SPECTRAL RADII OF GENERALIZED INVERSES OF SIMPLY POLAR MATRICES

GERD HERZOG AND CHRISTOPH SCHMOEGER

Abstract. In this note we study the spectral radii of generalized inverses of square matrices A such that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$.

1. General and introductory material

For positive integers n and $m, \mathbb{C}^{n \times m}$ denotes the vector space of all complex $n \times m$ matrices. Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. A matrix $C \in \mathbb{C}^{n \times n}$ is called a g_{1}-inverse of A if

$$
A C A=A .
$$

If $B \in \mathbb{C}^{n \times n}$ and

$$
A B A=A \quad \text { and } \quad B A B=B
$$

then B is called a g_{2}-inverse of A. By $\mathscr{G}_{1}(A)$ we denote the set of all g_{1}-inverses of $A . \mathscr{G}_{2}(A)$ is the set of all g_{2}-inverses of A. It is well-known that $\mathscr{G}_{1}(A) \neq \phi$ (see [1]). Furthermore it is easy to see that if $C \in \mathscr{G}_{1}(A)$, then $B=C A C \in \mathscr{G}_{2}(A)$, hence

$$
\phi \neq \mathscr{G}_{2}(A) \subseteq \mathscr{G}_{1}(A) .
$$

If A is non-singular, then $\mathscr{G}_{2}(A)=\mathscr{G}_{1}(A)=\left\{A^{-1}\right\}$.
For $A \in \mathbb{C}^{n \times n}$ we denote the set of eigenvalues of A by $\sigma(A)$ and the spectral radius $r(A)$ of A is defined by

$$
r(A)=\max _{\lambda \in \sigma(A)}|\lambda| .
$$

Let $A \in \mathbb{C}^{n \times m}$. A^{T} denotes the transpose of A and A^{*} denotes the conjugate transpose of A. The range of A is given by

$$
\mathscr{R}(A)=\left\{A x: x \in \mathbb{C}^{n}\right\}
$$

and the kernel of A is the set

$$
\mathscr{N}(A)=\left\{x \in \mathbb{C}^{n}: A x=0\right\}
$$

(we follow the convention $\mathbb{C}^{n}=\mathbb{C}^{n \times 1}$).
In this note we study the set

$$
R_{A}=\left\{r(C): C \in \mathscr{G}_{1}(A)\right\}
$$

for $A \in \mathbb{C}^{n \times n}$ such that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$, where $\operatorname{rank}(A)=\operatorname{dim} \mathscr{R}(A)$. Such matrices are called simply polar.

Examples. If A is non-singular, then $R_{A}=\left\{r(A)^{-1}\right\}$. If $A=0$, then $A C A=A$ for each $C \in \mathbb{C}^{n \times n}$, hence $R_{A}=[0, \infty)$.

[^0]Throughout this paper we will assume that $n \geq 2$. The identity on \mathbb{C}^{n} is denoted by I_{n}.
1.1. Proposition. If $A \in \mathbb{C}^{n \times n}$ and $B \in \mathscr{G}_{2}(A)$, then

$$
\mathscr{G}_{1}(A)=\left\{B+T-B A T A B: T \in \mathbb{C}^{n \times n}\right\}
$$

Proof. [1, Theorem 2 in Chapter 2.3].
It follows from Proposition 1.1, that if A is singular, then $\mathscr{G}_{1}(A)$ is an infinite set. In [6], the following result is shown:
1.2. Proposition. Suppose that $A \in \mathbb{C}^{n \times n}$ is singular. We have:
(1) for each $z \in \mathbb{C}$, there is $B \in \mathscr{G}_{1}(A)$ with $z \in \sigma(B)$;
(2) if $B \in \mathscr{G}_{2}(A)$, then

$$
B+z\left(I_{n}-B A\right), B+z\left(I_{n}-A B\right) \in \mathscr{G}_{1}(A)
$$

for all $z \in \mathbb{C}$ and

$$
r\left(B+z\left(I_{n}-B A\right)\right)=r\left(B+z\left(I_{n}-A B\right)\right)= \begin{cases}r(B), & \text { if }|z| \leq r(B) \\ |z|, & \text { if }|z|>r(B)\end{cases}
$$

