DRAZIN INVERTIBILITY OF PRODUCTS

CHRISTOPH SCHMOEGER

Abstract

If a and b are elements of an algebra, then we show that $a b$ is Drazin invertible if and only if $b a$ is Drazin invertible. With this result we investigate products of bounded linear operators on Banach spaces.

1. Drazin inverses

Throughout this section \mathcal{A} is a real or complex algebra with identity $e \neq 0$. We denote the group of invertible elements of \mathcal{A} by \mathcal{A}^{-1}. We call an element $a \in \mathcal{A}$ relatively regular if there is $b \in \mathcal{A}$ for which $a=a b a$. In this case b is called a generalized inverse of a.

An element $a \in \mathcal{A}$ is said to be Drazin invertible if there is $c \in \mathcal{A}$ and $k \in \mathbb{N} \cup\{0\}$ such that

$$
a^{k} c a=a^{k}, \quad c a c=c \quad \text { and } \quad a c=c a .
$$

In this case c is called a Drazin inverse of a and the least non-negative integer k satisfying $a^{k} c a=a^{k}$ is called the Drazin index $i(a)$ of a. We write $\mathcal{D}(\mathcal{A})$ for the set of all Drazin invertible elements of \mathcal{A}. With the convention $a^{0}=e$ we have

$$
a \in \mathcal{A}^{-1} \Longleftrightarrow a \in \mathcal{D}(\mathcal{A}) \quad \text { and } \quad i(a)=0
$$

Proposition 1. If $a \in \mathcal{D}(\mathcal{A})$, then a has a unique Drazin inverse.
Proof. [3].

Proposition 2. For $a \in \mathcal{A}$ the following assertions are equivalent:
(1) $a \in \mathcal{D}(\mathcal{A})$ and $i(a) \leq 1$;
(2) there is $b \in \mathcal{A}$ such that $a b a=a$ and $e-a b-b a \in \mathcal{A}^{-1}$.

Proof. [5, Proposition 3.9].

The main result of this section reads as follows:

Theorem 1. Let $a, b \in \mathcal{A}$. Then:

$$
a b \in \mathcal{D}(\mathcal{A}) \Longleftrightarrow b a \in \mathcal{D}(\mathcal{A})
$$

In this case we have:
(1) $|i(a b)-i(b a)| \leq 1$;
(2) if c is the Drazin inverse of $a b$, then $b c^{2} a$ is the Drazin inverse of ba.

[^0]Proof. Let c be the Drazin inverse of $a b$ and let $k=i(a b)$, thus

$$
(a b)^{k} c(a b)=(a b)^{k}, \quad c(a b) c=c \quad \text { and } \quad c(a b)=(a b) c .
$$

Let $d=b c^{2} a$. Then

$$
d(b a)=b c^{2} a b a=b(c a b c) c=b c a
$$

and

$$
(b a) d=b a b c^{2} a=b(c a b c) a=b c a,
$$

hence

$$
d(b a)=(b a) d .
$$

From $d b a=b c a$ it follows that

$$
d(b a) d=b c a b c^{2} a=b(c a b c) c a=b c^{2} a=d
$$

and

$$
\begin{aligned}
(b a)^{k+1} d(b a) & =(b a)^{k+1} b c a=b(a b)^{k} a b c a \\
& =b\left[(a b)^{k} c(a b)\right] a=b(a b)^{k} a=(b a)^{k+1} .
\end{aligned}
$$

Therefore we have shown that $b a \in \mathcal{D}(\mathcal{A}), d=b c^{2} a$ is the Drazin inverse of $b a$ and that $i(b a) \leq$ $k+1$. Let $n=i(b a)$. Similar arguments as above show that $k=i(a b) \leq n+1$, thus $i(b a)=n \geq$ $k-1$, hence $i(b a) \in\{k-1, k, k+1\}$.

