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Operator Exponentials on Hilbert Spaces

Christoph Schmoeger

Abstract

Let H be a complex Hilbert space and let L(H) be the Banach algebra of all
bounded linear operators on H. In this paper we consider the following class of
operators:

Σ̂(H) = {S ∈ L(H): S is a scalar type operator and
σ(S) ∩ σ(S + 2kπi) ⊆ {kπi} for k = 1, 2, . . .}.

The main results of this paper read as follows:

1. If T, S ∈ Σ̂(H) and eT eS = eSeT then T 2S2 = S2T 2.

2. If S ∈ Σ̂(H), T ∈ L(H) and eT = eS then TS2 = S2T .
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1 Terminology and results

Throughout this paper let H denote a complex Hilbert space and L(H) the Banach algebra
of all bounded linear operators on H. For A ∈ L(H) the spectrum and the spectral radius
of A are denoted by σ(A) and r(A), respectively. The set of eigenvalues of A is denoted
by σp(A). For the resolvent set of A we write ρ(A). We use N(A) and A(H) to denote the
kernel and the range of A, respectively.

An operator S ∈ L(H) is called a scalar type operator if S admits a representation

S =

∫
σ(S)

λE(dλ),

where E(dλ) denotes integration with respect to a spectral measure E(·) on H. See [1],
[2] and [14] for properties of spectral measures and scalar type operators.

If A ∈ L(H) is normal (AA∗ = A∗A) then A is a scalar type operator and the values of
the spectral measure of A are selfadjoint projections (see [1], Theorem 7.18).
J. Wermer [14] has shown that the scalar type operators on H are those operators which
are similar to normal operators. More precisely, Wermer has shown that for every finite
set S1, . . . , Sn of commuting scalar type operators on H there is a selfadjoint operator
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B ∈ L(H) with a bounded everywhere defined inverse such that the operators BSiB
−1,

i = 1, . . . , n, are all normal.

We write Σ(H) for the class of all scalar type operators on H. In the present paper we
consider the following class of operators:

Σ̂(H) = {S ∈ Σ(H) : σ(S) ∩ σ(S + 2kπi) ⊆ {kπi} for k = 1, 2, . . .}.

Now we state the main results. Proofs will be given in Section 3, in Section 4 we present
some corollaries.

Theorem 1.1 If T ∈ Σ̂(H), S ∈ L(H) and eT eS = eSeT then eST 2 = T 2eS. If in addition
σp(T ) ∩ {kπi : k = 1, 2, . . .} = ∅ then eST = TeS.

Theorem 1.2 If T, S ∈ Σ̂(H) and eT eS = eSeT then T 2S2 = S2T 2.

Theorem 1.3 Suppose that T, S ∈ Σ̂(H) and that eT eS = eSeT .

(a) If σp(T ) ∩ {kπi : k = 1, 2, . . .} = ∅ then TS2 = S2T .

(b) If σp(T ) ∩ {kπi : k = 1, 2, . . .} = σp(S) ∩ {kπi : k = 1, 2, . . .} = ∅ then TS = ST .

For related results concerning the equation eAeB = eBeA see [10], [11], [12] and [15].

Theorem 1.4 Suppose that T, S ∈ L(H), T + S ∈ Σ̂(H) and that

eT+S = eT eS = eSeT .

If σp(T + S) ∩ {kπi : k = 1, 2, . . .} = ∅ then TS = ST .

Theorem 1.5 If S ∈ Σ̂(H), T ∈ L(H) and eT = eS then TS2 = S2T .
If in addition σp(S) ∩ {kπi : k = 1, 2, . . .} = ∅ then TS = ST .

For related results concerning the equation eA = eB see [3], [9] and [11].

2 Preparations

In this section we collect some results which we need for the proofs of the theorems in
Section 1.

Proposition 2.1 Suppose that A ∈ L(H) is normal.

(a) If µ ∈ C then (A − µ)(H) = (A∗ − µ)(H).
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(b) If B ∈ L(H) then

E(σ(A) ∩ σ(B))(H) =
∩

λ∈ρ(B)

(A − λ)(H),

where E(·) denotes the spectral measure of A.

Proof. (a) Since A is normal, A − µ is normal. Exercise 12.36 in [8] gives the result.
(b) is shown in [7, Theorem 1], see also [6].

