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A characterization of quasimonotone increasing
functions

Gerd Herzog

Abstract: We give an equivalent characterization of quasimonotone func-
tions in certain ordered Banach spaces, in terms of directional derivatives of
the norm.

MS-Classification (2000): 47H99

Let (E,|| - ||) be a real Banach space, ordered by a cone K. A cone K is a
closed convex subset of E with AK C K (A >0), and K N (—K) = {0}. As
usual z <y : <= y—x € K. Let (E*|| - ||) denote the topological dual
space of E/, and let

K*={peE": p(x) 20 (z=0)}

denote the dual wedge.

Let D C E. A function f : D — FE is quasimonotone increasing, in the sense
of Volkmann [3], if

z,ye D, x <y, p€ K% p(x)=ply) = o(f(x)) <o(f(y)).

We assume that K is reproducing, that is K — K = E, and that there exists
U e E*, ||¥|| =1 such that

(1) ol = inf{®(p): —p <z <p} (v € E),

Examples are £ = R" or F = ['(IN) with K = {z : z;, > 0}, ||z|| = = |74,
and ¥(z) = Y, xx. Note also that in some cases an equivalent norm can be
defined by (1), for example in case dim £ < oo and if ¥ € K* is such that
x>0,¥(z)=0=2=0.

Next, let m4 : F x E — IR denote the one-sided directional derivatives of
the norm:

ot g] = i Pl el
+[v ] = hoo h '

We will prove:



Theorem: Let D C F and f: D — E. Equivalent are

1. f is quasimonotone increasing;
2. myly —x, f(y) = f(2)] = ¥(f(y) = f(2)) (x,y € D, x < ).

We first prove
K={xe E:¥(x)=|lz||}.

If x € K then obviously ¥(x) = ||z||. On the other hand, let ¥(x) = ||z||.
To each n € IN there exists p, € K such that
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Thus, ||pn—2z|| = Y(pp—2) = V(p,)—||z|| < 1/n. Hence z = lim,, . p,, > 0.

Next, we prove the following representation of K*: Let ¢ € E*\ {0}. Then

pe K < ||V - | < 1.

ma
[l
Set =W — @/ |lgl|. T ||yl < 1 then

p(z) = [lell(llzll =n(x)) 2 0 (z € K),
hence ¢ € K*. On the other hand, if ¢ € K*, then

0<n@) = llal| - 22 < |lofl (@ € K).

el —
Fix z € F, and let ¢ > 0. Choose pg such that

U(po) < ||lz]| +2¢, —po <z < po.

Set

Do+ Do — X
= T =

2 ) 2 — .

T 9

Then z = 21 — 29, x1, 29 € K,
1
[le1l = ¥(z1) = 5(¥(x) + ¥lpo)) < [lal| +¢,

and analogously ||za|| < ||z|| + €.
Therefore

=] = & < =[lzaf| < =nla) < (a1 = 22) <) <[] < [2]] +e,
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that is |n(x)| < ||z||+&. For e — 0+ we obtain |n(z)| < ||z||. Hence ||n|| < 1.
To prove the theorem we use Mazur’s characterization of m, see [1], [2]:
(2) m[z,y] = max{n(y) : n € £, |l =1, n(z) = [[z][}.
Let f: D — E be quasimonotone increasing, let z,y € D, x <y, and let
ne kS (nll =1, nly —x) = |ly — «l].
Then ¢ :=V¥ —n e K*, and
ply —x) =y —=l| —nly —2) = 0.
Hence ¢(f(y) — f(z)) > 0, that is
n(f(y) — f(x)) <V (f(y) = f2)).

By means of (2) we have m [y — x, f(y) — f(z)] < VU(f(y) — f(z)). Equality
follows from

. V(y—z+h(fly) - f() —¥(y—2)
mily — . fly) = f2)] = lim ;

?

since ||¥|| = 1.

Now, let m, [y — z, f(y) — f(z)] < U(f(y) — f(x)) be valid for z,y € D,
z < y.

Let z,y € D, x <y, and ¢ € K*\ {0} with p(z) = ¢(y). Forn =¥ —p/||¢||
we know ||n|| <1, and n(y — z) = ||y — ||, in particular ||n|| = 1. Equation
(2) gives

n(f(y) = f(x)) <mily —x, fly) = f(2)] S U(f(y) = f(2)),

that is
e(f(y) — (@) = [ll[(¥ —n)(f(y) — fz)) = 0.

Hence f is quasimonotone increasing.

Remarks:

1. From m [z, —y] = —m_[z,y]| (z,y € E) we get: A function f: D — E
is quasimonotone decreasing, that is — f is quasimonotone increasing, if and
only if

m_[y—z, f(y) — f(2) =V (f(y) - f(x)) (z,ye D, z<y).



2. If f: D — F is increasing, then
myly —x, fly) = f@)] = lfy) = f@)I] (z.y €D, z<y),
and if f: D — FE is decreasing, then

m_ly =z, fly) = f@)] = =llfy) = F@I (z,yeD, z<y),
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