SPECTRAL RADII OF GENERALIZED INVERSES OF SIMPLY POLAR MATRICES

GERD HERZOG AND CHRISTOPH SCHMOEGER

ABSTRACT. In this note we study the spectral radii of generalized inverses of square matrices A such that rank $(A) = \operatorname{rank} (A^2)$.

1. General and introductory material

For positive integers n and m, $\mathbb{C}^{n \times m}$ denotes the vector space of all complex $n \times m$ matrices. Let $A \in \mathbb{C}^{n \times n}$ be a square matrix. A matrix $C \in \mathbb{C}^{n \times n}$ is called a g_1 -inverse of A if

$$ACA = A$$
.

If $B \in \mathbb{C}^{n \times n}$ and

$$ABA = A$$
 and $BAB = B$.

then B is called a g_2 -inverse of A. By $\mathscr{G}_1(A)$ we denote the set of all g_1 -inverses of A. $\mathscr{G}_2(A)$ is the set of all g_2 -inverses of A. It is well-known that $\mathscr{G}_1(A) \neq \phi$ (see [1]). Furthermore it is easy to see that if $C \in \mathscr{G}_1(A)$, then $B = CAC \in \mathscr{G}_2(A)$, hence

$$b \neq \mathscr{G}_2(A) \subseteq \mathscr{G}_1(A) \,.$$

If A is non-singular, then $\mathscr{G}_2(A) = \mathscr{G}_1(A) = \{A^{-1}\}.$

For $A \in \mathbb{C}^{n \times n}$ we denote the set of eigenvalues of A by $\sigma(A)$ and the spectral radius r(A) of A is defined by

$$r(A) = \max_{\lambda \in \sigma(A)} |\lambda| \,.$$

Let $A \in \mathbb{C}^{n \times m}$. A^T denotes the transpose of A and A^* denotes the conjugate transpose of A. The range of A is given by

$$\mathscr{R}(A) = \{Ax : x \in \mathbb{C}^n\}$$

and the kernel of A is the set

$$\mathscr{V}(A) = \{ x \in \mathbb{C}^n : Ax = 0 \}$$

(we follow the convention $\mathbb{C}^n = \mathbb{C}^{n \times 1}$).

In this note we study the set

$$R_A = \{ r(C) : C \in \mathscr{G}_1(A) \}$$

for $A \in \mathbb{C}^{n \times n}$ such that rank $(A) = \operatorname{rank}(A^2)$, where rank $(A) = \dim \mathscr{R}(A)$. Such matrices are called simply polar.

Examples. If A is non-singular, then $R_A = \{r(A)^{-1}\}$. If A = 0, then ACA = A for each $C \in \mathbb{C}^{n \times n}$, hence $R_A = [0, \infty)$.

Date: 16th January 2008.

¹⁹⁹¹ Mathematics Subject Classification. 15 A 09.

Key words and phrases. simply polar matrix, generalized inverse.

Throughout this paper we will assume that $n \geq 2$. The identity on \mathbb{C}^n is denoted by I_n .

1.1. Proposition. If $A \in \mathbb{C}^{n \times n}$ and $B \in \mathscr{G}_2(A)$, then

$$\mathscr{G}_1(A) = \{B + T - BATAB : T \in \mathbb{C}^{n \times n}\}$$

Proof. [1, Theorem 2 in Chapter 2.3].

It follows from Proposition 1.1, that if A is singular, then $\mathscr{G}_1(A)$ is an infinite set. In [6], the following result is shown:

1.2. Proposition. Suppose that $A \in \mathbb{C}^{n \times n}$ is singular. We have: (1) for each $z \in \mathbb{C}$, there is $B \in \mathscr{G}_1(A)$ with $z \in \sigma(B)$; (2) if $B \in \mathscr{G}_2(A)$, then

$$B + z(I_n - BA), B + z(I_n - AB) \in \mathscr{G}_1(A)$$

for all $z \in \mathbb{C}$ and

$$r(B + z(I_n - BA)) = r(B + z(I_n - AB)) = \begin{cases} r(B), & \text{if } |z| \le r(B) \\ |z|, & \text{if } |z| > r(B); \end{cases}$$

(3) $[r(B), \infty) \subseteq R_A$ for each $B \in \mathscr{G}_2(A)$.

