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Abstract. In 2001 Aequationes Mathematicae published the survey paper Re-
cent results on functional equations in a single variable, perspectives and open prob-
lems written jointly with Witold Jarczyk in which we pay attention on papers pub-
lished in the last decade. I continue this review and discuss mainly papers published
or written in 2000 or later.
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1. General remarks. Iterative functional equations methods are connected
mainly with real, complex and functional analysis. But recently some linear func-
tional equations in a single variable have been solved with the aid of probabilistic
tools. Among recent papers developing this new method are: Derfel (1989), Ger
and Sablik (1998), Pittenger and Ryff (1999), Deliu and Spruill (2000), Baron and
Jarczyk (M). Some results from these papers are presented in the survey paper
Baron and Jarczyk (2001). Later on I will present also some results of Kapica (A).

Until quite lately the Hyers–Ulam stability was considered almost exclusively
for functional equations in several variables. It seems that this changes: a lot of
recent papers deal with this type of stability also for iterative functional equations.
I mention here Lee and Jun (1998), where the Hyers–Ulam stability of

φ(x + α) = aφ(x)

for a ̸= 1 is proved, Jung (1998) and Alzer (1999) on the stability of the gamma
equation

φ(x + 1) = xφ(x),

Kim and Lee (2000), Kim (2000) on the stability of

φ(x + α) = g(x)φ(x),
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Volkmann (2001) on the stability of

φ(f(x)) = 2φ(x),

Trif (2002) on
φ(f(x)) = g(x)φ(x) + h(x),

Jun, Kim and Lee (2000) and Kim (2001) concerning equations of the form

φ(x + α, y + β) = g(x, y)φ(x, y).

However it seems that Brydak (1970) was the first who touched the problem of
Hyers–Ulam stability of functional equations in a single variable.

Another new subject which appeared in the theory of iterative functional equa-
tions is initiated and elaborated by Hans–Heinrich Kairies studies of the continuous
automorphism F of the Banach space of all real bounded functions defined, for fixed
α ∈ (0, 1) and β ∈ (0,∞), by

F (φ)(x) =
∞∑

n=0

αnφ(βnx).

Let me only call here the rich in results papers Kairies (2000a, 2001, 2002, 2002a,
A) and Kairies and Volkmann (2002), and to express my opinion that a survey talk
on this subject in a future is required.

2. Iterative roots and equations with superpositions of the unknown
function. The Babbage equation

(2.1) φN (x) = x,

where N > 1 is an integer, belongs to the oldest functional equations. In the
case of a real interval its continuous and strictly decreasing solutions depend on
an arbitrary function and every its monotonic solution is either the identity or a
decreasing involution. Jarczyk (M) showed similar effects for self–mappings of the
unit circle S1. He described all the continuous solutions and proved the following:

Theorem 2.1. Assume φ : S1 → S1 is a continuous solution of (2.1) and has
a fixed point. If φ preserves orientation, then it is the identity. If φ reverses
orientation, then it is an involution.

A homeomorphism of a topological space is called continuously reversible if it is
a composition of two continuous involutions. Reversible interval homeomorphisms
were studied by Jarczyk (2002, A). He described all of them and got the following:

Theorem 2.2. Any homeomorphism of an open interval is a composition of two
continuously reversible ones.

Equation (2.1) is a special case of

(2.2)
N∑

n=0

anφn(x) = 0.
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The general solution of (2.2) on subsets of the positive or negative half–line was
found by Jarczyk (1996) in the case where a0 = −1 and an ≥ 0 for n ∈ {1, . . . , N}.
His result was generalized by Tabor and Tabor (1995). An interesting comparison
of this two results is contained in Bézivin (2002). (It turns out that in fact the
assumptions of the theorems of Witold Jarczyk and Jacek Tabor and Józef Tabor
are equivalent.) Jean–Paul Bézivin studies there also the equation

(2.3) φN (x) = F (x, φ(x), . . . , φN−1(x)).

Assuming some conditions on the rational function F he shows that the general
solution φ of (2.3) defined on a subset of [0,∞) is necessarily of the form

φ(x) =
ax

1 + bx
.

