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PARTIAL ISOMETRIES ON BANACH SPACES

CHRISTOPH SCHMOEGER

1. Introduction and terminology

Throughout this paper, X shall denote a complex Banach space and L(X)
the algebra of all bounded linear operators on X. For an operator T ∈ L(X)
we write N(T ) for its kernel and T (X) for its range. The spectrum, the
resolvent set and the spectral radius of T ∈ L(X) are denoted by σ(T ), ρ(T )
and r(T ), respectively. The reduced minimum modulus of T is defined by

γ(T ) = inf{∥Tx∥ : dist(x,N(T )) = 1} (γ(T ) = ∞ if T = 0).

It is well known that γ(T ) > 0 if and only if T (X) is closed.
We will say that T ∈ L(X) is relatively regular if there exists an operator
S ∈ L(X) for which

TST = T.

In this case S is called a pseudo inverse of T . If T ∈ L(X) is relatively
regular and S ∈ L(X) such that

TST = T and STS = S,

then S is called a generalized inverse of T . Observe that if S is a pseudo
inverse of T , then S0 = STS is a generalized inverse of T . We recall that
in general a pseudo inverse is not unique, and that T is relatively regular if
and only if N(T ) and T (X) are closed and complemented subspaces of X
(see for instance [4]).

If T ∈ L(X) has a generalized inverse S, then

TS, ST, I − TS and I − ST

are projections and

(TS)(X) = T (X), (ST )(X) = S(X),
(I − ST )(X) = N(T ) and (I − TS)(X) = N(S).

In the following proposition a useful relation between the reduced minimum
modulus and generalized inverses is established. A proof can be found in
[10].
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1.1. Proposition. Let T ∈ L(X), T ̸= 0, and S be a generalized inverse of
T . Then

1
∥S∥

≤ γ(T ) ≤ ∥TS∥ ∥ST∥
∥S∥

.

A bounded linear operator T on a complex Hilbert space is said to be a
partial isometry provided that ∥Tx∥ = ∥x∥ for every x ∈ N(T )⊥, that is,
T ∗ is a generalized inverse of T (i.e. TT ∗T = T ). In this case ∥T∥ ≤ 1 (see
Chapter 13 of [6] for details).

M. Mbekhta has given in [10] the following characterization of partial isome-
tries:

1.2. Theorem. If T is a bounded linear operator on a complex Hilbert space
with ∥T∥ ≤ 1, then the following are equivalent:

(1) T is a partial isometry,

(2) T has a generalized inverse S with ∥S∥ ≤ 1.

Since assertion (2) of the above theorem does not depend on the structure
of a Hilbert space, Theorem 1.2 suggests a definition (due to M. Mbekhta)
of a partial isometry in the algebra of operators on Banach spaces:

1.3. Definition. A bounded linear operator T on a Banach space is called a
partial isometry if T is a contraction and admits a generalized inverse which
is a contraction.

Remarks.

(1) Partial isometries are investigated in [10].
(2) In Definition 1.3, the contractive generalized inverse is in general not

unique (see [10, page 776].
(3) One of the disadvantages of Definition 1.3 is that, in general, an

arbitrary isometry T ∈ L(X) (i.e. ∥Tx∥ = ∥x∥ for all x ∈ X) does
not need to be a partial isometry (indeed an isometry may not have
generalized inverse), but we have the following result ([10, Corollary
4.3]):

An isometry T ∈ L(X) is a partial isometry, in the sense of Defi-
nition 1.3, if and only if there exists a projection onto T (X) of norm
1.

There are certain Banach spaces (other than Hilbert spaces) in
which all isometries are “partial”, including Lp(µ) (1 ≤ p ≤ ∞), as
shown in [1] and [3].

(4) If T ∈ L(X) is a partial isometry and S is a contractive generalized
inverse of T , then

X = S(X) ⊕ N(T )

and

∥Tx∥ = ∥x∥ for every x ∈ S(X).
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Indeed, we have X = (ST )(X) ⊕ (I − ST )(X) = S(X) ⊕ N(T ).
Furthermore, suppose x = Sy ∈ S(X). Then

∥x∥ = ∥Sy∥ = ∥STSy∥ ≤ ∥S∥ ∥TSy∥ = ∥Tx∥ ≤ ∥T∥ ∥x∥ ≤ ∥x∥,

thus ∥Tx∥ = ∥x∥.