Let A ∈ L(H). The map δA : L(H) → L(H), defined by

δA(C) = CA − AC (C ∈ L(H))

is called the inner derivation determined by A. It is clear that δA is a bounded linear
operator on L(H) with ∥δA∥ ≤ 2∥A∥.

Throughout this paper let f denote the entire function f : C → C given by

f(z) =

{
z−1(ez − 1), if z ̸= 0,

1, if z = 0.

Let MA = {λ ∈ σ(δA) : f(λ) = 0}.

Proposition 2.2 Let A ∈ L(H).

(a) If MA = ∅, then f(δA) is an invertible operator on L(H).

(b) If λ ∈ MA then λ is a simple zero of f and there is j ∈ Z \ {0} with λ = 2jπi.

(c) MA is a finite set, MA ⊆ {±2πi,±4πi, . . .}.

(d) If MA ̸= ∅ and MA = {λ1, . . . , λp} with λj ̸= λk for j ̸= k then

N(f(δA)) = N(δA − λ1) ⊕ . . . ⊕ N(δA − λp).

(e) σ(δA) = {λ − µ : λ, µ ∈ σ(A)}.

(f) eδA(C) = e−ACeA for all C ∈ L(H).

(g) f(δA)(δA(C)) = e−ACeA − C for all C ∈ L(H).

Proof. (a) If MA = ∅, then f(λ) ̸= 0 for all λ ∈ σ(δA), thus f(δA) is invertible.
(b), (c) and (d) are shown in [11].
(e) follows from [4], and Proposition 6.4.8 in [5] shows that (f) holds.
(g) follows from (f) and zf(z) = f(z)z = ez − 1.
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Proposition 2.3 Let A be a normal operator in L(H) and let E(·) be its spectral measure.
If λ0 ∈ C, C ∈ N(δA − λ0), D ∈ N(δA + λ0) then

C(H) ⊆ E(σ(A) ∩ σ(A − λ0))(H)

and
D∗(H) ⊆ E(σ(A) ∩ σ(A − λ0))(H).

Proof. From CA − AC = λ0C we get AC = C(A − λ0). Put B = A − λ0. Now take
µ ∈ ρ(B). Then

(A − µ)C(B − µ)−1 = AC(B − µ)−1 − µC(B − µ)−1

= CB(B − µ)−1 − µC(B − µ)−1

= C(B − µ)(B − µ)−1 = C,

thus C(H) ⊆ (A − µ)(H). Since µ ∈ ρ(B) was arbitrary, we derive

C(H) ⊆
∩

µ∈ρ(B)

(A − µ)(H).

Proposition 2.1(b) implies now that

C(H) ⊆ E(σ(A) ∩ σ(B))(H) = E(σ(A) ∩ σ(A − λ0))(H).

Now suppose that D ∈ N(δA + λ0), hence DA = (A − λ0)D = BD. Therefore D∗B∗ =
A∗D∗. A similar computation as above shows that for µ ∈ ρ(B∗) we have

(A∗ − µ)D∗(B∗ − µ)−1 = D∗,

thus
D∗(H) ⊆

∩
µ∈ρ(B∗)

(A∗ − µ)(H).

Since ρ(B∗) = {λ : λ ∈ ρ(B)}, we get from Proposition 2.1 that

D∗(H) ⊆
∩

λ∈ρ(B)

(A − λ)∗(H) =
∩

λ∈ρ(B)

(A − λ)(H)

= E(σ(A) ∩ σ(B))(H) = E(σ(A) ∩ σ(A − λ0))(H).

The following propositions are of central importance for our investigations.
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Proposition 2.4 Let A be a normal operator in L(H) and suppose that

σ(A) ∩ σ(A + 2kπi) ⊆ {kπi} for k = 1, 2, . . . .

If k ∈ N \ {0}, C ∈ N(δA + 2kπi) and D ∈ N(δA − 2kπi) then

AC = kπiC = −CA

and
DA = kπiD = −AD.

Proof. Put λ0 = −2kπi. From C ∈ N(δA − λ0) we get from Proposition 2.3 that

C(H) ⊆ E(σ(A) ∩ σ(A + 2kπi))(H).

