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SPECTRAL RADII OF GENERALIZED INVERSES OF SIMPLY POLAR
MATRICES

GERD HERZOG AND CHRISTOPH SCHMOEGER

Abstract. In this note we study the spectral radii of generalized inverses of square matrices A such
that rank (A) = rank (A2).

1. General and introductory material

For positive integers n and m, Cn×m denotes the vector space of all complex n × m matrices.
Let A ∈ Cn×n be a square matrix. A matrix C ∈ Cn×n is called a g1-inverse of A if

ACA = A .

If B ∈ Cn×n and

ABA = A and BAB = B ,

then B is called a g2-inverse of A. By G1(A) we denote the set of all g1-inverses of A. G2(A) is the set
of all g2-inverses of A. It is well-known that G1(A) ̸= ϕ (see [1]). Furthermore it is easy to see that if
C ∈ G1(A), then B = CAC ∈ G2(A), hence

ϕ ̸= G2(A) ⊆ G1(A) .

If A is non-singular, then G2(A) = G1(A) = {A−1}.

For A ∈ Cn×n we denote the set of eigenvalues of A by σ(A) and the spectral radius r(A) of A is defined
by

r(A) = max
λ∈σ(A)

|λ| .

Let A ∈ Cn×m. AT denotes the transpose of A and A∗ denotes the conjugate transpose of A. The range
of A is given by

R(A) = {Ax : x ∈ Cn}
and the kernel of A is the set

N (A) = {x ∈ Cn : Ax = 0}
(we follow the convention Cn = Cn×1).

In this note we study the set

RA = {r(C) : C ∈ G1(A)}
for A ∈ Cn×n such that rank (A) = rank (A2), where rank (A) = dimR(A). Such matrices are called
simply polar.

Examples. If A is non-singular, then RA = {r(A)−1}. If A = 0, then ACA = A for each C ∈ Cn×n,
hence RA = [0,∞).
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Throughout this paper we will assume that n ≥ 2. The identity on Cn is denoted by In.

1.1. Proposition. If A ∈ Cn×n and B ∈ G2(A), then

G1(A) = {B + T − BATAB : T ∈ Cn×n}

Proof. [1, Theorem 2 in Chapter 2.3]. �

It follows from Proposition 1.1, that if A is singular, then G1(A) is an infinite set. In [6], the following
result is shown:

1.2. Proposition. Suppose that A ∈ Cn×n is singular. We have:
(1) for each z ∈ C, there is B ∈ G1(A) with z ∈ σ(B);
(2) if B ∈ G2(A), then

B + z(In − BA), B + z(In − AB) ∈ G1(A)

for all z ∈ C and

r(B + z(In − BA)) = r(B + z(In − AB)) =

 r(B), if |z| ≤ r(B)

|z|, if |z| > r(B);

(3) [r(B),∞) ⊆ RA for each B ∈ G2(A).

1.3. Proposition. Suppose that A ∈ Cn×n, r = rank (A) > 0 and that A has a decomposition

A = U

 D 0

0 0

V −1

with U, V ∈ Cn×n non-singular and D ∈ Cr×r non-singular. Then

B = V

 D−1 0

0 0

U−1 ∈ G2(A)

and

G1(A) =

V

 D−1 A1

A2 A3

 U−1 : A1 ∈ Cr×(n−r), A2 ∈ C(n−r)×r, A3 ∈ C(n−r)×(n−r)

 .

Proof. It is easy to verify that B ∈ G2(A). Let T ∈ Cn×n, let φ(T ) = V −1TU and set B0 := B + T −
BATAB. Then

B0 = V

 D−1 0

0 0

U−1 + T − V −1

 Ir 0

0 0

φ(T )

 Ir 0

0 0

U−1

= V

 D−1 0

0 0

 + φ(T ) −

 Ir 0

0 0

φ(T )

 Ir 0

0 0

U−1

= V

 D−1 A1

A2 A3

U−1 .

Since the mapping φ : Cn×n → Cn×n is bijective, the result follow from Proposition 1.1. �

Recall that a matrix A ∈ Cn×n is called simply polar if rank (A) = rank (A2).
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1.4. Proposition. Let A ∈ Cn×n be singular. The following assertions are equivalent:
(1) A is simply polar;
(2) 0 is a simple pole of the resolvent (λIn − A)−1;
(3) Cn = R(A) ⊕ N (A);
(4) there is B ∈ G2(A) such that AB = BA.

Proof. [3, Satz 72.4], [3, Satz 101.2] and [1, Theorem 5.2]. �

If A ∈ Cn×n is simply polar, then, by Proposition 1.4, there is B ∈ Cn×n such that ABA = A,BAB = B
and AB = BA. It is shown in [1, Theorem 5.1], that there is no other g2-inverse of A which commutes
with A. B is called the Drazin-inverse of A. The following result is shown in [1, p. 53].