1.4. Proposition. If T ∈ L(X) is a non-zero partial isometry and S is a
contractive generalized inverse of T , then

∥T∥ = ∥S∥ = ∥TS∥ = ∥ST∥ = γ(T ) = 1

Proof. ∥T∥ = ∥TST∥ ≤ ∥T∥∥S∥ ∥T∥ ≤ ∥T∥ ∥S∥ implies ∥S∥ ≥ 1, and so
∥S∥ = 1. Since (TS)2 = TS and TS ̸= 0, 1 ≤ ∥TS∥ ≤ ∥T∥ ∥S∥ ≤ 1, thus
∥TS∥ = 1. The same arguments give ∥T∥ = ∥ST∥ = 1. Finally we obtain
γ(T ) = 1, by Proposition 1.1. �

The next result is shown in [10, Proposition 4.2]:

1.5. Proposition. For T ∈ L(X) the following conditions are equivalent:
(1) T is a partial isometry;
(2) there are two projections P and Q such that P (X) = T (X), N(Q) =

N(T ), ∥P∥ = ∥Q∥ = 1 and

∥TQx∥ = ∥Qx∥ for every x ∈ X.

Examples.
(1) If P ∈ L(X) is a projection and P ̸= 0, then P is a partial isometry

if and only if ∥P∥ = 1.
(2) Let T be the bounded operator on the Banach space l1(N) defined

by

T (x1, x2, x3, . . . ) = (x2, x3, . . . ).

Let the operator S on l1(N) be given by

S(x1, x2, x3, . . . ) = (0, x1, x2, . . . ),

then it is easy to see TST = T and STS = S. Since ∥T∥ = ∥S∥ = 1,
T is a partial isometry.

2. Spectral properties of partial isometries

In this section we always assume that T ∈ L(X) is a non-zero partial isom-
etry and that S is a contractive generalized inverse of T . Recall that then
∥T∥ = ∥S∥ = 1.

Let D = {λ ∈ C : |λ| < 1} and D = {λ ∈ C : |λ| ≤ 1}. By L(X)−1 we
denote the group of all invertible operators in L(X).

2.1. Proposition. If T ∈ L(X)−1 then S = T−1 and

σ(T ) ⊆ ∂ D.
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Proof. Since T ∈ L(X)−1 and TST = T , it follows that ST = I and TS = I.
Hence 0 ∈ ρ(T ). Now let λ ∈ C and 0 < |λ| < 1. Then |λ|−1 > ∥S∥ ≥ r(S),
thus λ−1 ∈ ρ(S). Therefore we get from

(1/λ I − S) (−λT ) = λI − T,

that λI − T ∈ L(X)−1, hence λ ∈ ρ(T ). This shows that D ⊆ ρ(T ). Since
λ ∈ ρ(T ) if |λ| > 1 = ∥T∥, we derive that σ(T ) ⊆ ∂ D. �

An operator U ∈ L(X) is called decomposably regular if U is relatively
regular and admits a pseudo inverse V ∈ L(X)−1.

A proof of the next result can be found in [7, Chapter 3.8].

2.2. Proposition. Suppose that U ∈ L(X) is relatively regular. Then the
following assertions are equivalent:

(1) U is decomposably regular;
(2) N(U) and X/U(X) are isomorphic;
(3) there are P, V ∈ L(X) such that P 2 = P, V ∈ L(X)−1 and U = V P ;
(4) there are Q, W ∈ L(X) such that Q2 = Q, W ∈ L(X)−1 and U =

QW .

Examples.
(1) Each projection P ∈ L(X) is decomposably regular, since P = PIP .
(2) Proposition 2.2 (2) shows that if dimX < ∞, then each operator on

X is decomposably regular.
(3) For U ∈ L(X) let α(U) = dimN(U) and β(U) = codimU(X). U is

called a Fredholm operator if α(U) < ∞ and β(U) < ∞. In this case

ind(U) = α(U) − β(U)

is called the index of U . It follows from [8, §74] that a Fredholm
operator U is relatively regular and Proposition 2.2 (2) shows that

U is decomposably regular ⇐⇒ ind(U) = 0.

(4) In [14, Theorem 2.1] we have shown that an operator U is an interior
point of the set of all decomposably regular operators if and only if
U is a Fredholm operator with ind(U) = 0.