Some properties of solutions φ : R → R of (2.2) are established in Matkowski
and Zhang (2000).

Greenfield and Nussbaum (2001) proved the uniqueness of continuous solutions
φ : (0,∞) → (0,∞) of

φ2(x) = φ(x) + x2,

constructed this unique solution, showed that it is real analytic, described how
to extend it to a holomorphic function on C \ (−∞, 0] and proved that it has no
holomorphic extension to any neighbourhood of zero.

Si and Zhang (2001) proved the existence of an analytic in a neighbourhood of
zero and invertible solution of equations of the form

φ2(x) = 2φ(x) − x + g(φ(x)) + g(x).

Kahlig and Smı́tal (2001) consider continuous solutions φ : (0,∞) → J of

(2.4) φ(xφ(x)) = g(φ(x)),

where g is a given increasing homeomorphism of an open subinterval J of (0,∞).
Defining G : (0,∞) × J → (0,∞) × J by

G(x, y) = (xy, g(y)),

they proved among others the following:

Theorem 2.3. Let φ : (0,∞) → J be a continuous solution of (2.4). Then

G(graph(φ)) = graph(φ)

and if

(2.5)
∞∏

n=1

gn(y)
gn(z)

= ∞ for y > z in J
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or

(2.6)
∞∏

n=1

g−n(y)
g−n(z)

= ∞ for y > z in J,

then φ increases.

The authors describe also all the continuous monotone solutions of (2.4) and
conjecture that if any continuous solution of (2.4) is monotone, then either (2.5) or
(2.6) holds.

I finish this part reminding the following problem posed by Brillouët–Belluot
(2001):

Problem. Given α > 0 find all the continuous solutions φ : R → (0,∞) of

φ2(x) = φ(x + α) − x.

3. Some linear equations. Given a probability space (Ω,A, P ) consider the
equation

(3.1) φ(x) =
∫
Ω

φ ◦ f(x, ·)dP,

where f : X × Ω → X is a given function and X is a set. Put f1 = f ,

fn+1(x, ω1, . . . , ωn+1) = f(fn(x, ω1, . . . , ωn), ωn+1)

for x ∈ X and ω1, . . . , ωn+1 ∈ Ω and extend fn on ΩN accepting

fn(x, ω1, ω2, . . . ) = fn(x, ω1, . . . , ωn).

Let P∞ denote the product measure P ×P × . . . and let B stand for the σ–algebra
of all Borel subsets of [0, 1]. The following is proved by Baron and Jarczyk (M):

Theorem 3.1. Assume f : [0, 1] × Ω → [0, 1] is measurable with respect to the
product σ–algebra B ×A. If the function

x 7→
∫
Ω

f(x, ·)dP, x ∈ [0, 1],

is continuous and has no fixed point in (0, 1), then:
(i) for every x ∈ [0, 1] the sequence (fn(x, ·))n∈N converges a.e. with respect to

P∞ to a function which takes the values 0 and 1 only;
(ii) the function p : [0, 1] → [0, 1] defined by

p(x) = P∞
(

lim
n→∞

fn(x, ·) = 0
)
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is a Borel solution of (3.1);
(iii) if φ : [0, 1] → R is a solution of (3.1), Borel, bounded, and continuous at 0

and 1, then

φ(x) = (φ(0) − φ(1))p(x) + φ(1) for x ∈ [0, 1].

Equation (3.1) with linear f , i.e. the equation

(3.2) φ(x) =
∫
Ω

φ(L(ω)x + M(ω))P (dω),

was considered by Kapica (A) on normed spaces. Adopting an idea of Derfel’ (1989)
he was able to get what follows.

Theorem 3.2. Assume X is a separable normed space, the functions L : Ω →
(0,∞) and M : Ω → X are measurable and

0 <

∫
Ω

logL(ω)P (dω) < ∞,

∫
Ω

log max
{
∥M(ω)∥

L(ω)
, 1

}
P (dω) < ∞.