(3) $[r(B), \infty) \subseteq R_{A}$ for each $B \in \mathscr{G}_{2}(A)$.
1.3. Proposition. Suppose that $A \in \mathbb{C}^{n \times n}, r=\operatorname{rank}(A)>0$ and that A has a decomposition

$$
A=U\left[\begin{array}{c:c}
D & 0 \\
\hdashline 0 & 0
\end{array}\right] V^{-1}
$$

with $U, V \in \mathbb{C}^{n \times n}$ non-singular and $D \in \mathbb{C}^{r \times r}$ non-singular. Then

$$
B=V\left[\begin{array}{c:c}
D^{-1} & 0 \\
\hdashline 0 & 0 \\
\hdashline 0 & 0
\end{array}\right] U^{-1} \in \mathscr{G}_{2}(A)
$$

and

$$
\mathscr{G}_{1}(A)=\left\{V\left[\begin{array}{c:c}
D^{-1} & A_{1} \\
\hdashline A_{2} & A_{3}
\end{array}\right] U^{-1}: A_{1} \in \mathbb{C}^{r \times(n-r)}, A_{2} \in \mathbb{C}^{(n-r) \times r}, A_{3} \in \mathbb{C}^{(n-r) \times(n-r)}\right\} .
$$

Proof. It is easy to verify that $B \in \mathscr{G}_{2}(A)$. Let $T \in \mathbb{C}^{n \times n}$, let $\varphi(T)=V^{-1} T U$ and set $B_{0}:=B+T-$ $B A T A B$. Then

$$
\left.\left.\left.\begin{array}{rl}
B_{0} & =V\left[\begin{array}{c:c}
D^{-1} & 0 \\
\hdashline 0 & 0
\end{array}\right] U^{-1}+T-V^{-1}\left[\begin{array}{c:c}
I_{r} & 0 \\
\hdashline 0 & 0
\end{array}\right] \varphi(T)\left[\begin{array}{c:c}
I_{r} & 0 \\
\hdashline 0 & 0
\end{array}\right] U^{-1} \\
\hdashline 0 & 0 .\left[\begin{array}{c:c}
D_{r} & 0 \\
D^{-1} & 0 \\
\hdashline 0 & 0 \\
\hdashline 0 & 0
\end{array}\right]+\varphi(T)-\ldots \ldots . \\
\hdashline 0 & 0
\end{array}\right] \varphi(T)\left[\begin{array}{c:c}
I_{r} & 0 \\
\hdashline 0 & 0
\end{array}\right]\right) U^{-1}\right]
$$

Since the mapping $\varphi: \mathbb{C}^{n \times n} \rightarrow \mathbb{C}^{n \times n}$ is bijective, the result follow from Proposition 1.1.

Recall that a matrix $A \in \mathbb{C}^{n \times n}$ is called simply polar if $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)$.
1.4. Proposition. Let $A \in \mathbb{C}^{n \times n}$ be singular. The following assertions are equivalent:
(1) A is simply polar;
(2) 0 is a simple pole of the resolvent $\left(\lambda I_{n}-A\right)^{-1}$;
(3) $\mathbb{C}^{n}=\mathscr{R}(A) \oplus \mathscr{N}(A)$;
(4) there is $B \in \mathscr{G}_{2}(A)$ such that $A B=B A$.

Proof. [3, Satz 72.4], [3, Satz 101.2] and [1, Theorem 5.2].

If $A \in \mathbb{C}^{n \times n}$ is simply polar, then, by Proposition 1.4 , there is $B \in \mathbb{C}^{n \times n}$ such that $A B A=A, B A B=B$ and $A B=B A$. It is shown in [1, Theorem 5.1], that there is no other g_{2}-inverse of A which commutes with $A . B$ is called the Drazin-inverse of A. The following result is shown in [1, p. 53].
1.5. Proposition. If $A \in \mathbb{C}^{n \times n}, A \neq 0$ and if A is simply polar, then the Drazin-inverse B of A satisfies

$$
\sigma(B) \backslash\{0\}=\left\{\frac{1}{\lambda}: \lambda \in \sigma(A) \backslash\{0\}\right\}
$$

and hence $r(B)=r(A)^{-1}$.

2. Generalized inverses of simply polar matrices

Throughout this section we assume that $A \in \mathbb{C}^{n \times n}$ is simply polar and that $\operatorname{rank}(A)>0$.
By [5, 4.3.2 (4)] (see also [4]), A has a decomposition

$$
A=U\left[\begin{array}{c:c}
D & 0 \tag{2.1}\\
\hdashline 0 & 0
\end{array}\right] U^{-1}
$$

wher $U \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{r \times r}$ are non singular. From Proposition 1.3 we know that

$$
B=U\left[\begin{array}{c:c}
D^{-1} & 0 \tag{2.2}\\
\hdashline \cdots \cdots & \vdots
\end{array}\right] U^{-1} \in \mathscr{G}_{2}(A)
$$

It is easy to see that the matrix B in (2.2) is the Drazin-invers of A.
2.1. Theorem. The following assertions are equivalent:
(1) $\operatorname{dim} \mathscr{N}(A) \geq \operatorname{rank}(A)$.
(2) there is $B \in \mathscr{G}_{2}(A)$ with $B^{2}=0$.