2.3. Theorem.
(1) If D∩ρ(S) ̸= ∅ or D∩ρ(T ) ̸= ∅, then T and S are both decomposably

regular.
(2) Suppose that T is not decomposably regular, then

σ(T ) = σ(S) = D.

Proof. (1) Assume that D ∩ ρ(S) ̸= ∅. Take λ0 ∈ D ∩ ρ(S). Then ∥λ0T∥ =
|λ0|∥T∥ = |λ0| < 1, thus λ0T − I ∈ L(X)−1. Since λ0I − S ∈ L(X)−1, the
operator

R = (λ0T − I)−1 (λ0I − S) ∈ L(X)−1.

From

(λ0T − I)ST = λ0TST − ST = λ0T − ST = (λ0I − S)T
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we see that

ST = (λ0T − I)−1 (λ0I − S)T = RT,

hence T = T (ST ) = TRT . Therefore T is decomposably regular. On the
other hand

S = (ST )S = RTS = R(TS),

thus, by Proposition 2.2 (3), S is decomposably regular.
If D ∩ ρ(T ) ̸= ∅, the same arguments show that T and S are decomposably
regular.

(2) By (1) we must have D ⊆ σ(T ) and D ⊆ σ(S). Since the spectrum of
an operator is always closed, we derive D ⊆ σ(T ) and D ⊆ σ(S). From
∥T∥ = ∥S∥ = 1, we see that σ(T ), σ(S) ⊆ D. �
2.4. Corollary.

(1) If r(T ) < 1 or r(S) < 1 then both T and S are decomposably regular.
(2) If T is a Fredholm operator and ind(T ) ̸= 0, then

σ(T ) = σ(S) = D .

Remark. Since each projection with norm 1 is a partial isometry and de-
composably regular we see that in general the implication in Corollary 2.4
(1) cannot be reversed.

2.5. Corollary. Suppose that T is not decomposably regular. Then

{r(R) : R is a pseudo inverse of T} = [1,∞).

Proof. Let M = {r(R) : R is a pseudo inverse of T} and α = inf M . Assume
that α < 1. Hence there is R ∈ L(X) such that TRT = T and r(R) < 1.
Take a complex number λ0 with r(R) < |λ0| < 1. Then λ0 ∈ ρ(R) and
λ−1

0 ∈ ρ(T ), since r(T ) = 1, by Theorem 2.3 (2). Therefore

V = (λ0T − I) (λ0I − R) ∈ L(X)−1.

As in the proof of Theorem 2.3 (1) we conclude that TV T = T , thus T
is decomposably regular, a contradiction. Therefore α ≥ 1. Theorem 2.3
(1) shows that r(S) = 1, hence 1 = min M , thus M ⊆ [1,∞). Now take
β ∈ [1,∞). Since T ̸∈ L(X)−1, TS ̸= I or ST ̸= I. Then it follows from [12,
Corollary 4] that there is a pseudo inverse B of T with r(B) = β. Hence
β ∈ M , and so M = [1,∞). �
2.6. Proposition. Suppose that T ̸∈ L(X)−1. Then

{∥R∥ : R is a pseudo inverse of T} = [1,∞).

Proof. Let M = {∥R∥ : R is a pseudo inverse of T}. If R ∈ L(X) and
TRT = T , then 1 = ∥T∥ = ∥TRT∥ ≤ ∥T∥2∥R∥ = ∥R∥, thus M ⊆ [1,∞).
Theorem 4 in [12] shows that [∥S∥,∞) ⊆ M . Since ∥S∥ = 1, we get M =
[1,∞). �
Now we introduce a further class of relatively regular operators: an operator
U ∈ L(X) is called holomorphically regular if there is a neighbourhood
Ω ⊆ C of 0 and a holomorphic function F : Ω → L(X) such that

(U − λI) F (λ) (U − λI) = U − λI for all λ ∈ Ω.
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2.7. Proposition. For U ∈ L(X) the following assertions are equivalent:
(1) U is holomorphically regular;

(2) U is relatively regular and N(U) ⊆
∞∩

n=1

Un(X).

Proof. cf. [13, Theorem 1.4]. �

Examples.

