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A NOTE ON COMMUTING POWERS IN BANACH ALGEBRAS

CHRISTOPH SCHMOEGER

Throughout A is a complex unital Banach algebra with unit 1. For a € A the spectrum and
the spectral radius of a are denoted by o(a) and r(a), respectively.

Let m be a positive integer and a € A. We say that o(a) is irrotational (mod 27 /m) (see [1])
if \,u € o(a) and A" = ™ imply that A\ = p.

The main result of this paper reads as follows:

Theorem. Let a,b € A be invertible and let m be a positive integer.

(1) If a™b™ = b™a™ and if o(a) is irrotational (mod 2w /m), then ab™ = b™a.

(2) If a™b™ = b™a™ and if o(a) and o(b) are irrotational (mod 27 /m), then ab = ba.
(3) If a™b™ = (ab)™ = b™a™ and if o(ab) is irrotational (mod 27 /m), then ab = ba.

For the proof of the above result we need some preparations.

If m is a positive integer, let € = e2k™/™ for k = 1,...,m. Then
=1 (k=1,....m), e #1 (k=1,....m—1)
and €, = 1.
If a € A is invertible, define the bounded linear operator T, : A — A by
T.x=atza (ze€A.

Proposition 1. Suppose that a € A is invertible, m is a positive integer and that o(a) is
irrotational (mod 2w /m). Let the bounded linear operator S : A — A be given by

m—1
S=[[T.— e,
k=1

where I denotes the identity operator on A. Then:
(1) S is invertible;
)1 —-I1=1T,-1)S=5S1T,-1).
Proof. (1) We show that T, — eI is invertible for £ = 1,...,m — 1. To this end suppose that
T, — € is not invertible for some k € {1,...,m — 1}. It follows from [1, Proposition 18.9] that
there are A\, 1 € o(a) such that A = egu, hence ™ = 'u™ = ™. Consequently A = p and
therefore €, = 1, a contradiction.
(2) follows from the identity

m—1

At —1=A=-1DJ[r-e) (AeC).
k=1
O

Proposition 2. Let a and m be as in Proposition 1. If x € A and a™x = xa™, then ax = xa.

Proof. From a™x = za™ we get (T)" — I)x = 0. By Proposition 1 we have S(T, — I)x = 0.
Since S is invertible, T,z = = and so ax = xa. O



Proof of the Theorem.
(1) is a consequence of Proposition 2.
(2) By (1), b™a = ab™. Now apply Proposition 2 to b.
(3) We have
a™(ab)™ = a™b"ma™ = b"a™a™ = (ab)™a™
Thus, by Proposition 2, aba™ = a"ab, therefore

ba™ = a taba™ = o ta™ab = a™b,
hence
(ab)™b = a™b™b = ba™b"™ = b(ab)™
Now use Proposition 2 to see that abb = bab. Since b is invertible we derive ab = ba. U

Proposition 3. Let a,b € A and m a positive integer.

(1) If o(a) C [0,00), then o(a) is irrotational (mod 27/m).

(2) If m > 2 and (1 4+ r(a))™ ! < 2, then 1 — a is invertible and o(1 — a) is irrotational
(mod 27 /m).

(3) Suppose that b € A is invertible, a is invertible, o(a) is irrotational (mod 2mw/m) and that
a™ =b". Then ab = ba.

Proof. (1) Clear.

(2) We have r(a) < 1, hence 1 — a is invertible. Now let A\, u € o(1 — a) and A™ = p. There
are a, 3 € o(a) such that A\=1—« and p=1— 3. Then

m

0=(1-a)"—(1-8"=Y (?) (—1)F(a* — g9

k=0

+Z< ) B)hi (s, B)

where (o, B) = (=1)* (@1 +a" 2B+ 4 a2 4+ 551,
Hence |hy(a, B)| < kr(a)k~!. Therefore

mia g1 la =1 () ket = o (Z (%) kr(a)k—l—m>.

k=1

If the function f : R — R is defined by f(z) = (1 + x)™, then f(z) = >, <TZ> z¥, thus
k=0

fl(x) = g < >kxk 1 hence Z <7l?) k=1 = m(1 + 2)m L.

k=1

It follows that
mla = f| < la = Bl(m(1 +r(a)™ ™" —m)
and so
o= Bl < la = BI((L+7(a))™ " = 1)
Now suppose that a # 3. Then
1<(A4r@)™t'-1<2-1=1,

a contradiction. This gives A = pu.

(3) We have
a™b="0b"b="0bb" =ba".
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Now use Proposition 2. O

Examples.
(1) If r(a) < 1, then o(1 — a) is irrotational (mod 27/2).
(2) If r(a) < V2 —1, then o(1 — a) is irrotational (mod 27/3).

Corollary 1. Suppose that a,b € A, o(a) C (0,00), o(b) C (0,00) and that a™b™ = b"a™ for
some positive integer m. Then ab = ba.

Proof. Proposition 3 (1) and Theorem (2). O

Corollary 2. Let A be the Banach algebra of all bounded linear operators on a complex Hilbert
space, let A € A be invertible and let m be a positive integer.

(1) If o(A) is irrotational (mod 27w /m) and if A™ is normal, then A is normal.
(2) If A™(A*)™ = (AA*)™ = (A*)™A™, then A is normal.

Proof. (1) A*is invertible and o(A*) = {\ € C, X € 0(A)}, thus o(A*) is irrotational (mod 27 /m).
Now use part (2) of the Theorem.

(2) Since o(AA*) C (0,00), the result follows from Proposition 3 (1) and part (3) of the Theo-
rem. g

Corollary 3. Suppose that a,b € A, r(a) <1, r(b) <1 and
(1—a)*(1—0)% = (1 -b)2(1 —a)?.
Then ab = ba.
Proof. Example (1) and part (1) of the Theorem. O

The quasi-product x oy of z, y € A is defined by
roy=cr+y—xy.
Given z € A, a quasi-square-root of z is an element z € A with

roxr ==z.

Corollary 4. Leta,be A andaoa="bob.
(1) If r(a) < 1, then ab = ba.
(2) If r(a) <1 and r(b) < 1, then a = b.

Proof. (1) Since aoa = bob, we have (1 —a)? = (1 — b)2. Now 1 — a is invertible, hence 1 — b
is invertible. The result follows from Example (1) and Proposition 3 (3).
(2) By (1), ab = ba. From aoa = bo b we see that

(a=0b)(a+b)=—-2(a—0b),
hence
(a—b)(a+b+21)=0.
Corollary 4.3 in [1] gives r(a + b) < r(a) + r(b) < 2, thus —2 ¢ o(a + b) and so a = b. O

Corollary 5. Let a, b € A and a? = b?.
(1) If r(1 —a) < 1, then ab = ba.
(2) Ifrl—a) <1 andr(l—0b) <1, then a =b.
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Proof. Let@a=1—a,b=1—b. Then
Goa=1—a®> and 1305:1—b2,

thus @oa = b o b. Now use Corollary 4. O

Corollary 6. Suppose that a,b € A, o(a) C (0,00), o(b) C (0,00) and a™ = b"™ for some
positive integer m. Then a =b.

Proof. By Proposition 3 (3), ab = ba. Let ¢ = ab~!. Then ¢™ = 1. Let A € o(c). Corollary 4.3
in [1] gives A = a/f with a € o(a) and § € o(b), hence A > 0. Since X = 1, it follows that
A =1. Thus o(c) = {1}. We have
A" —1=(A—=1)h(N)
with some entire function h such that h(1) # 0. Therefore
0=c"—-1=(c—1)h(c)

and h(c) is invertible. Hence ¢ =1 and so a = b. O
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