
http://www.mathematik.uni-karlsruhe.de/∼semlv
Seminar LV, No. 26, 5 pp., 1.6.2006

DRAZIN INVERTIBILITY OF PRODUCTS

CHRISTOPH SCHMOEGER

Abstract. If a and b are elements of an algebra, then we show that ab is Drazin invertible if
and only if ba is Drazin invertible. With this result we investigate products of bounded linear
operators on Banach spaces.

1. Drazin inverses

Throughout this section A is a real or complex algebra with identity e ̸= 0. We denote the
group of invertible elements of A by A−1. We call an element a ∈ A relatively regular if there is
b ∈ A for which a = aba. In this case b is called a generalized inverse of a.

An element a ∈ A is said to be Drazin invertible if there is c ∈ A and k ∈ N ∪ {0} such that

akca = ak, cac = c and ac = ca .

In this case c is called a Drazin inverse of a and the least non-negative integer k satisfying
akca = ak is called the Drazin index i(a) of a. We write D(A) for the set of all Drazin invertible
elements of A. With the convention a0 = e we have

a ∈ A−1 ⇐⇒ a ∈ D(A) and i(a) = 0 .

Proposition 1. If a ∈ D(A), then a has a unique Drazin inverse.

Proof. [3]. �

Proposition 2. For a ∈ A the following assertions are equivalent:

(1) a ∈ D(A) and i(a) ≤ 1;
(2) there is b ∈ A such that aba = a and e − ab − ba ∈ A−1.

Proof. [5, Proposition 3.9]. �

The main result of this section reads as follows:

Theorem 1. Let a, b ∈ A. Then:

ab ∈ D(A) ⇐⇒ ba ∈ D(A) .

In this case we have:

(1) |i(ab) − i(ba)| ≤ 1;
(2) if c is the Drazin inverse of ab, then bc2a is the Drazin inverse of ba.
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Proof. Let c be the Drazin inverse of ab and let k = i(ab), thus

(ab)kc(ab) = (ab)k, c(ab)c = c and c(ab) = (ab)c .

Let d = bc2a. Then

d(ba) = bc2aba = b(cabc)c = bca

and

(ba)d = babc2a = b(cabc)a = bca ,

hence

d(ba) = (ba)d .

From dba = bca it follows that

d(ba)d = bcabc2a = b(cabc)ca = bc2a = d

and

(ba)k+1d(ba) = (ba)k+1bca = b(ab)kabca

= b[(ab)kc(ab)]a = b(ab)ka = (ba)k+1 .

Therefore we have shown that ba ∈ D(A), d = bc2a is the Drazin inverse of ba and that i(ba) ≤
k + 1. Let n = i(ba). Similar arguments as above show that k = i(ab) ≤ n + 1, thus i(ba) = n ≥
k − 1, hence i(ba) ∈ {k − 1, k, k + 1}. �

Example 1. Let A = C2×2,

a =
(

0 0
1 0

)
and b =

(
1 0
0 0

)
.

Then ab =
(

0 0
1 0

)
and ba =

(
0 0
0 0

)
.

Since (ab)2 = 0, it is easy to see that ab is Drazin invertible with Drazin inverse c = 0 and
i(ab) = 2. From (ba)0(ba) = ba, 0(ba)0 = 0 and (ba)0 = 0(ba) we derive i(ba) = 1.

2. Fredholm and generalized Fredholm operators

Let X be a real or complex Banach space and let L(X) denote the Banach algebra of all
bounded linear operators on X. By F(X) we denote the ideal of all finite-dimensional operators
in L(X), by L̂ we denote the quotient algebra L(X)/F(X) and by Â we denote the equivalence
class of A ∈ L(X) in L̂, i. e. Â = A+F(X). Moreover, by N(A) and A(X) we denote the kernel
and the range of A, respectively.

As usual, A ∈ L(X) is called Fredholm operator if dimN(A) and codim A(X) are both finite.
It is well known that

A is Fredholm ⇐⇒ Â ∈ L̂−1

(see [4, Satz 81.1]). If A ∈ L(X) is Fredholm, then A(X) is closed and A is relatively regular
(see [4, § 74]). The set of all Fredholm operators in L(X) is denoted by Φ(X).

In [2, Chapter 3] Caradus shows the following:
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Proposition 3. Let A ∈ Φ(X) and let B any generalized inverse of A. Then I − AB − BA ∈
Φ(X).

This suggests the following definition due to Caradus [2]:

A ∈ L(X) is called a generalized Fredholm operator if A is relatively regular and I−AB−BA ∈
Φ(X) for some generalized inverse B of A. By Φg(X) we denote the class of all generalized
Fredholm operators on X.

Proposition 4.

(1) F(X) ⊆ Φg(X).
(2) Φ(X) ⊆ Φg(X).
(3) Φg(X) + F(X) ⊆ Φg(X).
(4) Φg(X) ⊆ Φ(X) (where the bar denotes closure).
(5) A ∈ Φg(X) ⇐⇒ Â ∈ D(L̂) and i(Â) ≤ 1.

Proof. (1) is shown in [5, Proposition 1.3], (2) and (4) are due to Caradus [2], (5) follows from
[5, Theorem 2.3] and Proposition 2, (3) is a consequence of (5). �

Remark. By Proposition 4(5) we have for A ∈ Φg(X):

A ∈ Φ(X) ⇐⇒ i(Â) = 0.