A consequence of Theorem 2.1 is:
2.2. Corollary. If $\operatorname{dim} \mathscr{N}(A) \geq \operatorname{rank}(A)$, then there is an entire function $F: \mathbb{C} \rightarrow \mathbb{C}^{n \times n}$ such that

$$
F(z) \in \mathscr{G}_{1}(A), \sigma(F(z))=\{z, 0\} \text { and } \quad r(F(z))=|z| \quad \text { for all } z \in \mathbb{C} .
$$

Furthermore we have $R_{A}=[0, \infty)$.
Proof. By Theorem 2.1, there is $B \in \mathscr{G}_{2}(A)$ with $B^{2}=0$. Define F by $F(z)=B+z\left(I_{n}-A B\right)$. Then $F(z) \in \mathscr{G}_{1}(A)$ for each $z \in \mathbb{C}$ (Proposition 1.2). [6, Theorem 3] gives

$$
\{z\} \subseteq \sigma(F(z)) \subseteq\{z, 0\} \quad(z \in \mathbb{C})
$$

Assume that $F(z)$ is non-singular for some $z \in \mathbb{C}$. Thus there is $C \in \mathbb{C}^{n \times n}$ with $F(z) C=I_{n}$. Since $B F(z)=0$, we get $0=B F(z) C=B$, thus $A=A B A=0$, a contradiction.

Proof of Theorem 2.1. Let $r=\operatorname{rank}(A)$.
$(1) \Rightarrow(2)$: Proposition 1.4 (3) shows that $n-r=\operatorname{dim} \mathscr{N}(A) \geq r$.
Case 1: $n-r=r$. Let D be as in (2.1) and let

$$
S=\left[\begin{array}{c:c}
D^{-1} & D^{-1} \\
\hdashline-D^{-1} & -D^{-1}
\end{array}\right] \text { and } B=U S U^{-1} .
$$

Then it is easy to see $B \in \mathscr{G}_{2}(A)$ and $B^{2}=0$.
Case 2: $n-r>r$. Then $r<n / 2$.
Case 2.1: $n=2 m$ for some $m \in \mathbb{N}$. Let

$$
T=\left[\begin{array}{c:c}
D^{-1} & 0 \\
\hdashline 0 & 0
\end{array}\right] \in \mathbb{C}^{m \times m}, S=\left[\begin{array}{c:c}
T & T \\
\hdashline-T & -T
\end{array}\right] \in \mathbb{C}^{n \times n}
$$

and $B=U S U^{-1}$. Then $B \in \mathscr{G}_{2}(A)$ and $B^{2}=0$.
Case 2.2: $n=2 m+1$ for some $m \in \mathbb{N}$. Then $r<m$. Set

$$
T=\left[\begin{array}{c:c}
D^{-1} & 0 \\
\hdashline \cdots & 0 \\
\hdashline 0 & 0
\end{array}\right] \in \mathbb{C}^{m \times m}, S=\left[\begin{array}{c:c:c}
& & \vdots \\
T & T & 0 \\
\hdashline \cdots \cdots & \cdots \cdots \cdots & \vdots \\
-T & -T & 0 \\
\hdashline \cdots \cdots \cdots \cdots \cdots \cdots & \vdots \\
\hdashline 0 \cdots \cdots \cdots \cdots \cdots & 0
\end{array}\right] \in \mathbb{C}^{n \times n}
$$

and $B=U S U^{-1}$. As above, $B \in \mathscr{G}_{2}(A)$ and $B^{2}=0$.
$(2) \Rightarrow(1)$: Since $B^{2}=0, A$ is singular. We have $(B A)^{2}=B A, \mathscr{R}(B A)=\mathscr{R}(B), \mathscr{N}(A)=\mathscr{R}(I-$ $B A), \mathscr{R}(A B)=\mathscr{R}(A),(A B)^{2}=A B$ and

$$
\mathbb{C}^{n}=\mathscr{R}(B) \oplus \mathscr{N}(A)
$$

thus, by Proposition $1.4(3), \operatorname{rank}(B)=r=\operatorname{rank}(A)$. Now let $z \in \mathscr{R}(A) \cap \mathscr{R}(B)$. Then $z=A B z=B A z$, therefore $z=A B^{2} A z=0$. This gives $\mathscr{R}(A) \cap \mathscr{R}(B)=\{0\}$. Since