1.3. Proposition. Suppose that $A \in \mathbb{C}^{n \times n}$, $r = \operatorname{rank}(A) > 0$ and that A has a decomposition

$$A = U \begin{bmatrix} D & 0 \\ \cdots & 0 \\ 0 & 0 \end{bmatrix} V^{-1}$$

with $U, V \in \mathbb{C}^{n \times n}$ non-singular and $D \in \mathbb{C}^{r \times r}$ non-singular. Then

$$B = V \begin{bmatrix} D^{-1} & 0 \\ \vdots & 0 \end{bmatrix} U^{-1} \in \mathscr{G}_2(A)$$

and

$$\mathscr{G}_1(A) = \left\{ V \begin{bmatrix} D^{-1} & A_1 \\ \dots & \dots & \dots \\ A_2 & A_3 \end{bmatrix} U^{-1} : A_1 \in \mathbb{C}^{r \times (n-r)}, A_2 \in \mathbb{C}^{(n-r) \times r}, A_3 \in \mathbb{C}^{(n-r) \times (n-r)} \right\}.$$

Proof. It is easy to verify that $B \in \mathscr{G}_2(A)$. Let $T \in \mathbb{C}^{n \times n}$, let $\varphi(T) = V^{-1}TU$ and set $B_0 := B + T - BATAB$. Then

$$B_{0} = V \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} U^{-1} + T - V^{-1} \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} \varphi(T) \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} U^{-1}$$
$$= V \left(\begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} + \varphi(T) - \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} \varphi(T) \begin{bmatrix} I_{r} & 0 \\ 0 & 0 \end{bmatrix} \right) U^{-1}$$
$$= V \begin{bmatrix} D^{-1} & A_{1} \\ A_{2} & A_{3} \end{bmatrix} U^{-1}.$$

Since the mapping $\varphi : \mathbb{C}^{n \times n} \to \mathbb{C}^{n \times n}$ is bijective, the result follow from Proposition 1.1.

Recall that a matrix $A \in \mathbb{C}^{n \times n}$ is called *simply polar* if rank $(A) = \operatorname{rank}(A^2)$.

1.4. Proposition. Let $A \in \mathbb{C}^{n \times n}$ be singular. The following assertions are equivalent:

- (1) A is simply polar;
- (2) 0 is a simple pole of the resolvent $(\lambda I_n A)^{-1}$;
- (3) $\mathbb{C}^n = \mathscr{R}(A) \oplus \mathscr{N}(A);$
- (4) there is $B \in \mathscr{G}_2(A)$ such that AB = BA.

Proof. [3, Satz 72.4], [3, Satz 101.2] and [1, Theorem 5.2].

If $A \in \mathbb{C}^{n \times n}$ is simply polar, then, by Proposition 1.4, there is $B \in \mathbb{C}^{n \times n}$ such that ABA = A, BAB = Band AB = BA. It is shown in [1, Theorem 5.1], that there is no other g_2 -inverse of A which commutes with A. B is called the *Drazin-inverse* of A. The following result is shown in [1, p. 53].

1.5. Proposition. If $A \in \mathbb{C}^{n \times n}$, $A \neq 0$ and if A is simply polar, then the Drazin-inverse B of A satisfies

$$\sigma(B) \setminus \{0\} = \left\{\frac{1}{\lambda} : \lambda \in \sigma(A) \setminus \{0\}\right\}$$

and hence $r(B) = r(A)^{-1}$.

2. Generalized inverses of simply polar matrices

Throughout this section we assume that $A \in \mathbb{C}^{n \times n}$ is simply polar and that rank (A) > 0. By [5, 4.3.2 (4)] (see also [4]), A has a decomposition

(2.1)
$$A = U \begin{bmatrix} D & 0 \\ \cdots & \cdots & 0 \\ 0 & 0 \end{bmatrix} U^{-1}$$

wher $U \in \mathbb{C}^{n \times n}$ and $D \in \mathbb{C}^{r \times r}$ are non singular. From Proposition 1.3 we know that

(2.2)
$$B = U \begin{bmatrix} D^{-1} & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix} U^{-1} \in \mathscr{G}_2(A).$$

It is easy to see that the matrix B in (2.2) is the Drazin-invers of A.

