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On functions close to homomorphisms between square
symmetric structures

Karol Baron and Peter Volkmann

Abstract. Let o: S x S — S and *x: E X E — FE be binary operations. Suppose
f:S—E ¢:FExE — [0,00), and numbers w,e > 0 are given. We provide
conditions for (P) = (Q) and for (Q) = (P) to hold, where (P), (Q) have the

following meanings:
(P) There is a homomorphism h : S — E such that

p(f(x),h(z)) <e (z€5).

(Q) There are real numbers d,m such that

o(f(x) = f(y), flxoy)) <6, o(f(x)

n

f(@*) <wletn (z,y€S; ne ).

The 2"-th powers in (Q) concern the operations * and o, respectively. For the more
important implication (Q) = (P) we suppose o and * to be square symmetric
operations (i.e., (zoy)o(xoy) = (xox)o(yoy) for z,y € S, and similarly for *
in the set E). — We use our investigations to give a variant of a Forti’s result on
stability in the sense of Pélya, Szegd, Hyers, Ulam.

1. Introduction. By IV, Z, R we denote the system of natural numbers,
integers, and reals, respectively; IN = {1,2,3,... }. Let (S,0), (E, ) be given
sets with binary operations. A homomorphism h : S — FE is a solution of the

Cauchy functional equation

(1) Wxoy) = h(z)*h(y) (z,y € 5).

on

For x € S the powers ¢ (n € IN) are recursively defined by

(2) 2 = wor, & = (@) (n 2 1),

2

and for u € E the powers u?" with respect to * have a similar meaning. Then

(1) implies

(3) h(z*") = h(z)*" (€S, ne€ N).



Now let f: S — E, ¢: Ex E — [0,00) be given functions, let £ > 0, and

consider the following requirement:

(P) There is a homomorphism h : S — E such that

(4) p(f(x),h(z)) <e (xe€5).

(P) means that in some sense f is close to the homomorphism h. In the next
paragraph we give conditions for the space (F, x) and the function ¢, in order

to get from (P) the following properties (Q;), (Q2):

(Q1) There is a real number § such that

(5) o(f(x)* f(y), f(xoy)) <0 (x,y €S9).

(Q2) There is a real number n such that

(6) p(f(2)*, f(z™)) Sw"e+n (z €S, n e N).

(Q1) and (Q2) together are sometimes simply called (Q), like in the abstract.
In (6), w is a given positive number, which later on will be linked to ¢ by

the formula
(A) p(u?,v?) = wp(u,v) (u,v € E).
To get (Qz) from (P) we rather use

(A.) p(1?,0?) < wplu,v) (u,v € E).

The inverse inequality

(As) p(u?,v%) = we(u,v) (u,v € E)

is used in the third paragraph to get (P) from (Q): We construct the function
h occuring in (4). To do so, we equip E with a complete metric p < ¢, and
we give conditions for obtaining h as the usual limit, which is known from
Pélya and Szegé for (S,0) = (IV,+), (E, x) = (R, +) (cf. [10], Exercise I 99)
and from Hyers [6] for Banach spaces S, E; cf. also Forti’s survey paper [4].
To obtain the homomorphism property (1) for this function h, we suppose

the operations o in S and * in E to be square symmetric (cf. [9]), i.e.
(V) (zoy)o(woy) = (zox)o(yoy) (z,y € 5),
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(W) (uxv)*(uxv) = (uku)*x(vxv) (u,v € F).

Of course, these formulas also can be written as (zoy)? = z?0y?, (u*v)? = u?x
v%. From Forti’s paper [2] it is already clear that square symmetric operations
provide a natural setting for studying stability of Cauchy functional equations
(cf. also [1] by Borelli and Forti; the first paper using square symmetry in

this context is due to Rétz [11]; for more recent results cf. Pales [8]).

In the fourth paragraph we discuss uniqueness of the homomorphism A in

(P), and we summarize the hypotheses for the equivalence between (P) and

Q).

The fifth paragraph is devoted to stability. Concerning conditions (P), (Qy),
(A) we are less general than Forti [2]: He allows variable ¢ = ¢(x), § = d(z,y),
and instead of (A) he uses p(u?,v?) = k(p(u,v)), where k : [0, 00) — [0, 00) is
an appropriate function. On the other hand, our function ¢ is not necessarily
a metric on FE, since p(v,u) = ¢(u,v) (u,v € E) will not be required.

Examples in the concluding sixth paragraph show the advantage of this.

A special case of our considerations is a square symmetric structure (.S, o)
(i.e., (V) holds) and (E,x) = (E,+) with an arbitrary Banach space E,
where p(u,v) = p(u,v) = ||lu —v|| (u,v € F) and w = 2. Then it is known
from [16] (and it is easy to show) that (P), (Q) are equivalent; this result
had been inspired by [5].

2. The implications (P) = (Q;) and (P) = (Q2). For the function
¢: Ex E — [0,00) we deal with the following conditions:

(S) There is a constant a > 0 such that
o(v,u) < ap(u,v) (u,v € E).
(T) There are constants b,c > 0 such that
o(u,w) < bp(u,v) + cp(v,w) (u,v,w € E).
(Ty) There is a constant ¢ > 0 such that

o(u,w) < p(u,v) + co(v,w) (u,v,w € E).