As an immediate consequence of Theorem 1 we get the following result (see also [6]):

Theorem 2. If A,B ∈ L(X) and AB ∈ Φ(X), then BA ∈ Φg(X).

Example 2. Let X = l2 with the usual orthonormal basis (uk)∞k=1. Define A,B ∈ L(X) by

Au2k = uk, Au2k+1 = 0 (k ∈ N)

and
Buk = u2k (k ∈ N).

Then AB = I, hence AB ∈ Φ(X), but BA /∈ Φ(X). From Theorem 2 we get BA ∈ Φg(X),
hence

i(ÂB̂) = 0 and i(B̂Â) = 1.

3. Poles of the resolvent

Let X be a complex Banach space and A ∈ L(X). We write σ(A), ρ(A) and r(A) for the
spectrum, the resolvent set and the spectral radius of A, respectively. For λ ∈ ρ(A) we denote
the resolvent (λI − A)−1 by Rλ(A).

Let A,B ∈ L(X). In [1, Theorem 9] Barnes shows the following:

An isolated point λ0 ̸= 0 of σ(AB) is a pole of order p of Rλ(AB) if and only if λ0 is a pole
of order p of Rλ(BA).
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In this section we treat the case λ0 = 0. To this end let A ∈ L(X) and suppose that 0 is an
isolated point in σ(A). Define the operator P0 ∈ L(X) by

P0 =
1

2πi

∫
γ

Rλ(A)dλ,

where γ is a small circle surrounding 0 ∈ C and separating 0 from σ(A) \ {0}. Then we have
P 2

0 = P0. P0 is called the spectral projection of A associated with 0. Occasionally we shall denote
it more precisely by P0(A).

In [2] the following is shown:

Proposition 5. Let A ∈ L(X) and p ≥ 1. Then Rλ(A) has a pole of order p at λ = 0 if and
only if A ∈ D(L(X)) and i(A) = p. In this case we have:
(1)

Rλ(A) =
(

Ap−1

λp
+

Ap−2

λp−1
+ · · · + I

λ

)
(I − AC) −

∞∑
n=0

λnCn+1,

in the region 0 < |λ| < r(C)−1, where C is the Drazin inverse of A;
(2) P0(A) = I − AC;
(3) if σ(A) ̸= {0}, then dist (0, σ(A) \ {0}) = r(C)−1.

Example 3. Suppose that H is a complex Hilbert space, A ∈ L(H), A2 = A, 0 ̸= A ̸= I and
B = A∗. Let T = AB and S = BA. Then T and S are selfadjoint, TST = T 2 and STS = S2.
We have 0 ∈ σ(T ) and 0 ∈ σ(S) (indeed, if 0 ∈ ρ(T ) or 0 ∈ ρ(S), then T = S = I, hence
AA∗ = A∗A = I, thus A is unitary, therefore σ(A) ⊆ {λ ∈ C : |λ| = 1}, but since σ(A) = {0, 1},
we get σ(A) = {1}, hence A = I, a contradiction). From

T (S − I)2T = TS2T − 2TST + T 2 = TSTST − T 2

= T 3 − T,

we see that T 3 − T = T (S − I)(T (S − I))∗ ≥ 0. Hence the spectral mapping theorem gives
σ(T ) ⊆ {0}∪ [1,∞). This shows that 0 is an isolated point of σ(T ). It follows from [4, Satz 112]
that 0 is a simple pole of Rλ(T ). The same arguments show that 0 is a simple pole of Rλ(S).
Hence, by Proposition 5, AB, BA ∈ D(L(H)) and

i(AB) = i(BA).

An application of Theorem 1 and Proposition 5 gives our next result:

Theorem 3. Suppose that A,B ∈ L(X), p ≥ 1 and that Rλ(AB) has a pole of order p at λ = 0.
Then:

0 ∈ ρ(BA)
or

Rλ(BA) has a pole of order q at λ = 0,

where q ∈ {p − 1, p, p + 1}.

Corollary 1. Let A,B and p as in Theorem 3. Suppose that 0 ∈ σ(BA), C is the Drazin
inverse of AB and that D is the Drazin inverse of BA. Then D = BC2A,

P0(A) = I − ABC, P0(BA) = I − BCA

and
σ(C) = σ(D).
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Proof. From Theorem 1 we obtain D = BC2A. Use Proposition 5 to derive P0(AB) = I −ABC
and P0(BA) = I − BCA. Since 0 ∈ σ(AB), we have 0 ∈ σ(C). Similar 0 ∈ σ(D). To obtain
σ(D) = σ(C) observe that

σ(D) \ {0} = σ((BC2)A) \ {0} = σ(A(BC2)) \ {0}
= σ(CABC) \ {0} = σ(C) \ {0}.

�

Corollary 2. Let A,B as in Theorem 3.
(1) If Rλ(BA) has a pole of order p at λ = 0, then

BRλ(AB)A = BARλ(BA) for 0 < |λ| < r(C)−1.

(2) If Rλ(BA) has a pole of order p + 1 at λ = 0, then

Rλ(BA) =
1
λ

(I + BRλ(AB)A) for 0 < |λ| < r(C)−1.

Proof. Observe that Dn+1 = (BC2A)n+1 = BCn+1A for n ≥ 0 and that r(C) = r(D) (Corollary
1). The results follow by easy computations, use Proposition 5(1).

�
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