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A functional equation with two unknown functions

Janusz Matkowski and Peter Volkmann

1. Introduction. Throughout this paper I denotes a non-degenerate in-
terval in IR, i.e., I is a convex subset of R with non-empty interior. We
determine all continuous, strictly increasing ¢, : I — R such that

(1.1) (o + )" (p(x) +9() + (9 + 1) (oY) +b(2))
=Tty (I’,y € I)a

this will be done in the next paragraph. The third paragraph contains some
background information concerning equation (1.1). For the moment we on-
ly like to mention that a more general equation (with four unknown func-
tions) had been solved by Bajak and Pales [2], but under stronger regularity
conditions. In the last paragraph we give an application to the functional
equation

(12) F(A@7¢<x7y)7‘4¢7¢(xay>> = F(ZE,y) (l’,y S ]>7

where (generally) A, (2, y) = (¢ +¥) " Hp(x) + ().

2. Solution of (1.1).

Theorem 1. Let p, v : I — IR be continuous and strictly increasing. Then
(1.1) holds if and only if there are a,b € R, a > 0, such that

(2.1) o) +Y(x) =ax +b (x €I).

Proof. Let (1.1) be true. We consider xg,yo € I and we like to show

xo + yo> _ (¢ + ) (o) + (¢ + 1) (yo)
2 2

22 (o) (
We assume zy < yy and define recursively

(2.3) 2 = min{ (¢ +¢) "' (@(zn-1) + Y (Yn-1)),
(p + ) (P(Yn-1) + (201)) ]},

(2.4) yn = max{(¢ + )" (e(xn-1) + ¥(Yn-1)),
(p + ) P(Yn-1) + Y(n1))}
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(n=1,2,3,...). We get
[0, 0] 2 [w1,1] 2 [22,92] 2. -,
hence
Tt 1T, Yo LY, T <7

When adding (2.3), (2.4), then (1.1) implies z, +y, = xp_1+Yn_1. Therefore
we have x, + y, = o+ v (n=1,2,3,...), in the limit

(2.5) T+ = 2o+ 0.
(2.3), (2.4) also can be written as
(2.6)  @(zn) + ¥(zn) = min{@(2n-1) + V(Un-1), (Yn-1) + (2n-1)},
(2.7)  @yn) + (yn) = max{e(zn-1) + V(Yn-1), @(Yn-1) + V(zn-1)}.
Adding them we get

(o + ) (n) + (0 + ) (yn) = (¢ +¥)(@n-1) + (¢ + ) (Yn-1),
hence
(2.8) (e +¥)(n) + (9 +¥)(yn) = (v + ) (@0) + (¢ + ¥)(¥0)
(n=1,2,3,...). Now n — oo in (2.6), (2.7) gives

o(z) + (1Y) = o(@) + () or @(Z) +¢(y) = e(y) + ¥ (Y)-
In both cases we get Z = §j, and because of (2.5) we have

___ To+Yo
T=y=—

Then n — oo in (2.8) leads to (2.2).

Equation (2.2) is true for arbitrary g,y € I, and this means that ¢ +
v : I — IR is a solution of the Jensen functional equation. Furthermore
¢ + 1 is continuous and strictly increasing, therefore we get (2.1) with some
a>0,be R;cf, eg., Aczél [1] or Kuczma [6].

On the other hand, if continuous, strictly increasing functions ¢, ¢ : I —
IR satisfy (2.1), then (1.1) can easily be verified.

Remark. Consider ag,by € I, and replace (2.3), (2.4) by the formulas

(2.9) an = (¢ + 1) (@(an-1) + ¥ (bp-1)),

(2.10) by = (¢ + 1) (@(bn-1) + tp(an-1))
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(n=1,2,3,...). Then

(2.11) lim a, = lim b, = 2000

n—00 n—00 2

Proof. For xy = min{ag, by}, yo = max{ag, bo} the z,, y, from (2.3), (2.4)
are just

x, = min{a,, b,}, vy, = max{a,,b,}.

This, together with @, T (2o + %), ¥n | 3(z0 + o), and xo + yo = ag + by
leads to (2.11).

Using Theorem 1 we are able to describe our solutions of equation (1.1)
more precisely.

Theorem 2. The continuous, strictly increasing p,v : I — IR solving
(1.1) can be obtained in the following way:

I) We start with an arbitrary Lipschitz-continuous, strictly increasing func-
tion ¢ : I — IR; let N\, denote its smallest Lipschitz-constant.

II) We determine v : I — R by means of (2.1), where b € R, a > )\, are
arbitrary, but where the last inequality has to be replaced by a > A,, if on a
non-degenerate sub-interval of I the function ¢ is linear with slope .

Proof. Let us begin with continuous, strictly increasing ¢,v : I — IR
solving (1.1). By Theorem 1 we have (2.1), and for z,y € I,z < y we get

oY) —p(r) =aly — ) —P(y) +¥(z) < aly — z).