1.5. Proposition. If A ∈ Cn×n, A ̸= 0 and if A is simply polar, then the Drazin-inverse B of A satisfies

σ(B) \ {0} =
{

1
λ

: λ ∈ σ(A) \ {0}
}

and hence r(B) = r(A)−1.

2. Generalized inverses of simply polar matrices

Throughout this section we assume that A ∈ Cn×n is simply polar and that rank (A) > 0.

By [5, 4.3.2 (4)] (see also [4]), A has a decomposition

A = U

 D 0

0 0

U−1 ,(2.1)

wher U ∈ Cn×n and D ∈ Cr×r are non singular. From Proposition 1.3 we know that

B = U

 D−1 0

0 0

 U−1 ∈ G2(A) .(2.2)

It is easy to see that the matrix B in (2.2) is the Drazin-invers of A.

2.1. Theorem. The following assertions are equivalent:
(1) dimN (A) ≥ rank (A).
(2) there is B ∈ G2(A) with B2 = 0.

A consequence of Theorem 2.1 is:

2.2. Corollary. If dim N (A) ≥ rank (A), then there is an entire function F : C → Cn×n such that

F (z) ∈ G1(A), σ(F (z)) = {z, 0} and r(F (z)) = |z| for all z ∈ C .

Furthermore we have RA = [0,∞).

Proof. By Theorem 2.1, there is B ∈ G2(A) with B2 = 0. Define F by F (z) = B + z(In − AB). Then
F (z) ∈ G1(A) for each z ∈ C (Proposition 1.2). [6, Theorem 3] gives

{z} ⊆ σ(F (z)) ⊆ {z, 0} (z ∈ C) .

Assume that F (z) is non-singular for some z ∈ C. Thus there is C ∈ Cn×n with F (z)C = In. Since
BF (z) = 0, we get 0 = BF (z)C = B, thus A = ABA = 0, a contradiction. �
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Proof of Theorem 2.1. Let r = rank (A).
(1) ⇒ (2): Proposition 1.4 (3) shows that n − r = dim N (A) ≥ r.
Case 1: n − r = r. Let D be as in (2.1) and let

S =

 D−1 D−1

−D−1 −D−1

 and B = USU−1 .

Then it is easy to see B ∈ G2(A) and B2 = 0.
Case 2: n − r > r. Then r < n/2.
Case 2.1: n = 2m for some m ∈ N. Let

T =

 D−1 0

0 0

 ∈ Cm×m, S =

 T T

−T −T

 ∈ Cn×n

and B = USU−1. Then B ∈ G2(A) and B2 = 0.
Case 2.2: n = 2m + 1 for some m ∈ N. Then r < m. Set

T =

 D−1 0

0 0

 ∈ Cm×m, S =


T T

−T −T

0
...
0

0 · · · · · · · · · 0 0

 ∈ Cn×n

and B = USU−1. As above, B ∈ G2(A) and B2 = 0.
(2) ⇒ (1): Since B2 = 0, A is singular. We have (BA)2 = BA, R(BA) = R(B), N (A) = R(I −
BA), R(AB) = R(A), (AB)2 = AB and

Cn = R(B) ⊕ N (A) ,

thus, by Proposition 1.4 (3), rank (B) = r = rank (A). Now let z ∈ R(A)∩R(B). Then z = ABz = BAz,
therefore z = AB2Az = 0. This gives R(A) ∩ R(B) = {0}. Since

R(A) ⊕ R(B) ⊆ Cn ,

we derive 2r ≤ n, hence rank (A) = r ≤ n − r = dim N (A). �

A square matrix D is said to be non-derogatory if its characteristic polynomial is also its minimal poly-
nomial.

2.3. Theorem. Suppose that rank (A) = rank (A2) = n − 1, let D be as in (2.1) and suppose that D is
non-derogatory. Then A has a nilpotent g1-inverse and hence min RA = 0.

Proof. Since D−1 is also non-derogatory, it follows from [2, Theorem 3.4] that there are a1 ∈ Cn−1,
a2 ∈ Cn−1 and a3 ∈ C such that

S =

 D−1 a1

aT
2 a3

 is nilpotent ,

hence Sq = 0 for some positive integer q. Let B = USU−1. Then Bq = 0. By Proposition 1.3,
B ∈ G1(A). �

A matrix N ∈ Cn×n is called normal if NN∗ = N∗N . The spectral theorem for normal matrices implies
that

N = U

 D 0

0 0

U∗ ,(2.3)

with U ∈ Cn×n unitary (that is UU∗ = U∗U = In) and D = diag (λ1, . . . , λr), where λ1, . . . , λr are the
non-zero eigenvalues of N . It follows (see [5, 4.3.2 (4)]) that N is simply polar.
Now suppose that rank (N) = n − 1. If λi ̸= λj (i ̸= j; i, j = 1, . . . , n − 1) then the matrix D in (2.3) is
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non-derogatory.