Example 1. Let $\mathcal{A}=\mathbb{C}^{2 \times 2}$,

$$
a=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \quad \text { and } \quad b=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

Then $a b=\left(\begin{array}{cc}0 & 0 \\ 1 & 0\end{array}\right)$ and $b a=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$.
Since $(a b)^{2}=0$, it is easy to see that $a b$ is Drazin invertible with Drazin inverse $c=0$ and $i(a b)=2$. From $(b a) 0(b a)=b a, 0(b a) 0=0$ and $(b a) 0=0(b a)$ we derive $i(b a)=1$.

2. Fredholm and generalized Fredholm operators

Let X be a real or complex Banach space and let $\mathcal{L}(X)$ denote the Banach algebra of all bounded linear operators on X. By $\mathcal{F}(X)$ we denote the ideal of all finite-dimensional operators in $\mathcal{L}(X)$, by $\widehat{\mathcal{L}}$ we denote the quotient algebra $\mathcal{L}(X) / \mathcal{F}(X)$ and by \widehat{A} we denote the equivalence class of $A \in \mathcal{L}(X)$ in $\widehat{\mathcal{L}}$, i. e. $\widehat{A}=A+\mathcal{F}(X)$. Moreover, by $N(A)$ and $A(X)$ we denote the kernel and the range of A, respectively.

As usual, $A \in \mathcal{L}(X)$ is called Fredholm operator if $\operatorname{dim} N(A)$ and $\operatorname{codim} A(X)$ are both finite. It is well known that

$$
A \text { is Fredholm } \Longleftrightarrow \widehat{A} \in \widehat{\mathcal{L}}^{-1}
$$

(see [4, Satz 81.1]). If $A \in \mathcal{L}(X)$ is Fredholm, then $A(X)$ is closed and A is relatively regular (see $[4, \S 74])$. The set of all Fredholm operators in $\mathcal{L}(X)$ is denoted by $\Phi(X)$.

In [2, Chapter 3] Caradus shows the following:

Proposition 3. Let $A \in \Phi(X)$ and let B any generalized inverse of A. Then $I-A B-B A \in$ $\Phi(X)$.

This suggests the following definition due to Caradus [2]:
$A \in \mathcal{L}(X)$ is called a generalized Fredholm operator if A is relatively regular and $I-A B-B A \in$ $\Phi(X)$ for some generalized inverse B of A. By $\Phi_{g}(X)$ we denote the class of all generalized Fredholm operators on X.

Proposition 4.

(1) $\mathcal{F}(X) \subseteq \Phi_{g}(X)$.
(2) $\Phi(X) \subseteq \Phi_{g}(X)$.
(3) $\Phi_{g}(X)+\mathcal{F}(X) \subseteq \Phi_{g}(X)$.
(4) $\Phi_{g}(X) \subseteq \overline{\Phi(X)}$ (where the bar denotes closure).
(5) $A \in \Phi_{g}(X) \Longleftrightarrow \widehat{A} \in \mathcal{D}(\widehat{\mathcal{L}})$ and $i(\widehat{A}) \leq 1$.

Proof. (1) is shown in [5, Proposition 1.3], (2) and (4) are due to Caradus [2], (5) follows from [5, Theorem 2.3] and Proposition 2, (3) is a consequence of (5).

Remark. By Proposition 4(5) we have for $A \in \Phi_{g}(X)$:

$$
A \in \Phi(X) \Longleftrightarrow i(\widehat{A})=0
$$

As an immediate consequence of Theorem 1 we get the following result (see also [6]):

Theorem 2. If $A, B \in \mathcal{L}(X)$ and $A B \in \Phi(X)$, then $B A \in \Phi_{g}(X)$.
Example 2. Let $X=l^{2}$ with the usual orthonormal basis $\left(u_{k}\right)_{k=1}^{\infty}$. Define $A, B \in \mathcal{L}(X)$ by

$$
A u_{2 k}=u_{k}, \quad A u_{2 k+1}=0 \quad(k \in \mathbb{N})
$$

and

$$
B u_{k}=u_{2 k} \quad(k \in \mathbb{N}) .
$$

Then $A B=I$, hence $A B \in \Phi(X)$, but $B A \notin \Phi(X)$. From Theorem 2 we get $B A \in \Phi_{g}(X)$, hence

$$
i(\widehat{A} \widehat{B})=0 \quad \text { and } \quad i(\widehat{B} \widehat{A})=1
$$