Let also a given x∗ ∈ X∗ be such that

(3.3) P (x∗M + cL = c) < 1 for every c ∈ R.

Then there exists a continuous probability distribution function F such that F ◦ x∗

is a solution of (3.2).

Since every x∗ ∈ X∗ satisfying (3.3) is non–zero, we have

(F ◦ x∗)(X) = F (R) ⊃ (0, 1)

for every continuous distribution function F ; in particular F ◦ x∗ is non–constant.
In the case where L is constant, i.e. in the case of

(3.4) φ(x) =
∫
Ω

φ(αx + M(ω))P (dω),

Theorem 3.2 implies the following:

Corollary 3.1. Assume X is a separable normed space and α ∈ (1,∞). If
M : Ω → X is measurable, not concentrated at a point and∫

Ω

logmax{∥M(ω)∥, 1}P (dω) < ∞,

then (3.4) has a continuous, bounded and non–constant solution φ : X → R.

To complete results on (3.2) consider also the case where M is constant, i.e. the
equation

(3.5) φ(x) =
∫
Ω

φ(L(ω)x + β)P (dω).
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Corollary 3.2. Assume X is a separable normed space and β ∈ X \ {0}. If
L : Ω → (0,∞) is measurable, not concentrated at a point and

0 <

∫
Ω

logL(ω)P (dω) < ∞,

then (3.5) has a continuous, bounded and non–constant solution φ : X → R.

The two–scale difference equation

(3.6) φ(x) =
N∑

n=0

cnφ(2x − n),

where c0, c1, . . . , cN are given real constants with

c0 · cN ̸= 0,

arises especially in the construction of wavelets and is considered in a lot od papers.
Its continuous solutions are studied in Berg and Plonka (2000), where among others
the following two theorems are proved:

Theorem 3.3. If

(3.7)
N∑

n=0

cn = 2−k

with a positive integer k, then (3.6) has exactly one polynomial solution φ of the
form

(3.8) φ(x) = xk + αk−1x
k−1 + . . . + α1x + α0.

Theorem 3.4. If (3.7) holds with a positive integer k and

N∑
n=0

|cn| < 1,

then (3.6) has exactly one continuous solution φ : R → R vanishing on (−∞, 0] and
coinciding with the polynomial solution (3.8) on [N,∞).

The case N = 1, i.e. the two–coefficient dilation equation

(3.9) φ(x) = c0φ(2x) + c1φ(2x − 1)

was considered by Morawiec (A). He described the general compactly supported
solution and proved the following:



7

Theorem 3.5. Assume c0c1 ̸= 0. If c0 ̸= 1 or c1 ̸= 1, then the zero function is
the only compactly supported solution φ : R → R of (3.9) which is continuous at a
point of [0, 1].

Concerning

(3.10) φ(x) =
1
2
φ

(x

2

)
+

1
2
φ

(
x + 1

2

)
we have the following result of Hilberdink (2001):

Theorem 3.6. If a solution φ : (0, 1) → R of (3.10) is Riemann integrable on[
1
4 , 3

4

]
and there exist the limits

c = lim
x→0+

xφ(x), d = lim
x→0+

xφ(1 − x),

then d = −c and

φ(x) = cπcotπx + φ

(
1
2

)
for x ∈ (0, 1).

Given positive real constants a, b, α, β, Davis and Ostaszewski (2000) investigate
the behaviour at infinity of continuous solutions φ : R → R of

(3.11) φ(x) = aφ(x + α) + bφ(x − β).

Typical results read:

Theorem 3.7. Equation (3.11) admits a non–oscillatory at infinity continuous
solution φ : R → R if and only if

(3.12) aβbα ≤ ααββ

(α + β)α+β
.

If (3.12) holds, then there exists a real constant c such that

(3.13) ecx, x ∈ R,

satisfies (3.11).

Theorem 3.8. If
a + b < 1,

then (3.11) admits a continuous solution φ : R → R such that

(3.14) lim
x→∞

|φ(x)| = ∞.

If
a + b = 1,
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then (3.11) admits a continuous solution φ : R → R satisfying (3.14) if and only if

αa ≤ βb.