2.1. Theorem. The following assertions are equivalent:

(1) $\dim \mathcal{N}(A) \ge \operatorname{rank}(A)$.

(2) there is $B \in \mathscr{G}_2(A)$ with $B^2 = 0$.

A consequence of Theorem 2.1 is:

2.2. Corollary. If dim $\mathcal{N}(A) \geq \operatorname{rank}(A)$, then there is an entire function $F : \mathbb{C} \to \mathbb{C}^{n \times n}$ such that

$$F(z) \in \mathscr{G}_1(A), \, \sigma(F(z)) = \{z, 0\} \text{ and } r(F(z)) = |z| \text{ for all } z \in \mathbb{C}$$

Furthermore we have $R_A = [0, \infty)$.

Proof. By Theorem 2.1, there is $B \in \mathscr{G}_2(A)$ with $B^2 = 0$. Define F by $F(z) = B + z(I_n - AB)$. Then $F(z) \in \mathscr{G}_1(A)$ for each $z \in \mathbb{C}$ (Proposition 1.2). [6, Theorem 3] gives

$$\{z\} \subseteq \sigma(F(z)) \subseteq \{z, 0\}$$
 $(z \in \mathbb{C}).$

Assume that F(z) is non-singular for some $z \in \mathbb{C}$. Thus there is $C \in \mathbb{C}^{n \times n}$ with $F(z)C = I_n$. Since BF(z) = 0, we get 0 = BF(z)C = B, thus A = ABA = 0, a contradiction.

Proof of Theorem 2.1. Let $r = \operatorname{rank}(A)$. (1) \Rightarrow (2): Proposition 1.4 (3) shows that $n - r = \dim \mathcal{N}(A) \ge r$. Case 1: n - r = r. Let D be as in (2.1) and let

$$S = \begin{bmatrix} D^{-1} & D^{-1} \\ -D^{-1} & -D^{-1} \end{bmatrix} \text{ and } B = USU^{-1}.$$

Then it is easy to see $B \in \mathscr{G}_2(A)$ and $B^2 = 0$. Case 2: n - r > r. Then r < n/2.

Case 2.1: n = 2m for some $m \in \mathbb{N}$. Let

$$T = \begin{bmatrix} D^{-1} & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix} \in \mathbb{C}^{m \times m}, \ S = \begin{bmatrix} T & T \\ \vdots & T \\ \vdots & -T & -T \end{bmatrix} \in \mathbb{C}^{n \times n}$$

and $B = USU^{-1}$. Then $B \in \mathscr{G}_2(A)$ and $B^2 = 0$. Case 2.2: n = 2m + 1 for some $m \in \mathbb{N}$. Then r < m. Set

$$T = \begin{bmatrix} D^{-1} & 0 \\ 0 & 0 \end{bmatrix} \in \mathbb{C}^{m \times m}, S = \begin{bmatrix} T & T & 0 \\ \vdots \\ -T & -T & 0 \\ \vdots \\ 0 & 0 \end{bmatrix} \in \mathbb{C}^{n \times n}$$

and $B = USU^{-1}$. As above, $B \in \mathscr{G}_2(A)$ and $B^2 = 0$. (2) \Rightarrow (1): Since $B^2 = 0$, A is singular. We have $(BA)^2 = BA$, $\mathscr{R}(BA) = \mathscr{R}(B)$, $\mathscr{N}(A) = \mathscr{R}(I - BA)$, $\mathscr{R}(AB) = \mathscr{R}(A)$, $(AB)^2 = AB$ and

$$\mathbb{C}^n = \mathscr{R}(B) \oplus \mathscr{N}(A) \,,$$

thus, by Proposition 1.4 (3), rank $(B) = r = \operatorname{rank}(A)$. Now let $z \in \mathscr{R}(A) \cap \mathscr{R}(B)$. Then z = ABz = BAz, therefore $z = AB^2Az = 0$. This gives $\mathscr{R}(A) \cap \mathscr{R}(B) = \{0\}$. Since

$$\mathscr{R}(A) \oplus \mathscr{R}(B) \subseteq \mathbb{C}^n$$

we derive $2r \leq n$, hence rank $(A) = r \leq n - r = \dim \mathcal{N}(A)$.