(1) If U ∈ L(X) is right or left invertible in L(X), then U is holomor-
phically regular. Indeed, suppose that V is a right inverse of U ,
thus UV = I. It follows that UnV n = I for all n ∈ N. Hence
1 ≤ ∥Un∥1/n∥V n∥1/n for all n ∈ N, and so 1 ≤ r(U)r(V ), thus
r(U) ̸= 0 ̸= r(V ). Let Ω = {λ ∈ C : |λ| < r(V )−1} and F (λ) =
V (I − λV )−1 (λ ∈ Ω). Then it it easy to see that

(U − λI) F (λ) (U − λI) = U − λI

for every λ ∈ Ω.
Similar arguments show that U is holomorphically regular if U is left
invertible.

(2) Let U ∈ L(X) be a Fredholm operator, then it is well-known that
there is ρ > 0 such that U − λI is a Fredholm operator for |λ| < ρ
and that there are non-negative integers α0 and β0 such that

α0 = α(U − λI) ≤ α(U), β0 = β(U − λI) ≤ β(U) for 0 < |λ| < ρ.

It is shown in [15] that U is holomorphically regular if and only if

α(U − λI) = α(U) and β(U − λI) = β(U) for |λ| < ρ.

We say that U ∈ L(X) is holomorphically decomposably regular if there is a
neighbourhood Ω ⊆ C of 0 and a holomorphic function F : Ω → L(X) such
that F (λ) ∈ L(X)−1 for all λ ∈ Ω and

(U − λI) F (λ) (U − λI) = U − λI for all λ ∈ Ω.

2.8. Theorem. If T is holomorphically regular and if T ̸∈ L(X)−1, then

(1) σ(T ) = D and r(S) = 1;
(2) if F (λ) = (I − λS)−1S for λ ∈ D, then

(T − λI) F (λ) (T − λI) = T − λI

and

F (λ) (T − λI) F (λ) = F (λ)

for every λ ∈ D;
(3) if D ∩ ρ(S) ̸= ∅, then S is decomposably regular and T is holomor-

phically decomposably regular;
(4) for each n ∈ N, Tn is a non-zero partial isometry and a contractive

generalized inverse of Tn is given by SnTnSn.
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Proof. (1) Let Ω = {λ ∈ C : |λ|r(S) < 1} and F (λ) = (I − λS)−1S. We
have shown in [13, Corollary 1.5] that

(T − λI) F (λ) (T − λI) for λ ∈ Ω.(∗)

Now take λ0 ∈ Ω and assume that λ0 ∈ ρ(T ). By (∗), F (λ0) = (T −λ0I)−1,
thus

S(I − λ0S)−1 = (I − λ0S)−1S = (T − λ0I)−1,

therefore S(T − λ0I) = (T − λ0I)S = I − λ0S, and so TS = ST = I, a
contradiction, since T ̸∈ L(X)−1. Hence we have shown that Ω ⊆ σ(T ).
Since σ(T ) is bounded, r(S) > 0, r(T ) > 0 and

Ω = {λ ∈ C : |λ| ≤ 1
r(S)

} ⊆ σ(T ) ⊆ D.

¿From this it follows that r(S) ≥ 1, consequently r(S) = 1 and σ(T ) = D.

(2) The proof of (1) shows that Ω = D and that

(T − λI) F (λ) (T − λI) = T − λI for λ ∈ D.

Now take λ ∈ D. Then

F (λ) (T − λI) F (λ) = (I − λS)−1 (ST − λS) F (λ)
= (I − λS)−1 (I − λS − (I − ST ))F (λ)
= (I − (I − λS)−1 (I − ST ))S(I − λS)−1

= F (λ) − (I − λS)−1 (I − ST )S︸ ︷︷ ︸
= 0

(I − λS)−1

= F (λ).

(3) Theorem 2.3 (1) shows that T and S are decomposably regular. Take
R ∈ L(X) with TRT = T and R ∈ L(X)−1. As in the proof of (1), r(R) > 0.
Let Ω0 = {λ ∈ C : |λ| < r(R)−1} and G(λ) = (I − λR)−1R for λ ∈ Ω0.
Then G(λ) ∈ L(X)−1 for λ ∈ Ω0 and as above

(T − λI) G(λ) (T − λI) = T − λI (λ ∈ Ω0).

(4) By Proposition 9 in [12], TnSnTn = Tn for all n ∈ N. Let Sn =
SnTnSn (n ∈ N). Then

TnSnTn = Tn and SnTnSn = Sn (n ∈ N).

Since r(T ) = 1, Tn ̸= 0. Furthermore we have ∥Tn∥ ≤ ∥T∥n = 1 and
∥Sn∥ ≤ ∥S∥n ∥T∥n ∥S∥n = 1. �

For U ∈ L(X) let σp(U) denote the set of eigenvalues of U .