If
a + b > 1,

then (3.11) admits a continuous solution φ : R → R satisfying (3.14) if and only if

αa < βb

and (3.12) holds.
Assume (3.11) admits a continuous solution φ : R → R satisfying (3.14). If

a + b ̸= 1 or αa ̸= βb,

then there exists a positive constant c such that (3.13) is a solution of (3.11). If

a + b = 1 and αa = βb,

then idR is a solution.

Growth of transcendental meromorphic solutions of

(3.15)
N∑

n=0

Pn(z)φ(cnz) = Q(z),

where P0, . . . , PN , Q are polynomials and 0 < |c| < 1, is studied in Bergweiler,
Ishizaki and Yanagihara (2002). A theorem on asymptotic behaviour of entire
solutions of

φ(2z) = (aeαz + P (z))φ(z) + beβz + Q(z),

where P, Q are polynomials is contained in Derfel and Vogl (2000).
A lot of interesting results on meromorphic solutions of (3.15) can be found in

the paper Heittokangas, Laine, Rieppo and Yang (2000), also in the case where the
P ’s are complex constants:

(3.16)
N∑

n=0

anφ(cnz) = Q(z).

For instance the following three results are proved there assuming that 0 < |c| < 1
and a0aN ̸= 0.

Theorem 3.9. If Q = 0, then the vector space of meromorphic solutions of (3.16)
is at most N–dimensional and power functions

zk1 , . . . , zkd

with k1, . . . , kd ∈ Z form a base of this space.
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Theorem 3.10. If Q is meromorphic and has exactly one non–zero pole, then
every meromorphic solution of (3.16) has infinitely many poles.

Theorem 3.11. Suppose

N∑
n=0

ancnk ̸= 0 for every k ∈ Z.

If Q is meromorphic, then (3.16) has exactly one meromorphic solution.

4. Simultaneous equations. Consider first replicative functions, i.e. solutions
of

(4.1)
1
n

n−1∑
k=0

φ

(
x + k

n

)
= anφ(x) (n ∈ N),

where (an)n∈N is a given number sequence. Connections between the degree of
regularity of solutions φ and the magnitude of (an)n∈N were studied in Kairies
(2000). The following three theorems are proved there:

Theorem 4.1. Assume (an)n∈N is a non–constant real sequence satisfying

(4.2) am·n = am · an for m,n ∈ N and a1 = 1,

and let φ : [0, 1] → R be a non–trivial solution of (4.1) with φ(0) = φ(1).
If φ ∈ L1, then (an)n∈N ∈ c0.
If p ∈ (1, 2], φ ∈ Lp and 1/p + 1/q = 1, then (an)n∈N ∈ lq.
If φ is of finite variation, then (n · an)n∈N is bounded.
If φ is of finite variation and continuous, then

lim
n→∞

1
log n

n∑
k=1

|ak| = 0.

If φ satisfies a Hölder condition of order α > 1
2 , then

(
nα− 1

2
∑∞

k=n |ak|
)

n∈N
is

bounded.

If (an)n∈N ∈ l1 and (4.2) holds, then the functions c, s : [0, 1] → R defined by

c(x) =
∞∑

n=1

an cos 2πnx, s(x) =
∞∑

n=1

an sin 2πnx

are continuous solutions of (4.1).
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Theorem 4.2. Assume (4.2).
If (an)n∈N ∈ l1, then every continuous solution φ : [0, 1] → R of (4.1) with

φ(0) = φ(1) is a linear combination of c and s.
If α ∈ (0, 1) and (nα

∑∞
k=n |ak|)n∈N is bounded, then every continuous solution

φ : [0, 1] → R of (4.1) with φ(0) = φ(1) satisfies a Hölder condition of order α.
If

(
nβ

∑∞
k=n |ak|

)
n∈N is bounded for some β > 1, then every continuous solution

φ : [0, 1] → R of (4.1) with φ(0) = φ(1) satisfies a Lipschitz condition.