A square matrix D is said to be *non-derogatory* if its characteristic polynomial is also its minimal polynomial.

2.3. Theorem. Suppose that rank $(A) = \operatorname{rank}(A^2) = n - 1$, let D be as in (2.1) and suppose that D is non-derogatory. Then A has a nilpotent g_1 -inverse and hence min $R_A = 0$.

Proof. Since D^{-1} is also non-derogatory, it follows from [2, Theorem 3.4] that there are $a_1 \in \mathbb{C}^{n-1}$, $a_2 \in \mathbb{C}^{n-1}$ and $a_3 \in \mathbb{C}$ such that

$$S = \begin{bmatrix} D^{-1} & a_1 \\ \vdots & \vdots \\ a_2^T & a_3 \end{bmatrix} \text{ is nilpotent },$$

hence $S^q = 0$ for some positive integer q. Let $B = USU^{-1}$. Then $B^q = 0$. By Proposition 1.3, $B \in \mathscr{G}_1(A)$.

A matrix $N \in \mathbb{C}^{n \times n}$ is called *normal* if $NN^* = N^*N$. The spectral theorem for normal matrices implies that

(2.3)
$$N = U \begin{bmatrix} D & 0 \\ \cdots & \cdots & 0 \\ 0 & 0 \end{bmatrix} U^*,$$

with $U \in \mathbb{C}^{n \times n}$ unitary (that is $UU^* = U^*U = I_n$) and $D = \text{diag}(\lambda_1, \ldots, \lambda_r)$, where $\lambda_1, \ldots, \lambda_r$ are the non-zero eigenvalues of N. It follows (see [5, 4.3.2 (4)]) that N is simply polar. Now suppose that rank (N) = n - 1. If $\lambda_i \neq \lambda_j$ $(i \neq j; i, j = 1, \ldots, n - 1)$ then the matrix D in (2.3) is

non-derogatory.

Thus we have proved:

2.4. Corollary. If $N \in \mathbb{C}^{n \times n}$ is normal, rank (N) = n - 1 and if $\lambda_i \neq \lambda_j$ $(i \neq j; i, j = 1, ..., n - 1)$ for the non-zero eigenvalues of N, then there is a nilpotent g_1 -inverse of A.

3. The case n = 2

3.1. Proposition. If $A \in \mathbb{C}^{2 \times 2}$ and $A^2 = 0$, then there is $B \in \mathscr{G}_2(A)$ such that $B^2 = 0$.

Proof. The Schur decomposition of A is

$$A = U \left[\begin{array}{cc} 0 & \alpha \\ 0 & 0 \end{array} \right] U^* \,,$$

where $U \in \mathbb{C}^{2 \times 2}$ is unitary and $\alpha \in \mathbb{C}$ (see [5, 5.2.3 (1)]. If $\alpha = 0$, we are done. So assume that $\alpha \neq 0$. Let

$$B = U \begin{bmatrix} 0 & 0 \\ \alpha^{-1} & 0 \end{bmatrix} U^* \,.$$

then it is easy to see that $B \in \mathscr{G}_2(A)$ and $B^2 = 0$.

3.2. Theorem. Suppose that $A \in \mathbb{C}^{2 \times 2}$ is singular. Then there is $B \in \mathscr{G}_2(A)$ with $B^2 = 0$ and hence $R_A = [0, \infty)$.

Proof. Because of Proposition 3.1, we assume that $A^2 \neq 0$. Since A is singular, we have rank $(A) = \operatorname{rank}(A^2) = 1$, A is simply polar and dim $\mathcal{N}(A) = \operatorname{rank}(A)$. Theorem 2.1 gives the result.

4. Generalized inverses of projections

In this section we assume that $P \in \mathbb{C}^{n \times n}$, $0 \neq P \neq I_n$ and $P^2 = P$. Hence P is simply polar.

