http://www.mathematik.uni-karlsruhe.de/~semlv Seminar LV, No. 19, 4 pp., 7.5.2004

A characterization of quasimonotone increasing functions

Gerd Herzog

Abstract: We give an equivalent characterization of quasimonotone functions in certain ordered Banach spaces, in terms of directional derivatives of the norm.

MS-Classification (2000): 47H99

Let $(E, ||\cdot||)$ be a real Banach space, ordered by a cone K. A cone K is a closed convex subset of E with $\lambda K \subseteq K$ ($\lambda \ge 0$), and $K \cap (-K) = \{0\}$. As usual $x \le y : \iff y - x \in K$. Let $(E^*, ||\cdot||)$ denote the topological dual space of E, and let

$$K^* = \{ \varphi \in E^* : \varphi(x) \ge 0 \ (x \ge 0) \}$$

denote the dual wedge.

Let $D \subseteq E$. A function $f: D \to E$ is quasimonotone increasing, in the sense of Volkmann [3], if

$$x,y\in D,\ x\leq y,\ \varphi\in K^*,\ \varphi(x)=\varphi(y)\implies \varphi(f(x))\leq \varphi(f(y)).$$

We assume that K is reproducing, that is K - K = E, and that there exists $\Psi \in E^*$, $||\Psi|| = 1$ such that

(1)
$$||x|| = \inf\{\Psi(p) : -p \le x \le p\} \quad (x \in E).$$

Examples are $E = \mathbb{R}^n$ or $E = l^1(\mathbb{N})$ with $K = \{x : x_k \ge 0\}$, $||x|| = \sum_k |x_k|$, and $\Psi(x) = \sum_k x_k$. Note also that in some cases an equivalent norm can be defined by (1), for example in case dim $E < \infty$ and if $\Psi \in K^*$ is such that $x \ge 0$, $\Psi(x) = 0 \Rightarrow x = 0$.

Next, let $m_{\pm}: E \times E \to \mathbb{R}$ denote the one-sided directional derivatives of the norm:

$$m_{\pm}[x,y] = \lim_{h \to 0\pm} \frac{||x + hy|| - ||x||}{h}.$$

We will prove:

Theorem: Let $D \subseteq E$ and $f: D \to E$. Equivalent are

1. f is quasimonotone increasing;

2.
$$m_{+}[y-x, f(y)-f(x)] = \Psi(f(y)-f(x)) \ (x, y \in D, x \le y).$$

We first prove

$$K = \{x \in E : \Psi(x) = ||x||\}.$$

If $x \in K$ then obviously $\Psi(x) = ||x||$. On the other hand, let $\Psi(x) = ||x||$. To each $n \in \mathbb{N}$ there exists $p_n \in K$ such that

$$\Psi(p_n) \le ||x|| + \frac{1}{n}, \quad -p_n \le x \le p_n.$$

Thus, $||p_n - x|| = \Psi(p_n - x) = \Psi(p_n) - ||x|| \le 1/n$. Hence $x = \lim_{n \to \infty} p_n \ge 0$.

Next, we prove the following representation of K^* : Let $\varphi \in E^* \setminus \{0\}$. Then

$$\varphi \in K^* \iff ||\Psi - \frac{\varphi}{||\varphi||}|| \le 1.$$

Set $\eta = \Psi - \varphi/||\varphi||$. If $||\eta|| \le 1$ then

$$\varphi(x) = ||\varphi||(||x|| - \eta(x)) \ge 0 \quad (x \in K),$$

hence $\varphi \in K^*$. On the other hand, if $\varphi \in K^*$, then

$$0 \le \eta(x) = ||x|| - \frac{\varphi(x)}{||\varphi||} \le ||x|| \quad (x \in K).$$

Fix $x \in E$, and let $\varepsilon > 0$. Choose p_0 such that

$$\Psi(p_0) \le ||x|| + 2\varepsilon, \quad -p_0 \le x \le p_0.$$

Set

$$x_1 = \frac{p_0 + x}{2}, \quad x_2 = \frac{p_0 - x}{2}.$$

Then $x = x_1 - x_2, x_1, x_2 \in K$,

$$||x_1|| = \Psi(x_1) = \frac{1}{2}(\Psi(x) + \Psi(p_0)) \le ||x|| + \varepsilon,$$

and analogously $||x_2|| \leq ||x|| + \varepsilon$.