3. Poles of the resolvent

Let X be a complex Banach space and $A \in \mathcal{L}(X)$. We write $\sigma(A), \rho(A)$ and $r(A)$ for the spectrum, the resolvent set and the spectral radius of A, respectively. For $\lambda \in \rho(A)$ we denote the resolvent $(\lambda I-A)^{-1}$ by $R_{\lambda}(A)$.

Let $A, B \in \mathcal{L}(X)$. In [1, Theorem 9] Barnes shows the following:
An isolated point $\lambda_{0} \neq 0$ of $\sigma(A B)$ is a pole of order p of $R_{\lambda}(A B)$ if and only if λ_{0} is a pole of order p of $R_{\lambda}(B A)$.

In this section we treat the case $\lambda_{0}=0$. To this end let $A \in \mathcal{L}(X)$ and suppose that 0 is an isolated point in $\sigma(A)$. Define the operator $P_{0} \in \mathcal{L}(X)$ by

$$
P_{0}=\frac{1}{2 \pi i} \int_{\gamma} R_{\lambda}(A) d \lambda
$$

where γ is a small circle surrounding $0 \in \mathbb{C}$ and separating 0 from $\sigma(A) \backslash\{0\}$. Then we have $P_{0}^{2}=P_{0} . P_{0}$ is called the spectral projection of A associated with 0 . Occasionally we shall denote it more precisely by $P_{0}(A)$.

In [2] the following is shown:
Proposition 5. Let $A \in \mathcal{L}(X)$ and $p \geq 1$. Then $R_{\lambda}(A)$ has a pole of order p at $\lambda=0$ if and only if $A \in \mathcal{D}(\mathcal{L}(X))$ and $i(A)=p$. In this case we have:

$$
\begin{equation*}
R_{\lambda}(A)=\left(\frac{A^{p-1}}{\lambda^{p}}+\frac{A^{p-2}}{\lambda^{p-1}}+\cdots+\frac{I}{\lambda}\right)(I-A C)-\sum_{n=0}^{\infty} \lambda^{n} C^{n+1} \tag{1}
\end{equation*}
$$

in the region $0<|\lambda|<r(C)^{-1}$, where C is the Drazin inverse of A;
(2) $P_{0}(A)=I-A C$;
(3) if $\sigma(A) \neq\{0\}$, then dist $(0, \sigma(A) \backslash\{0\})=r(C)^{-1}$.

Example 3. Suppose that H is a complex Hilbert space, $A \in \mathcal{L}(H), A^{2}=A, 0 \neq A \neq I$ and $B=A^{*}$. Let $T=A B$ and $S=B A$. Then T and S are selfadjoint, $T S T=T^{2}$ and $S T S=S^{2}$. We have $0 \in \sigma(T)$ and $0 \in \sigma(S)$ (indeed, if $0 \in \rho(T)$ or $0 \in \rho(S)$, then $T=S=I$, hence $A A^{*}=A^{*} A=I$, thus A is unitary, therefore $\sigma(A) \subseteq\{\lambda \in \mathbb{C}:|\lambda|=1\}$, but since $\sigma(A)=\{0,1\}$, we get $\sigma(A)=\{1\}$, hence $A=I$, a contradiction). From

$$
\begin{aligned}
T(S-I)^{2} T & =T S^{2} T-2 T S T+T^{2}=T S T S T-T^{2} \\
& =T^{3}-T
\end{aligned}
$$