Theorem 4.3. Assume (4.2), fix p ∈ (1, 2], let (an)n∈N ∈ lp and 1/p + 1/q = 1.
(i) If φ : [0, 1] → R is a solution of (4.1) in Lq and φ(0) = φ(1), then there exist

real constants α, β such that

(4.3) φ(x) = αc(x) + βs(x) a.e. on [0, 1].

(ii) For every real constants α, β there exists a solution φ : [0, 1] → R of (4.1) in
Lq such that φ(0) = φ(1) and (4.3) holds.

Bézivin (2000) is interested in continuous solutions φ : R → C of

M∑
m=0

Pm(x)φ(x + αm) = f(x),
N∑

n=0

Qn(x)φ(x + βn) = g(x),

where P ’s and Q’s are polynomials with complex coefficients and PM · QN ̸= 0,
the reals α, β are linearly independent over Q, and f, g : R → C are exponential
polynomials. The solutions are exponential polynomials divided by a polynomial
(just exponential polynomials if P ’s and Q’s are constants).

Marteau (2000) considers the system

(4.4)
M∑

m=1

Pm(x)φ(x + αm) = 0,
N∑

n=1

Qn(x)φ(x + βn) = 0,

its continuous solutions φ : R → C and entire solutions φ : C → C. Among others
he got the following:

Theorem 4.4. Assume P1, . . . , PM , Q1, . . . , QN are non–zero polynomials with
complex coefficients and α1, . . . , αM , β1, . . . , βN are complex numbers such that the
intersection of the two additive subgroups of C generated by the α’s and by the β’s,
respectively, contains only zero. If

Re α1 < . . . < Re αM , Im α1 < . . . < Im αM ,

Re β1 < . . . < Re βN , Im βN < . . . < Im β1,

then every entire solution of (4.4) is an exponential polynomial divided by a poly-
nomial.

Zdun (2001) investigates bounded solutions φ : [0, 1] → X of

(4.5) φ(fn(x)) = gn(φ(x)) (n ∈ {1, . . . , N}),
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where f ’s are continuous self–mappings of [0, 1] and g’s are continuous self–map-
pings of a complete metric space X. The paper provides conditions which imply
the existence, uniqueness and continuity of bounded solutions. In the case where
X = C solutions of some particular systems of form (4.5) determine some peculiar
curves generating some fractals. In the case where X is a compact interval the paper
brings conditions under which the only bounded solution φ : [0, 1] → X of (4.5) is
continuous, monotonic, singular continuous, continuous and a.e. non–differentiable,
respectively. Some of the results obtained in this paper were applied by the author
in Zdun (2000) to prove a uniqueness theorem for the conjugacy equation on the
circle.

According to Sklar (2001) many real functions can be characterized as solutions
of

(4.6) φ(2x) = f(φ(x)), φ(3x) = g(φ(x)).

In particular, if

f(x) =
2x

1 + x2
, g(x) = x

3 + x2

1 + 3x2
,

φ : [0,∞) → R is a solution of (4.6) and there exists a c > 0 such that φ|[0,c] is
monotonic with φ(c) = 1

2 , then

φ(x) = tanh
(

log 3
2c

x

)
for x ≥ 0.

I finish this part with an information that Ciepliński and Zdun (2002) investigate
continuous and homeomorphic solutions φ : S1 → S1 of

φ(fλ(x)) = gλ(φ(x)) (λ ∈ Λ),

where Λ is an arbitrary non–empty set and fλ, gλ are homeomorphisms of the unit
circle S1 such that

fλ1 ◦ fλ2 = fλ2 ◦ fλ1 , gλ1 ◦ gλ2 = gλ2 ◦ gλ1

for λ1, λ2 ∈ Λ.

5. Schröder’s and Böttcher’s equations. The Schröder equation

(5.1) φ(f(x)) = λφ(x)

is the fundamental equation of linearization. A theorem on the existence of a
solution φ : RN → RN of (5.1) with λ = f ′(0), being a C∞ diffeomorphism is given
in Zajtz (2000).