Since σ(A) ∩ σ(A + 2kπi) ⊆ {kπi},

E(σ(A) ∩ σ(A + 2kπi))(H) ⊆ E({kπi}).

From Theorem 12.29 in [8] it follows that E({kπi}) = N(A − kπi). Thus

C(H) ⊆ N(A − kπi),

hence AC = kπiC. From CA − AC = −2kπiC we conclude that CA = −kπiC = −AC.
For D ∈ N(δA − 2kπi) = N(δA + λ0) we get from Proposition 2.3 that

D∗(H) ⊆ E(σ(A) ∩ σ(A + 2kπi))(H) ⊆ N(A − kπi).

Thus AD∗ = kπiD∗. Therefore AD∗x = kπiD∗x for each x ∈ H. The normality of A gives
A∗D∗x = −kπiD∗x, hence A∗D∗ = −kπiD∗, thus DA = kπiD. From DA − AD = 2kπi
we derive

AD = DA − 2kπi = −kπiD = −DA.

Proposition 2.5 Suppose that S ∈ Σ̂(H) and k ∈ N \ {0}.

(a) If C ∈ N(δS + 2kπi) then SC = kπiC = −CS.

(b) If D ∈ N(δS − 2kπi) then DS = kπiD = −SD.

(c) If U ∈ N(f(δS)) then SU + US = 0.

(d) If σp(S) ∩ {nπi : n = 1, 2, . . .} = ∅ then N(f(δS)) = {0}.
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Proof. We know that there are operators X and A in L(H) such that X is invertible in
L(H), A is normal and

S = X−1AX.

Therefore we have S−λ = X−1(A−λ)X for each λ ∈ C and σ(S) = σ(A) and σ(S−λ) =
σ(A − λ). Since S ∈ Σ̂(H), we derive that

(∗) σ(A) ∩ σ(A + 2nπi) ⊆ {nπi}

for n = 1, 2, . . ..

(a) From CS − SC = −2kπiC, we get

CX−1AX − X−1AXC = −2kπiC,

therefore (XCX−1)A − A(XCX−1) = −2kπi(XCX−1). This shows that XCX−1 ∈
N(δA + 2kπi). From (∗) and Proposition 2.4 we see that

AXCX−1 = kπiXCX−1 = −XCX−1A,

hence SC = kπiC = −CS.

(b) Similar.

(c) Follows from (a), (b) and Proposition 2.2(d).

(d) Let n ∈ N\{0}. Since nπi ̸∈ σp(S), we see from (a) that N(δS+2nπi) = {0}. In view of
Proposition 2.2(d) it remains to show that N(δS − 2nπi) = {0}. Take D ∈ N(δS − 2nπi)
and put D̃ = XDX−1. As in the proof of (a) we see that D̃ ∈ N(δA − 2nπi). From
Proposition 2.3 it follows that

D̃∗(H) ⊆ E(σ(A) ∩ σ(A + 2nπi))(H).

By (∗) we get D̃∗(H) ⊆ E({nπi}) = N(A − nπi). Since σp(A) = σp(S) and nπi ̸∈ σp(S),
it follows that N(A − nπi) = {0}. Thus D̃∗ = 0, hence D = 0.

3 Proofs

Proof of Theorem 1.1. Use Proposition 2.2(g) to see that

f(δT )(δT (eS)) = e−T eSeT − eS = 0,

hence V = δT (eS) = eST − TeS ∈ N(f(δT )). Proposition 2.5(c) shows that

0 = TV + V T = TeST − T 2eS + eST 2 − TeST = eST 2 − T 2eS.

If σp(T ) ∩ {kπi : k = 1, 2, . . .} = ∅, then by Proposition 2.5(d), V = 0, thus eST = TeS.
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Proof of Theorem 1.2. It follows from Theorem 1.1 that T 2eS = eST 2. By Propositi-
on 2.2(g) we derive

f(δS)(δS(T 2)) = e−ST 2eS − T 2 = 0,

hence U = δS(T 2) = T 2S − ST 2 ∈ N(f(δS)). Proposition 2.5(c) gives now

0 = SU + US = ST 2 − S2T 2 + T 2S2 − ST 2 = T 2S2 − S2T 2.

Proof of Theorem 1.3.