Thus we have proved:

2.4. Corollary. If N ∈ Cn×n is normal, rank (N) = n − 1 and if λi ̸= λj (i ̸= j; i, j = 1, . . . , n − 1) for
the non-zero eigenvalues of N , then there is a nilpotent g1-inverse of A.

3. The case n = 2

3.1. Proposition. If A ∈ C2×2 and A2 = 0, then there is B ∈ G2(A) such that B2 = 0.

Proof. The Schur decomposition of A is

A = U

 0 α

0 0

U∗ ,

where U ∈ C2×2 is unitary and α ∈ C (see [5, 5.2.3 (1)]. If α = 0, we are done. So assume that α ̸= 0.
Let

B = U

 0 0

α−1 0

U∗ .

then it is easy to see that B ∈ G2(A) and B2 = 0. �

3.2. Theorem. Suppose that A ∈ C2×2 is singular. Then there is B ∈ G2(A) with B2 = 0 and hence
RA = [0,∞).

Proof. Because of Proposition 3.1, we assume that A2 ̸= 0. Since A is singular, we have rank (A) =
rank (A2) = 1, A is simply polar and dim N (A) = rank (A). Theorem 2.1 gives the result. �

4. Generalized inverses of projections

In this section we assume that P ∈ Cn×n, 0 ̸= P ̸= In and P 2 = P . Hence P is simply polar.

Since R(P ) = {x ∈ Cn : Px = x}, it follows that σ(P ) = {0, 1} and that there is a non-singular U ∈ Cn×n

such that

P = U

 Ir 0

0 0

U−1(4.1)

([5, 9.8 (3)]), where r = rank (P ).
From Theorem 2.1 we know that

dimN (P ) ≥ rank (P ) ⇔ there is B ∈ G2(P ) such that B2 = 0 .

So it remains to investigate the case where dim N (P ) < rank (P ):

4.1. Theorem. If dimN (P ) < rank (P ) and if B ∈ G1(P ), then 1 ∈ σ(B) and hence r(B) ≥ 1.

Proof. Proposition 1.3 and (4.1) show that there are A1 ∈ Cr×(n−1), A2 ∈ C(n−r)×r and A3 ∈ C(n−r)×(n−r)

such that

B = U

 Ir A1

A2 A3

U−1 .
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Denote by a(1), . . . , a(r) the columns of A2. Since

rank (A2) ≤ n − r = dim N (A) < rank (P ) = r,

there is (α1, . . . , αr)T ∈ Cr such that (α1, . . . , αr) ̸= 0 and

α1a
(1) + · · · + αra

(r) = 0 .

Set x = (α1, . . . , αr, 0, . . . , 0)T ∈ Cn and z = Ux, then z ̸= 0 and

Bz = U

 Ir A1

A2 A3

 x = Ux = z ,

thus 1 ∈ σ(B). �

4.2. Corollary.
(1) RP = [0,∞) ⇔ dim N (P ) ≥ rank (P ).
(2) RP = [1,∞) ⇔ dim N (P ) < rank (P ).

Proof. (1) Theorem 4.1 and Corollary 2.2. (2) Theorem 4.1 and Proposition 1.2 (3). Observe that
P ∈ G1(P ) and r(P ) = 1. �

References

[1] S. R. Caradus: Operator theory of the pseudo-inverse. Queen’s papers in pure and appl. Mathematics, 1974.
[2] H.K. Farahat, W. Ledermann: Matrices with prescribed characteristic polynomials. Proc. Edinburgh Math. Soc. 11

(1958), 143–146.
[3] H. Heuser: Funktionalanalysis, 3. ed.. Teubner, Stuttgart, 1991.
[4] R.A. Horn, C.A. Johnsons: Matrix Analysis. Cambridge University Press, 1985.
[5] H. Lütkepohl: Handbook of Matrices. Wiley and Sons, 1996.
[6] Ch. Schmoeger: Spectral properties of generalized inverses. Demonstratio Math. 37 (2004), 137–148.

Gerd Herzog
Institut für Analysis
Universität Karlsruhe (TH)
Englerstraße 2
76128 Karlsruhe
Germany
E-mail address: gerd.herzog@math.uni-karlsruhe.de

URL: http://www.mathematik.uni-karlsruhe.de/mi1plum/∼herzog/

Christoph Schmoeger
Institut für Analysis
Universität Karlsruhe (TH)
Englerstraße 2
76128 Karlsruhe
Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de

URL: http://www.mathematik.uni-karlsruhe.de/mi1weis/∼schmoeger/

6