Therefore

$$-||x|| - \varepsilon \le -||x_2|| \le -\eta(x_2) \le \eta(x_1 - x_2) \le \eta(x_1) \le ||x_1|| \le ||x_1|| + \varepsilon$$

that is $|\eta(x)| \le ||x|| + \varepsilon$. For $\varepsilon \to 0+$ we obtain $|\eta(x)| \le ||x||$. Hence $||\eta|| \le 1$.

To prove the theorem we use Mazur's characterization of m_+ , see [1], [2]:

(2)
$$m_{+}[x,y] = \max\{\eta(y) : \eta \in E^{*}, ||\eta|| = 1, \eta(x) = ||x||\}.$$

Let $f: D \to E$ be quasimonotone increasing, let $x, y \in D$, $x \leq y$, and let

$$\eta \in E^*, ||\eta|| = 1, \eta(y - x) = ||y - x||.$$

Then $\varphi := \Psi - \eta \in K^*$, and

$$\varphi(y - x) = ||y - x|| - \eta(y - x) = 0.$$

Hence $\varphi(f(y) - f(x)) \ge 0$, that is

$$\eta(f(y) - f(x)) \le \Psi(f(y) - f(x)).$$

By means of (2) we have $m_+[y-x,f(y)-f(x)] \leq \Psi(f(y)-f(x))$. Equality follows from

$$m_{+}[y-x, f(y)-f(x)] \ge \lim_{h\to 0+} \frac{\Psi(y-x+h(f(y)-f(x)))-\Psi(y-x)}{h},$$

since $||\Psi|| = 1$.

Now, let $m_+[y-x,f(y)-f(x)] \leq \Psi(f(y)-f(x))$ be valid for $x,y\in D,$ $x\leq y.$

Let $x, y \in D$, $x \leq y$, and $\varphi \in K^* \setminus \{0\}$ with $\varphi(x) = \varphi(y)$. For $\eta = \Psi - \varphi/||\varphi||$ we know $||\eta|| \leq 1$, and $\eta(y - x) = ||y - x||$, in particular $||\eta|| = 1$. Equation (2) gives

$$\eta(f(y) - f(x)) \le m_+[y - x, f(y) - f(x)] \le \Psi(f(y) - f(x)),$$

that is

$$\varphi(f(y) - f(x)) = ||\varphi||(\Psi - \eta)(f(y) - f(x)) \ge 0.$$

Hence f is quasimonotone increasing.

Remarks:

1. From $m_+[x,-y]=-m_-[x,y]$ $(x,y\in E)$ we get: A function $f:D\to E$ is quasimonotone decreasing, that is -f is quasimonotone increasing, if and only if

$$m_{-}[y-x, f(y)-f(x)] = \Psi(f(y)-f(x)) \quad (x, y \in D, x \le y).$$

2. If $f: D \to E$ is increasing, then

$$m_{+}[y-x, f(y)-f(x)] = ||f(y)-f(x)|| \quad (x, y \in D, \ x \le y),$$

and if $f: D \to E$ is decreasing, then

$$m_{-}[y-x, f(y)-f(x)] = -||f(y)-f(x)|| \quad (x, y \in D, \ x \le y),$$

References

- [1] Martin, R.H.: Nonlinear Operators and Differential Equations in Banach spaces. Robert E. Krieger Publ. Company, Malabar, 1987.
- [2] Mazur, S.: Über konvexe Mengen in linearen normierten Räumen. Stud. Math. 4 (1933), 70-84.
- [3] Volkmann, P.: Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen. Math. Z. 127 (1972), 157-164.