(a) We know from Theorem 1.1 that eST = TeS, thus

f(δS)(δS(T )) = e−STeS − T = 0,

therefore TS − ST ∈ N(f(δS)). Use again Proposition 2.5(c) to see that

0 = S(TS − ST ) + (TS − ST )S = TS2 − S2T

(b) Proposition 2.5(d) gives N(f(δS)) = {0}. Hence TS = ST .

Proof of Theorem 1.4. Proposition 2.2(g) shows that

f(δT+S)(δT+S(eT )) = e−(T+S)eT eT+S − eT

= e−Se−T eT eT+S − eT

= e−SeSeT − eT = 0,

therefore U = eT (T +S)−(T +S)eT = eT S−SeT ∈ N(f(δT+S)). Since N(f(δT+S)) = {0}
(Proposition 2.5(d)), it follows that U = 0, hence eT S = SeT , therefore

f(δT+S)(δT+S(S)) = e−(T+S)SeT+S − S

= e−Se−T SeT eS − S

= 0.

Hence we see that S(T + S) − (T + S)S = ST − TS ∈ N(f(δT+S)) = {0}.

Proof of Theorem 1.5. Since

f(δS)(δS(T )) = e−STeS − T = e−T TeT − T = 0,

we have TS − ST ∈ N(f(δS)), thus, by Proposition 2.5(c)

0 = S(TS − ST ) + (TS − ST )S = TS2 − S2T,

hence TS2 = S2T .
If σp(S) ∩ {kπi : k = 1, 2, . . .} = ∅, we see from Proposition 2.5(d) that N(f(δS)) = {0},
thus TS = ST .
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4 Corollaries

Corollary 4.1 If A ∈ L(H) then

A is normal ⇔ eAeA∗
= eA+A∗

= eA∗
eA.

Proof. The implication
”
⇒“ is clear.

”
⇐“: Since A + A∗ is selfadjoint, σ(A + A∗) ⊆ R. Thus A + A∗ ∈ Σ̂(H) and σp(A + A∗)∩
{kπi : k = 1, 2, . . .} = ∅. Theorem 1.4 shows now that AA∗ = A∗A.

Corollary 4.2 If A,B ∈ L(H) are selfadjoint then

A = B ⇔ eA = eB.

Proof. The implication
”
⇒“ is clear.

”
⇐“: Since A ∈ Σ̂(H) and σp(A) ∩ {kπi : k = 1, 2, . . .} we see from Theorem 1.5 that

AB = BA. Thus A−B is selfadjoint and eA−B = I. Take λ ∈ σ(A−B). Thus λ ∈ R and
eλ = 1, hence λ = 0. This gives σ(A − B) = {0}. From ∥A − B∥ = r(A − B) = 0 we get
A = B.

Corollary 4.3 Suppose that A and B are normal operators in L(H) and that eA = eB.
Then

A + A∗ = B + B∗.

Proof. Use Corollary 4.1 to see that eA+A∗
= eB+B∗

. By Corollary 4.2, A + A∗ = B + B∗.

Corollary 4.4 If A ∈ L(H) is normal then

A = −A∗ ⇔ eA is unitary.

Proof. The implication
”
⇒“ is clear.

”
⇐“: Since A is normal,

eA+A∗
= eAeA∗

= eA(eA)∗ = I = e0.

Now use Corollary 4.2 to derive A + A∗ = 0.

For our next result we need the following lemma (see also [8, Theorem 12.37]).
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Lemma 4.1 If T ∈ L(H) is invertible then there are selfadjoint operators A and B in
L(H) such that

T = eiAeB, σ(A) ⊆ [−π, π] and π ̸∈ σp(A).

Proof. If T is invertible, so are T ∗ and T ∗T . Theorem 12.33 in [8] shows that the positive
square root (T ∗T )1/2 is also invertible. By [8, Theorem 12.35] there is a unitary U ∈ L(H)
with T = U(T ∗T )1/2. Since σ((T ∗T )1/2) ⊆ (0,∞), log is a continuous real function on
σ((T ∗T )1/2). Thus the symbolic calculus for selfadjoint operators shows that there is a
selfadjoint B ∈ L(H) such that (T ∗T )1/2 = eB. A. Wintner has shown in [16] that there
is a selfadjoint A ∈ L(H) such that U = eiA, σ(A) ⊆ [−π, π] and π ̸∈ σp(A).