2.9. Corollary. Suppose that T is right or left invertible but not invertible.

(1) σ(T ) = σ(S) = D;
(2) if T is right invertible, then D ⊆ σp(T ) and D ∩ σp(S) = ∅;
(3) if T is left invertible, then D ⊆ σp(S) and D ∩ σp(T ) = ∅.
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Proof. (1) If T is right (left) invertible, then S is left (right) invertible, hence
T and S are holomorphically regular. Theorem 2.8 (1) gives the result.

(2) Let R ∈ L(X) with TR = I. From TST = T we derive I = TR =
TSTR = TS. Let λ ∈ D. Then (T−λI) S(I−λS)−1 = (I−λS) (I−λS)−1 =
I and N(T − λI) = (I − S(I − λS)−1 (T − λI))(X). Since λ ∈ σ(T ), I −
S(I − λS)−1 (T − λI) ̸= 0, therefore N(T − λI) ̸= {0}. If Sx = λx for some
x ∈ X, then x = TSx = λTx, hence Tx = λ−1x. Since |λ−1| > 1 = r(T ),
we derive x = 0, thus λ ̸∈ σp(S).

(3) Similar. �
2.10. Corollary. If T is holomorphically regular and T ̸∈ L(X)−1 then

{r(R) : R is a pseudo inverse of T} = [1,∞).

Proof. Let M = {r(R) : R ∈ L(X) and TRT = T} and α = inf M . If
R ∈ L(X) and TRT = T , then, by [12, Proposition 9],

TnRnTn = Tn (n ∈ N),

thus ∥Tn∥1/n ≤ ∥Tn∥2/n∥Rn∥1/n for n ∈ N. This gives, since r(T ) = 1
(Theorem 2.8 (1)),

1 = r(T ) ≤ r(T )2 r(R) = r(R),

thus α ≥ 1. By Theorem 2.8 (1), r(S) = 1, hence α = 1 = min M , and so
M ⊆ [1,∞). Now proceed as in the proof of Corollary 2.5 to derive that
[1,∞) ⊆ M . �

3. Partial isometries with an index

Recall that for an operator U ∈ L(X), the dimension of N(U) is denoted by
α(U) and the codimension of U(X) is denoted by β(U). If α(U) and β(U)
are not both infinite, we say that U has an index. The index ind(U) is then
defined by

ind(U) = α(U) − β(U),
with the understanding, that for any real number r,

∞− r = ∞ and r −∞ = −∞
(we agree to let −(−∞) = ∞).

We say that U ∈ L(X) is a semi-Fredholm operator, if U(X) is closed and
U has an index.

Observe that if T ∈ L(X) is a partial isometry with an index, then T is
semi-Fredholm.

We write SF(X) for the set of all semi-Fredholm operators on X (see [5] or
[8] for properties of this class of operators).

3.1. Proposition. Let T ∈ L(X) be a non-zero partial isometry and U ∈
L(X).

(1) If α(T ) < α(U) then ∥T − U∥ ≥ 1.
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(2) If U has closed range and β(T ) < β(U) then ∥T − U∥ ≥ 1.

Proof. (1) By Lemma V.1.1 in [5] there is x ∈ N(U) such that 1 = ∥x∥ =
dist(x,N(T )), hence, by Proposition 1.4,

1 = γ(T ) ≤ ∥Tx∥ = ∥Tx − Ux∥ ≤ ∥T − U∥ ∥x∥ = ∥T − U∥.
(2) We denote by X∗ the dual space of X and by R∗ the adjoint of R ∈
L(X). By [5, Theorem IV.2.3], β(T ) = α(T ∗) and β(U) = α(U∗), therefore
α(T ∗) < α(U∗). Since T ∗ is a non-zero partial isometry, it follows from (1)
that 1 ≤ ∥T ∗ − U∗∥ = ∥T − U∥. �
3.2. Corollary. If T1 and T2 are partial isometries on X and if ∥T1−T2∥ <
1, then

α(T1) = α(T2) and β(T1) = β(T2).