$$
\mathscr{R}(A) \oplus \mathscr{R}(B) \subseteq \mathbb{C}^{n}
$$

we derive $2 r \leq n$, hence $\operatorname{rank}(A)=r \leq n-r=\operatorname{dim} \mathscr{N}(A)$.
A square matrix D is said to be non-derogatory if its characteristic polynomial is also its minimal polynomial.
2.3. Theorem. Suppose that $\operatorname{rank}(A)=\operatorname{rank}\left(A^{2}\right)=n-1$, let D be as in (2.1) and suppose that D is non-derogatory. Then A has a nilpotent g_{1}-inverse and hence $\min R_{A}=0$.
Proof. Since D^{-1} is also non-derogatory, it follows from [2, Theorem 3.4] that there are $a_{1} \in \mathbb{C}^{n-1}$, $a_{2} \in \mathbb{C}^{n-1}$ and $a_{3} \in \mathbb{C}$ such that

$$
S=\left[\begin{array}{c:c}
D^{-1} & a_{1} \\
\hdashline a_{2}^{T} & a_{3}
\end{array}\right] \text { is nilpotent }
$$

hence $S^{q}=0$ for some positive integer q. Let $B=U S U^{-1}$. Then $B^{q}=0$. By Proposition 1.3, $B \in \mathscr{G}_{1}(A)$.

A matrix $N \in \mathbb{C}^{n \times n}$ is called normal if $N N^{*}=N^{*} N$. The spectral theorem for normal matrices implies that

$$
N=U\left[\begin{array}{c:c}
D & 0 \tag{2.3}\\
\hdashline \cdots & 0
\end{array}\right] U^{*}
$$

with $U \in \mathbb{C}^{n \times n}$ unitary (that is $U U^{*}=U^{*} U=I_{n}$) and $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right)$, where $\lambda_{1}, \ldots, \lambda_{r}$ are the non-zero eigenvalues of N. It follows (see [5, 4.3.2 (4)]) that N is simply polar.
Now suppose that $\operatorname{rank}(N)=n-1$. If $\lambda_{i} \neq \lambda_{j}(i \neq j ; i, j=1, \ldots, n-1)$ then the matrix D in (2.3) is
non-derogatory.
Thus we have proved:
2.4. Corollary. If $N \in \mathbb{C}^{n \times n}$ is normal, $\operatorname{rank}(N)=n-1$ and if $\lambda_{i} \neq \lambda_{j}(i \neq j ; i, j=1, \ldots, n-1)$ for the non-zero eigenvalues of N, then there is a nilpotent g_{1}-inverse of A.

3. The case $n=2$

3.1. Proposition. If $A \in \mathbb{C}^{2 \times 2}$ and $A^{2}=0$, then there is $B \in \mathscr{G}_{2}(A)$ such that $B^{2}=0$.

Proof. The Schur decomposition of A is

$$
A=U\left[\begin{array}{ll}
0 & \alpha \\
0 & 0
\end{array}\right] U^{*}
$$

where $U \in \mathbb{C}^{2 \times 2}$ is unitary and $\alpha \in \mathbb{C}$ (see [5, 5.2.3 (1)]. If $\alpha=0$, we are done. So assume that $\alpha \neq 0$. Let

$$
B=U\left[\begin{array}{cc}
0 & 0 \\
\alpha^{-1} & 0
\end{array}\right] U^{*}
$$

then it is easy to see that $B \in \mathscr{G}_{2}(A)$ and $B^{2}=0$.
3.2. Theorem. Suppose that $A \in \mathbb{C}^{2 \times 2}$ is singular. Then there is $B \in \mathscr{G}_{2}(A)$ with $B^{2}=0$ and hence $R_{A}=[0, \infty)$.
Proof. Because of Proposition 3.1, we assume that $A^{2} \neq 0$. Since A is singular, we have $\operatorname{rank}(A)=$ $\operatorname{rank}\left(A^{2}\right)=1, A$ is simply polar and $\operatorname{dim} \mathscr{N}(A)=\operatorname{rank}(A)$. Theorem 2.1 gives the result.