Remarks.
(1) It is shown in [13] that if U ∈ L(H) is unitary then there is a unique selfadjoint
operator A ∈ L(H) such that

U = eiA, σ(A) ⊆ [−π, π] and π ̸∈ σp(A).

For related results see [9].

(2) Lemma 4.1 shows that an invertible operator in L(H) is the product of two expo-
nentials. It is natural to ask whether every invertible operator is an exponential, rather
than merely the product of two exponentials. The answer is affirmative if dimH < ∞, as
a consequence of [8, Theorem 10.30]. But in general the answer is negative, as one can
see from [8, Theorem 12.38]. For normal and invertible operators we have the following
results.

Corollary 4.5 Suppose that T ∈ L(H) is invertible. The following assertions are equiva-
lent:

(a) T is normal.

(b) There is some normal S ∈ L(H) such that T = eS.

Proof. (b) ⇒ (a): Clear.
(a) ⇒ (b): By Lemma 4.1 there are selfadjoint operators A,B ∈ L(H) such that

T = eiAeB

and

(1) σ(A) ⊆ [−π, π] and π ̸∈ σp(A).

From T ∗ = eBe−iA and the normality of T we see that

e2B = T ∗T = TT ∗ = eiAe2Be−iA,

thus
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(2) e2BeiA = eiAe2B.

Use (1) to get

(3) iA ∈ Σ̂(H) and σp(iA) ∩ {kπi : k = 1, 2, . . .} = ∅.

Since 2B is selfadjoint, we have

(4) 2B ∈ Σ̂(H) and σp(2B) ∩ {kπi : k = 1, 2, . . .} = ∅.

Therefore it follows from (2), (3), (4) and Theorem 1.3(b) that AB = BA. Thus T =
eiA+B. Put S = iA + B. Then T = eS and S is normal.

Corollary 4.6 Suppose that T ∈ L(H) is invertible and normal. Then there is a unique
normal operator S ∈ L(H) such that

T = eS, r(S − S∗) ≤ 2π and 2πi ̸∈ σp(S − S∗).

Proof. The proof of Corollary 4.5 shows that there is a normal S ∈ L(H) with T = eS,
S = iA + B, where A and B are selfadjoint, AB = BA, σ(A) ⊆ [−π, π] and π ̸∈ σp(A).
Since S − S∗ = 2iA, we get r(S − S∗) ≤ 2π and 2πi ̸∈ σp(S − S∗). Now suppose that
R ∈ L(H) is normal, T = eR, r(R − R∗) ≤ 2π and 2πi ̸∈ σp(R − R∗). Then there are
selfadjoint operators C,D ∈ L(H) with

R = iC + D and CD = DC.

From R − R∗ = 2iC we see that

σ(C) ⊆ [−π, π] and π ̸∈ σp(C).

It follows from eS = eR that T ∗ = eBe−iA = eDe−iC , thus e2B = T ∗T = e2D. Now use
Corollary 4.2 to derive B = D. From eiAeB = eiCeD we see that

eiA = eiC .

It is shown in [13] that then A = C (see Remark (1)). Hence S = T .

Our final result reads as follows:

Corollary 4.7 For P ∈ L(H) the following assertions are equivalent:

(a) eT+P = eT for all T ∈ L(H).

(b) There is some k ∈ Z such that P = 2kπiI.
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Proof. (b) ⇒ (a): Clear.
(a) ⇒ (b): Take T ∈ L(H) with r(T ) < π. Proposition 2.2(e) shows that r(δT ) < 2π.
Thus, by Proposition 2.2(c), MT = ∅, hence N(f(δT )) = {0} (Proposition 2.2(a)). From

f(δT )(δT (T + P )) = e−T (T + P )eT − (T + P )

= e−(T+P )(T + P )eT+P − (T + P )

= 0

we see that (T + P )T = T (T + P ), hence TP = PT . Therefore we have shown that

(5) TP = PT for each T ∈ L(H) with r(T ) < π.

Now take T ∈ L(H) with r(T ) ≥ π and put T0 = π
2r(T )

T . Then r(T0) = π
2
. (5) shows that

T0P = PT0. Therefore we have that TP = PT for all T ∈ L(H). Thus P = αI for some
α ∈ C. Since eP = I, I = eαI, hence eα = 1.
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