So a is a Lipschitz-constant for ¢, hence A\, < a.

Let us suppose ¢ to be linear with slope A, on some interval [p,q] C I
(where p < ¢). Then we have p(q) — ¢(p) = A\,(¢ — p) and taking (2.1) for
r = q, r = p and subtracting we get

Ao(q—p) +¥(q) —¥(p) = alg —p).
Because of 1 (p) < ¢(g), this implies A\, < a.

These considerations show that ¢, are included in the procedure given
by I), II). Conversely it is easy to see that all functions ¢, 1) obtained by I),
IT) are continuous and strictly increasing on I (in fact, it only remains to
show that ¢ : I — IR is strictly increasing). According to the construction
they fulfil (2.1) with some a,b € IR, hence they solve (1.1).

3. Background. The functional equation (1.1) is related to the question
of invariance of a quasi-arithmetic mean with respect to a mean-type mapping
defined by two quasi-arithmetic means. This question leads to

(3.1) ¢! (M) ! (W) +4(y)

5 5 >=x+y (z,y €1),



where the unknown functions ¢,v : I — IR are continuous and strictly
increasing. Sut6 [9] determined the analytic solutions of (3.1). The same
solutions then had been found in [7] under the assumption of twice continuous
differentiability and after this by Dar6czy and Péles [3] in the general case.

Jarczyk and Matkowski [5], motivated by a more general invariance pro-
blem for weighted quasi-arithmetic means, considered the functional equation

32)  pe Hgel@)+ (1 —q@e(y) + (1L —p)~ ' (ro(z) + (1 —r)e(y))
=pr+(1-py (z,yel),

where p, q,r €]0, 1] are arbitrarily given and the unknown ¢, : I — IR again
are continuous and strictly increasing. They determined the twice continuous-
ly differentiable solutions of (3.2). Then Jarczyk [4] got the same solutions
in the general case.

The means

(3.3) Apy(z,y) = (0 + ) o(x) +0(y)  (z,yel)

had been introduced in [8]; we also can write them as

Apy(,y) = <#> B (M) (z,y €1).

For ¢ = 1 we get the quasi-arithmetic mean generated by ¢, and because
of this we call A,y a quasi-arithmetic mean with two generators (¢ and ).
Let us observe that weighted quasi-arithmetic means are special cases of the
means (3.3).

Using (3.3) we can write a functional equation considered by Bajak and
Péles [2] as

(34) A@lﬂl)l (x,y) + A<P2ﬂb2<x>y) =r+ty (Z‘,y S I)

They determine all four times continuously differentiable solutions ¢, 11, 9,
Yy : I — IR such that ¢} (z),¥](z), ¢5(x), Yy(x) > 0 (z € I). Our functional
equation (1.1) is a special case of (3.4), namely it can be written as

(3.5) App(z,y) + Ay o(z,y) =z +y (x,y €1).

It should be mentioned that all the solutions of (1.1) which are given by our
Theorem 1 already were known to Bajak and Péles [2].

Let us finally observe that, when dividing (3.5) by two, this equation
can be interpreted as invariance of the arithmetic mean with respect to the
mean-type mapping (Ay.p, Ap,) 1 12 — I2.



4. An application. Suppose the continuous, strictly increasing functions
0, : I — IR solve (1.1), and let f : I — IR be arbitrary. Writing (3.5)
instead of (1.1), we then get

Feulan) + A =1 (52) e

This means that F': I? — IR defined by

(1) o =1 (*5Y)  @uen

fulfils the functional equation

(1.2) F(Apu(2,y), Appla,y)) = Fz,y)  (v,y € 1),

Now we shall see that under some continuity assumptions the solutions F' :
I? — R of (1.2) have the form (4.1).

Theorem 3. Let ¢, : I — IR be continuous, strictly increasing functions
solving (1.1). Suppose F : I*> — IR to be continuous in the points of the
diagonal {(z,z) | x € I}. Then F solves the functional equation (1.2) if and
only if there is a continuous f : I — IR such that (4.1) holds.

Proof. So let F': I? — R be a solution of (1.2) which is continuous in
the points (z, ) from 2. We consider (z,y) € I?, and for ag = z, by = y
we define a,,,b, (n =1,2,3,...) as in the Remark after Theorem 1. Observe
that (2.9), (2.10) can be written as

an = App(an_1,bn-1), by = Ay (an_1, b)) (n=1,2,3,...).
Therefore we get from (1.2)
F(an,by) = F(an—1, bp—1) (n=1,2,3,...),
and this implies
(4.2) F(an,b,) = F(ag,by) = F(z,y) (n=1,2,3...).

Because of (2.11) we have lim a, = lim b, = $(ao + by) = 1(z + y), and

n—oo n—oo

n — oo in (4.2) leads to

r+y r+y

4 P(TEL )

Let us define f : I — R by f(x) = F(x,z) (x € I), then f is continuous,
and (4.1) follows from (4.3).
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