4. Generalized inverses of projections

In this section we assume that $P \in \mathbb{C}^{n \times n}, 0 \neq P \neq I_{n}$ and $P^{2}=P$. Hence P is simply polar.
Since $\mathscr{R}(P)=\left\{x \in \mathbb{C}^{n}: P x=x\right\}$, it follows that $\sigma(P)=\{0,1\}$ and that there is a non-singular $U \in \mathbb{C}^{n \times n}$ such that

$$
P=U\left[\begin{array}{c:c}
I_{r} & 0 \tag{4.1}\\
\hdashline \cdots & \ldots \\
\hdashline 0 & 0
\end{array}\right] U^{-1}
$$

([5, 9.8 (3)]), where $r=\operatorname{rank}(P)$.
From Theorem 2.1 we know that

$$
\operatorname{dim} \mathscr{N}(P) \geq \operatorname{rank}(P) \Leftrightarrow \text { there is } B \in \mathscr{G}_{2}(P) \text { such that } B^{2}=0
$$

So it remains to investigate the case where $\operatorname{dim} \mathscr{N}(P)<\operatorname{rank}(P)$:
4.1. Theorem. If $\operatorname{dim} \mathscr{N}(P)<\operatorname{rank}(P)$ and if $B \in \mathscr{G}_{1}(P)$, then $1 \in \sigma(B)$ and hence $r(B) \geq 1$.

Proof. Proposition 1.3 and (4.1) show that there are $A_{1} \in \mathbb{C}^{r \times(n-1)}, A_{2} \in \mathbb{C}^{(n-r) \times r}$ and $A_{3} \in \mathbb{C}^{(n-r) \times(n-r)}$ such that

$$
B=U\left[\begin{array}{c:c}
I_{r} & A_{1} \\
\hdashline A_{2} & A_{3}
\end{array}\right] U^{-1} .
$$

Denote by $a^{(1)}, \ldots, a^{(r)}$ the columns of A_{2}. Since

$$
\operatorname{rank}\left(A_{2}\right) \leq n-r=\operatorname{dim} \mathscr{N}(A)<\operatorname{rank}(P)=r
$$

there is $\left(\alpha_{1}, \ldots, \alpha_{r}\right)^{T} \in \mathbb{C}^{r}$ such that $\left(\alpha_{1}, \ldots, \alpha_{r}\right) \neq 0$ and

$$
\alpha_{1} a^{(1)}+\cdots+\alpha_{r} a^{(r)}=0
$$

Set $x=\left(\alpha_{1}, \ldots, \alpha_{r}, 0, \ldots, 0\right)^{T} \in \mathbb{C}^{n}$ and $z=U x$, then $z \neq 0$ and

$$
B z=U\left[\begin{array}{c:c}
I_{r} & A_{1} \\
\hdashline A_{2} & A_{3}
\end{array}\right] x=U x=z
$$

thus $1 \in \sigma(B)$.

4.2. Corollary.

(1) $R_{P}=[0, \infty) \Leftrightarrow \operatorname{dim} \mathscr{N}(P) \geq \operatorname{rank}(P)$.
(2) $R_{P}=[1, \infty) \Leftrightarrow \operatorname{dim} \mathscr{N}(P)<\operatorname{rank}(P)$.

Proof. (1) Theorem 4.1 and Corollary 2.2. (2) Theorem 4.1 and Proposition 1.2 (3). Observe that $P \in \mathscr{G}_{1}(P)$ and $r(P)=1$.

References

[1] S. R. Caradus: Operator theory of the pseudo-inverse. Queen's papers in pure and appl. Mathematics, 1974.
[2] H. K. Farahat, W. Ledermann: Matrices with prescribed characteristic polynomials. Proc. Edinburgh Math. Soc. 11 (1958), 143-146.
[3] H. Heuser: Funktionalanalysis, 3. ed.. Teubner, Stuttgart, 1991.
[4] R. A. Horn, C. A. Johnsons: Matrix Analysis. Cambridge University Press, 1985.
[5] H. Lütkepohl: Handbook of Matrices. Wiley and Sons, 1996.
[6] Ch. Schmoeger: Spectral properties of generalized inverses. Demonstratio Math. 37 (2004), 137-148.

Gerd Herzog

Institut für Analysis
Universität Karlsruhe (TH)
Englerstrasse 2
76128 Karlsruhe
Germany
E-mail address: gerd.herzog@math.uni-karlsruhe.de
URL: http://www.mathematik.uni-karlsruhe.de/mi1plum/~herzog/
Christoph Schmoeger
Institut für Analysis
Universität Karlsruhe (TH)
Englerstrasse 2
76128 Karlsruhe
Germany
E-mail address: christoph.schmoeger@math.uni-karlsruhe.de
URL: http://www.mathematik.uni-karlsruhe.de/mi1weis/~schmoeger/

[^0]: Date: 16th January 2008.
 1991 Mathematics Subject Classification. 15 A 09.
 Key words and phrases. simply polar matrix, generalized inverse.