Proof. If T1 = 0, then ∥T2∥ < 1, hence T2 = 0 (since T2 is partial isometry)
and we are done. So we can assume that T1 ̸= 0. ¿From Proposition 3.1 we
derive (let T = T1 and U = T2) that α(T1) ≥ α(T2) and β(T1) ≥ β(T2). By
symmetry we also get α(T2) ≥ α(T1) and β(T2) ≥ β(T1). �
Remark. Corollary 3.2 generalizes [6, Problem 101].

In the following proposition we collect some properties of semi-Fredholm
operators.

3.3. Proposition. Let U ∈ L(X).
(1) If U is relatively regular and V is a generalized inverse of U , then

α(V ) = β(U) and β(V ) = α(U).

Furthermore,

U ∈ SF(X) ⇐⇒ V ∈ SF(X)

and in this case
ind(U) = −ind(V ).

(2) If U ∈ SF(X) then

U − λI ∈ SF(X) and ind(U − λI) = ind(U)

for all λ ∈ C with |λ| < γ(U) and there are integers α0 and β0 such
that

α0 = α(U − λI) ≤ α(U) and β0 = β(U − λI) ≤ β(U)

for λ ∈ C with 0 < |λ| < γ(U).
(3) If U is a relatively regular semi-Fredholm operator, then U is holo-

morphically regular if and only if

α(U − λI) = α(U) and β(U − λI) = β(U)

for all λ ∈ C with |λ| < γ(U).

Proof. (1) Since

X = (UV )(X) ⊕ (I − UV )(X) = U(X) ⊕ N(V )

and
X = (V U)(X) ⊕ (I − V U)(X) = V (X) ⊕ N(U),

the result follows.
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(2) is shown in [5, Theorem V.1.6] and a proof of (3) is given in [15]. �

3.4. Corollary. Suppose that T is a holormorphically regular partial isome-
try with an index and that S is a contractive generalized inverse of T . Then:

(1) T − λI ∈ SF(X) and

α(T − λI) = α(S) and β(T − λI) = β(S)

for each λ ∈ D.
(2) σ(T ) = σ(S) = D if T /∈ L(X)−1.

Proof. (1) Since T ∈ SF(X), T ̸= 0. Thus γ(T ) = 1, by Proposition 1.4.
The assertions follow now from Proposition 3.3.
(2) If T /∈ L(X)−1, then S /∈ L(X)−1, hence (1) shows that α(T − λI) > 0
for all λ ∈ D or β(T − λI) > 0 for all λ ∈ D. Therefore D ⊆ σ(T ), and so
σ(T ) = D. By symmetry, we also derive σ(S) = D. �

3.5. Corollary. Let T1 and T2 be partial isometries such that ∥T1−T2∥ < 1.
(1) T1 ∈ SF(X) ⇐⇒ T2 ∈ SF(X).
(2) If T1 ∈ SF(X) and ind(T1) ̸= 0, then

T1 − λI, T2 − λI ∈ SF(X)

and
ind(T1 − λI) = ind(T2 − λI) ̸= 0

for all λ ∈ D.
Furthermore

σ(T1) = σ(T2) = D.

Proof. (1) follows from Corollary 3.2.
(2) Use (1), Corollary 3.2 and Proposition 3.3 (2). �

3.6. Corollary. Suppose that T is a partial isometry with an index ind(T ) ̸=
0. Then

∥T − S∥ ≥ 1

for each contractive generalized inverse S of T .

Proof. Assume to the contrary that S is a contractive generalized inverse
of T such that ∥T − S∥ < 1. Proposition 3.3 (1) shows that S ∈ SF(X)
and ind(S) = −ind(T ). But ind(S) = ind(T ), by Corollary 3.5. Hence
ind(T ) = 0, a contradiction. �

Remark. The condition ind(T ) ̸= 0 in Corollary 3.6 can not be dropped
without changing the conclusion. Indeed, if P ∈ L(X) is a projection with
∥P∥ = 1 and α(P ) < ∞, then P is a partial isometry. ¿From X = P (X) ⊕
N(P ) we see that α(P ) = β(P ) < ∞, thus ind(P ) = 0. But there is a
contractive generalized inverse S with ∥P − S∥ < 1: take S = P .

3.7. Corollary. If T is a partial isometry with an index ind(T ) ̸= 0 on a
Hilbert space, then ∥T − T ∗∥ ≥ 1.
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4. Orthogonality and Moore-Penrose inverses

Recall that a bounded linear operator T on a Hilbert space H is a partial
isometry if and only if TT ∗T = T . In this case the ranges of T and T ∗ are
closed, hence

N(T )⊥ = T ∗(H) and N(T ∗)⊥ = T (H).(∗)
Furthermore T has a unique contractive generalized inverse S = T ∗ (see [10,
Corollary 3.3]).