Equation (5.1) and the inequality

(5.2) φ(f(x)) ≤ λφ(x)

are used by Jachymski (2000) to simplify a proof of Bessaga converse of the Banach
contraction principle. Concerning (5.1) and (5.2) the following is proved there:
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Theorem 5.1. If f is a self–mapping of a non–empty set X and λ ∈ (0, 1), then
the following two conditions (i) and (ii) are equivalent:

(i) there exists a complete metric d on X such that

d(f(x), f(z)) ≤ λd(x, z) for x, z ∈ X;

(ii) there exists a solution φ : X → [0,∞) of (5.2) such that φ−1({0}) is a
singleton.

Theorem 5.2. If f is a self–mapping of a non–empty set X and λ ∈ (0, 1), then
f has no periodic point if and only if (5.1) has a solution φ : X → (0,∞).

Jones (2002) studies the multivariate Böttcher equation

φ(f(x)) = φ(x)p

for f : RN → RN being a polynomial with non–negative coefficients. A solution
φ : RN → RN is constructed from the limit of

log fn(x)
pn

,

where log is taken componentwise.
Brydak and Choczewski (2000) get a representation of positive solutions φ of

φ(f(x)) ≤ φ(x)p

such that

lim
x→0+

φ(x)
β(x)

> 0

holds for a positive solution β of the Böttcher equation.

6. Miscellaneous results. Now I would like to present some results of more
individual character.

According to the Bohr–Mollerup theorem the gamma function is the only nor-
malized logarithmically convex solution φ : (0,∞) → (0,∞) of

(6.1) φ(x + 1) = xφ(x).

Hans–Heinrich Kairies proposed to investigate the set of all functions g : (0,∞) → R
with the following property: If φ : (0,∞) → (0,∞) is a normalized solution of (6.1)
such that g ◦ φ is convex on (α,∞) for some α ≥ 0, then φ = Γ. Wach–Michalik
(2001) found some elements of this set and studied its property.

Domsta (2002) presents an extensive study of solutions φ regular in the sense of
Karamata of a variety of equations of the form

φ(f(x)) = g(x)φ(x) + h(x);
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applications to the regular iteration are also given there.
Derfel’, Romanenko and Sharkovskǐı (2000) study asymptotic behaviour of C1

solutions φ : [0,∞) → I of

(6.2) φ(qx + 1) = g(φ(x)),

where I is a compact interval and g is a C1 self–mapping of I. Among others the
authors show that if there exists a positive integer m such that

q > max
x∈I

∣∣∣∣ d

dx
gm(x)

∣∣∣∣1/m

,

then for any C1 solution φ : [0,∞) → I of (6.2) we have

lim
x→∞

φ′(x) = 0.

Gundersen, Heittokangas, Laine, Rieppo and Yang (2002) established the growth
of meromorphic solutions of equations of the form

φ(cz) =
∑M

m=0 fm(z)φ(z)m∑N
n=0 gn(z)φ(z)n

with meromorphic coefficients f ’s and g’s.
Kahlig, Matkowski and Sharkovsky (2000) revisited the Dido’s equation

(6.3) 2φ(2x) = φ(x) +

√
φ(x)2 +

1
x2

.

Applying the method of invariants the authors proved the following:

Theorem 6.1. If α ∈ (0,∞), then φ : (α,∞) → (0,∞) is a solution of (6.3) if
and only if there exists a 1–periodic p : R → (0,∞) such that

φ(x) =
1
x

cot
(

1
x

p

(
log x

log 2

))
for x ∈ (α,∞)

and

p(x) <
π

2
· 2x for x ∈

(
log α

log 2
,
log α

log 2
+ 1

]
.

Let me finish in calling your attention to the fact that the notion of quasimono-
tone increasing functions, introduced thirty years ago by Peter Volkmann and very
useful in the theory of differential equations, appeared in the theory of iterative
functional equations. Namely Volkmann (2002) uses it to get a comparison theo-
rem and Herzog (M) uses it to obtain semicontinuous solutions of

F (x, φ(x), φ(f1(x)), . . . , φ(fN (x))) = 0.
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tion, Rocznik Nauk.–Dydakt. Prace Mat. 17, 75–82. MR 2002c:39022.
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