we see that $T^{3}-T=T(S-I)(T(S-I))^{*} \geq 0$. Hence the spectral mapping theorem gives $\sigma(T) \subseteq\{0\} \cup[1, \infty)$. This shows that 0 is an isolated point of $\sigma(T)$. It follows from [4, Satz 112] that 0 is a simple pole of $R_{\lambda}(T)$. The same arguments show that 0 is a simple pole of $R_{\lambda}(S)$. Hence, by Proposition $5, A B, B A \in \mathcal{D}(\mathcal{L}(H))$ and

$$
i(A B)=i(B A)
$$

An application of Theorem 1 and Proposition 5 gives our next result:
Theorem 3. Suppose that $A, B \in \mathcal{L}(X), p \geq 1$ and that $R_{\lambda}(A B)$ has a pole of order p at $\lambda=0$. Then:

$$
0 \in \rho(B A)
$$

or

$$
R_{\lambda}(B A) \text { has a pole of order } q \text { at } \lambda=0
$$

where $q \in\{p-1, p, p+1\}$.
Corollary 1. Let A, B and p as in Theorem 3. Suppose that $0 \in \sigma(B A), C$ is the Drazin inverse of $A B$ and that D is the Drazin inverse of $B A$. Then $D=B C^{2} A$,

$$
P_{0}(A)=I-A B C, P_{0}(B A)=I-B C A
$$

and

$$
\sigma(C)=\sigma(D)
$$

Proof. From Theorem 1 we obtain $D=B C^{2} A$. Use Proposition 5 to derive $P_{0}(A B)=I-A B C$ and $P_{0}(B A)=I-B C A$. Since $0 \in \sigma(A B)$, we have $0 \in \sigma(C)$. Similar $0 \in \sigma(D)$. To obtain $\sigma(D)=\sigma(C)$ observe that

$$
\begin{aligned}
\sigma(D) \backslash\{0\} & =\sigma\left(\left(B C^{2}\right) A\right) \backslash\{0\}=\sigma\left(A\left(B C^{2}\right)\right) \backslash\{0\} \\
& =\sigma(C A B C) \backslash\{0\}=\sigma(C) \backslash\{0\}
\end{aligned}
$$

Corollary 2. Let A, B as in Theorem 3.
(1) If $R_{\lambda}(B A)$ has a pole of order p at $\lambda=0$, then

$$
B R_{\lambda}(A B) A=B A R_{\lambda}(B A) \quad \text { for } \quad 0<|\lambda|<r(C)^{-1}
$$

(2) If $R_{\lambda}(B A)$ has a pole of order $p+1$ at $\lambda=0$, then

$$
R_{\lambda}(B A)=\frac{1}{\lambda}\left(I+B R_{\lambda}(A B) A\right) \quad \text { for } 0<|\lambda|<r(C)^{-1}
$$

Proof. Observe that $D^{n+1}=\left(B C^{2} A\right)^{n+1}=B C^{n+1} A$ for $n \geq 0$ and that $r(C)=r(D)$ (Corollary 1). The results follow by easy computations, use Proposition 5(1).

References

[1] B. A. Barnes, Common operator properties of the linear operators $R S$ and $S R$, Proc. Amer. Math. Soc. 126 (1998), 1055-1061.
[2] S. R. Caradus, Operator theory of the pseudo-inverse, Queen's papers in pure and appl. math., No. 38 (1974).
[3] M. P. Drazin, Pseudoinverse in associative rings and semigroups, Amer. Math. Monthly 65 (1958), 506-514.
[4] H. Heuser, Funktionalanalysis, 2nd ed., Teubner (1986).
[5] Ch. Schmoeger, On a class of generalized Fredholm operators, I, Demonstratio Math. 30 (1997), 829-842.
[6] Ch. Schmoeger, On Fredholm properties of operator products, Math. Proc. Royal Irish Acad. 103 A (2003), 203-208.

Christoph Schmoeger
Mathematisches Institut I
Universität Karlsruhe (TH)
Englerstrasse 2
76128 Karlsruhe
Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de

[^0]: 2000 Mathematics Subject Classification. 47A10, 15A09.
 Key words and phrases. Drazin inverse, Fredholm operator, poles of the resolvent.