Since $\mathscr{R}(P) = \{x \in \mathbb{C}^n : Px = x\}$, it follows that $\sigma(P) = \{0, 1\}$ and that there is a non-singular $U \in \mathbb{C}^{n \times n}$ such that

(4.1)
$$P = U \begin{bmatrix} I_r & 0 \\ 0 & 0 \end{bmatrix} U^{-1}$$

([5, 9.8 (3)]), where $r = \operatorname{rank}(P)$. From Theorem 2.1 we know that

 $\dim \mathcal{N}(P) > \operatorname{rank}(P) \Leftrightarrow \text{there is } B \in \mathcal{G}_2(P) \text{ such that } B^2 = 0.$

So it remains to investigate the case where dim $\mathcal{N}(P) < \operatorname{rank}(P)$:

4.1. Theorem. If dim $\mathcal{N}(P) < \operatorname{rank}(P)$ and if $B \in \mathscr{G}_1(P)$, then $1 \in \sigma(B)$ and hence $r(B) \ge 1$.

Proof. Proposition 1.3 and (4.1) show that there are $A_1 \in \mathbb{C}^{r \times (n-1)}$, $A_2 \in \mathbb{C}^{(n-r) \times r}$ and $A_3 \in \mathbb{C}^{(n-r) \times (n-r)}$ such that

$$B = U \begin{bmatrix} I_r & A_1 \\ \vdots & A_2 & A_3 \end{bmatrix} U^{-1}.$$

Denote by $a^{(1)}, \ldots, a^{(r)}$ the columns of A_2 . Since

$$\operatorname{rank}(A_2) \le n - r = \dim \mathcal{N}(A) < \operatorname{rank}(P) = r_2$$

there is $(\alpha_1, \ldots, \alpha_r)^T \in \mathbb{C}^r$ such that $(\alpha_1, \ldots, \alpha_r) \neq 0$ and

$$\alpha_1 a^{(1)} + \dots + \alpha_r a^{(r)} = 0.$$

Set $x = (\alpha_1, \ldots, \alpha_r, 0, \ldots, 0)^T \in \mathbb{C}^n$ and z = Ux, then $z \neq 0$ and

$$Bz = U \begin{bmatrix} I_r & A_1 \\ A_2 & A_3 \end{bmatrix} x = Ux = z ,$$

thus $1 \in \sigma(B)$.

4.2. Corollary.

(1) $R_P = [0, \infty) \Leftrightarrow \dim \mathscr{N}(P) \ge \operatorname{rank}(P).$ (2) $R_P = [1, \infty) \Leftrightarrow \dim \mathscr{N}(P) < \operatorname{rank}(P).$

Proof. (1) Theorem 4.1 and Corollary 2.2. (2) Theorem 4.1 and Proposition 1.2 (3). Observe that $P \in \mathscr{G}_1(P)$ and r(P) = 1.

References

- [1] S.R. Caradus: Operator theory of the pseudo-inverse. Queen's papers in pure and appl. Mathematics, 1974.
- [2] H.K. Farahat, W. Ledermann: Matrices with prescribed characteristic polynomials. Proc. Edinburgh Math. Soc. 11 (1958), 143–146.
- [3] H. Heuser: Funktionalanalysis, 3. ed.. Teubner, Stuttgart, 1991.
- [4] R. A. Horn, C. A. Johnsons: Matrix Analysis. Cambridge University Press, 1985.
- [5] H. Lütkepohl: Handbook of Matrices. Wiley and Sons, 1996.
- [6] Ch. Schmoeger: Spectral properties of generalized inverses. Demonstratio Math. 37 (2004), 137-148.

GERD HERZOG INSTITUT FÜR ANALYSIS UNIVERSITÄT KARLSRUHE (TH) ENGLERSTRASSE 2 76128 KARLSRUHE GERMANY *E-mail address*: gerd.herzog@math.uni-karlsruhe.de *URL*: http://www.mathematik.uni-karlsruhe.de/mi1plum/~herzog/

Christoph Schmoeger Institut für Analysis Universität Karlsruhe (TH) Englerstrasse 2 76128 Karlsruhe Germany *E-mail address*: christoph.schmoeger@math.uni-karlsruhe.de *URL*: http://www.mathematik.uni-karlsruhe.de/mi1weis/~schmoeger/