Now let x and y be vectors in a Banach space X. Following R. C. James
[9], we say that x and y are orthogonal if

∥x∥ ≤ ∥x + αy∥ for each α ∈ C.

In this case we write x⊥y. For M, N ⊆ X we define the relation M⊥N by
x⊥y for all x ∈ M and all y ∈ N .

For our next result recall that if T is a non-zero partial isometry on the
Banach space X and if S is a contractive generalized inverse of T , then
∥T∥ = ∥S∥ = ∥TS∥ = ∥ST∥ = 1 and

S(X) ⊕ N(T ) = X = T (X) ⊕ N(S).

4.1. Theorem. Let T ∈ L(X) be a non-zero partial isometry and S a
contractive generalized inverse of T .

(1) If N(T ) ̸= {0}, then

N(T )⊥S(X) ⇐⇒ ∥I − ST∥ = 1.

(2) If N(S) ̸= {0}, then

N(S)⊥T (X) ⇐⇒ ∥I − TS∥ = 1.

Proof. (1) First suppose that N(T )⊥S(X). Let x ∈ X. Then x = u + v
with u ∈ S(X) and v ∈ N(T ). Hence

(I − ST )x = (I − ST )u + v = v.

Since v⊥u, we derive

∥(I − ST )x∥ = ∥v∥ ≤ ∥u + v∥ = ∥x∥.
Therefore ∥I−ST∥ ≤ 1. Since I−ST is a non-zero projection, ∥I−ST∥ ≥ 1,
and so ∥I − ST∥ = 1.

Now assume that ∥I − ST∥ = 1. Take x ∈ S(X) and y ∈ N(T ). Then, for
all α ∈ C,

∥y∥ = ∥(I − ST )(y + αx) ≤ ∥I − ST∥ ∥y + αx∥ = ∥y + αx∥.
(2) can be proved analogously. �

An operator U ∈ L(X) is called hermitian if ∥ exp(itU)∥ = 1 for every real
numbert t.

Let T ∈ L(X) be a relatively regular operator. We will say that an operator
T+ ∈ L(X) is the Moore-Penrose inverse of T if T+ is a generalized inverse
of T and the projections TT+ and T+T are hermitian.
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4.2. Proposition.
(1) If U, V ∈ L(X) are hermitian and α, β ∈ R, then αU + βV is her-

mitian.
(2) If U ∈ L(X) is hermitian, then ∥U∥ = r(U).
(3) If P ∈ L(X) is a hermitian projection then ∥P∥ = 0 or ∥P∥ = 1.
(4) If T ∈ L(X) is relatively regaular, then T has at most one Moore-

Penrose inverse.

Proof. (1) follows from [2, Lemma 38.2].
(2) is shown in [2, Theorem 11.17].
(3) If P ̸= 0, then 1 ∈ σ(P ) ⊆ {0, 1}, thus r(P ) = 1, hence ∥P∥ = 1, by (2).
(4) is shown in [11]. �
The following class of partial isometries is introduced in [10]:

Let T ∈ L(X) be a partial isometry. T is called an MP-partial isometry if
T admits a contractive Moore-Penrose inverse.

Remarks.
(1) Every hermitian projection is an MP-partial isometry.
(2) If T is an MP-partial isometry, then T is a partial isometry in the

sense of Definition 1.3. Moreover, these two notions are equivalent
in the case of a Hilbert space, since T+ = T ∗, by Proposition 4.2
(4).

4.3. Corollary. Let T ∈ L(X) be a non-zero MP-partial isometry. Then

N(T )⊥T+(X) and N(T+)⊥T (X) .

Proof. If N(T ) = {0} or N(T+) = {0}, then there is nothing to prove. So
we assume that N(T ) ̸= {0} and N(T+) ̸= {0}, hence T (X) ̸= X ̸= T+(X).
Let P = I−TT+ and Q = I−T+T . Thus P and Q are non-zero projections.
Since TT+ and T+T are hermitian, P and Q are hermitian, by Proposition
4.2 (1). Because of Proposition 4.2 (3) we derive that ∥P∥ = ∥Q∥ = 1. The
result follows now from Theorem 4.1. �
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