i C$ we see that

$$
\sigma(C) \subseteq[-\pi, \pi] \quad \text { and } \quad \pi \notin \sigma_{p}(C)
$$

It follows from $e^{S}=e^{R}$ that $T^{*}=e^{B} e^{-i A}=e^{D} e^{-i C}$, thus $e^{2 B}=T^{*} T=e^{2 D}$. Now use Corollary 4.2 to derive $B=D$. From $e^{i A} e^{B}=e^{i C} e^{D}$ we see that

$$
e^{i A}=e^{i C}
$$

It is shown in [13] that then $A=C$ (see Remark (1)). Hence $S=T$.
Our final result reads as follows:

Corollary 4.7 For $P \in \mathcal{L}(\mathcal{H})$ the following assertions are equivalent:
(a) $e^{T+P}=e^{T}$ for all $T \in \mathcal{L}(\mathcal{H})$.
(b) There is some $k \in \mathbb{Z}$ such that $P=2 k \pi i I$.

Proof. (b) \Rightarrow (a): Clear.
(a) \Rightarrow (b): Take $T \in \mathcal{L}(\mathcal{H})$ with $r(T)<\pi$. Proposition 2.2(e) shows that $r\left(\delta_{T}\right)<2 \pi$. Thus, by Proposition 2.2(c), $M_{T}=\emptyset$, hence $N\left(f\left(\delta_{T}\right)\right)=\{0\}$ (Proposition 2.2(a)). From

$$
\begin{aligned}
f\left(\delta_{T}\right)\left(\delta_{T}(T+P)\right) & =e^{-T}(T+P) e^{T}-(T+P) \\
& =e^{-(T+P)}(T+P) e^{T+P}-(T+P) \\
& =0
\end{aligned}
$$

we see that $(T+P) T=T(T+P)$, hence $T P=P T$. Therefore we have shown that
$T P=P T$ for each $T \in \mathcal{L}(\mathcal{H})$ with $r(T)<\pi$.
Now take $T \in \mathcal{L}(\mathcal{H})$ with $r(T) \geq \pi$ and put $T_{0}=\frac{\pi}{2 r(T)} T$. Then $r\left(T_{0}\right)=\frac{\pi}{2}$. (5) shows that $T_{0} P=P T_{0}$. Therefore we have that $T P=P T$ for all $T \in \mathcal{L}(\mathcal{H})$. Thus $P=\alpha I$ for some $\alpha \in \mathbb{C}$. Since $e^{P}=I, I=e^{\alpha} I$, hence $e^{\alpha}=1$.

References

[1] H.R. Dowson: Spectral theory of linear operators. Academic Press (1978).
[2] N. Dunford: Spectral operators. Pac. J. Math. 4 (1953), 321-354.
[3] E. Hille: On roots and logarithms of elements of a complex Banach algebra. Math. Ann. 136 (1958), 46-57.
[4] G. Lumer, M. Rosenblum: Linear operator equations. Proc. Amer. Math. Soc. 10 (1959), 32-41.
[5] T.W. Palmer: Banach algebras and the general theory of *-algebras. Volume I: Algebras and Banach algebras. Cambridge University Press (1994).
[6] V. Pták, P. Vrbová: On the spectral function of a normal operator. Csechoslovak Math. J. 23 (1973), 615-616.
[7] C.R. Putnam: Ranges of normal and subnormal operators. Michigan Math. J. 18 (1971), 33-36.
[8] W. Rudin: Functional analysis. McGraw-Hill (1991).
[9] Ch. Schmoeger: Über die Eindeutigkeit des Logarithmus eines unitären Operators. Nieuw Arch. Wiskd., IV, Ser. 15 (1997), 57-61.
[10] Ch. Schmoeger: Remarks on commuting exponentials in Banach algebras. Proc. Amer. Math. Soc. 127 (1999), 1337-1338.
[11] Ch. Schmoeger: Remarks on commuting exponentials in Banach algebras, II. Proc. Amer. Math. Soc. 128 (2000), 3405-3409.
[12] Ch. Schmoeger: On normal operator exponentials. Proc. Amer. Math. Soc. (to appear).
[13] M.H. Stone: Linear transformations in Hilbert space. American Mathematical Society (1932).
[14] J. Wermer: Commuting spectral measures on Hilbert space. Pac. J. Math. 4 (1953), 355-361.
[15] E.M.E. Wermuth: A remark on commuting operator exponentials. Proc. Amer. Math. Soc. 125 (1997), 1685-1688.
[16] A. Wintner: Zur Theorie beschränkter Bilinearformen. Math. Z. 30 (1929), 228-284.

Christoph Schmoeger
Mathematisches Institut I
Universität Karlsruhe
D-76128 Karlsruhe
Germany
E-mail: christoph.schmoeger@math.uni-karlsruhe.de