(Tll) 50<U7 U)) S QO(U, U)‘HO(U, w) <u7 v, w € E)
Of course, (T11) = (T1) = (T). The triangle inequality (T;;) will be used

later, when discussing stability. At present we need a certain boundedness

condition:
(B) There is a real number 3 such that for t,u,v,w € E we have
o(t,v) <e, plu,w) <e= (t*xu,v*w)<p.

Proposition 1. If (S), (T), (B) are satisfied, then (P) = (Qu1); if (S), (T1),
(A<) hold, then (P) = (Qa).

Proof. To get (Qq) from (P), consider z,y € S and use (S), (T), (B), (P),

and (1) as follows:

o(f(x) = fy), f(xoy))
< bo(f(z) * f(y), h(z) = h(y)) + cp(h(z o y), f(z o y))
<bB+ cap(f(roy),h(roy)) <bB+ cae.

This proves (Qp) with 6 = b3 + cae. To get (Q) from (P) we use (3). Then
(8)7 (Tl)a (AS)’ (P) anly

p(f(2)", f(@™)) < (f (@), h(2)™) + cp(h(2™), f(2™))
< w'(f (@), h(2)) + cap(f(z*), h(z*")) < w"e + cae,

i.e., (Qz2) holds with 7 = cae.

3. The implication (Q) = (P). Here we use the following property of
in E:

(U) To every u € E there is a unique v € E such that v? = u.

/2 _ 27

. 1 .
We write v = u u® ~, and we define recursively

¥ =W (ueE, neN).

Together with u2° = u! = u and with the analogue of (2) for the operation

in E, the powers u*" are defined for all m € Z, and the rule (u*")*" = u®"""

for u € F and m,n € Z can easily be verified.

As mentioned in the introduction, p will be a metric on E; we suppose:



(R) (E,p) is a complete metric space, and p < .

All further topological (and metric) notions in E are understood with respect

to p. In particular the function h : S — E in (P) will be given by the limit

(7) h(z) = lim f(2*")* " (z € 9).

n—oo

Proposition 2. Suppose (Q2), (R), (U), (As), and
(E) w> 1.
Then (7) defines a function h : S — E.

Proof. We fix x € S. Because of (U) the expressions f(z%")? " have a meaning,
and because of (R) it is sufficient to show that they form a Cauchy sequence:
We put

S = pUFE) ST (mon e N,
By p < ¢ and (As) we get

1
mern

p(f(@™)* f((@*)™)

((2) implies 22" = (#2™)?"). Now (Qy), (E) yield

5m,m+n S

e+ |n]
wm

(W'e+mn) <

5m,m+n S wm+n )

and the last term tends to zero as m — oo.

The conditions (V), (W) will occur in the next proposition. From (V), (2)
the formula (z 0 y)*" = 22" o y*" (x,y € S; n € ) easily follows. From (W)
we get a similar formula for the operation x in E, and if also (U) holds, then

we have more generally (uxv)?" = u*" xv?" (u,v € E; m € Z). Two further

conditions will be used:
(C) x: Ex E — FE is conlinuous.
(D) ¢: Ex E —[0,00) is continuous with respect to the second variable.

In the next proposition we use again the definition of h : S — FE from

Proposition 2.

Proposition 3. Assume (Q2), (R), (U), (As), (E) to hold and define h :
S — E by (7). If (D) is satisfied, then (4) holds. If (V), (W), (Q1), (C) are

satisfied, then h : S — E is a homomorphism.
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Proof. Let (D) be satisfied: Dividing (6) by w™ and using (A>) yields

o(f(x), f(2*) ") <e+ u%
By n — oo we get (4).

Now let (V), (W), (Q1), (C) be satisfied: For z,y € S and n € IN we get from
(5) the inequality

P(f ™)+ f(y™), f((woy)™)) < 6.

We divide by w™ and we use (As) to obtain

PTG S A (o) <

Because of p < ¢ we can replace ¢ by p. Then, when using (C), n — oo
yields h(x) % h(y) = h(z o y).

Observe that by the last reasoning we get h(x) * h(x) = h(xox), if (V), (W)
are not required (cf. also Proposition 1 in Forti’s paper [3]). But for this it is
sufficient to have (5) only for y = z, and this point of view has been adopted
in [18].

Observe furthermore that at the end of Proposition 3 we can replace (V) by

a more general condition stemming from Jézef Tabor [15] (cf. also [18]).

As an immediate consequence of Propositions 2, 3 we have:

Proposition 4. Suppose (R), (U), (V), (W), (As), (C), (D), (E) to hold.
Then (Q) = (P).

4. Uniqueness of the homomorphism h in (P) and the equivalence

(P) < (Q).

Proposition 5. Assume (S), (T), (As), (E), and:
(F) Foru,v € E, p(u,v) =0 implies u = v.

Then the homomorphism h : S — E in (P) is unique.
Proof. For homomorphisms hy, hy : S — E satisfying

p(f(2),hi(z) <&, (f(x) ha(z)) < (z€5)
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we have

p(hi (@), ha(x)) < bp(ha (), f(2)) + cp(f (), ha(2))
< bap(f(x),h1(x)) + ce < (ba + c)e =: 7,

hence, for x € S and n € IV,

IN

7
7
g

v/w" =0 (n— oc0).

IN

[\
~—~
8
~—
~— ~— ~— ~—
IN

IA

Therefore, p(hi(x), he(z)) = 0 (z € S), and because of (F) we obtain hy = h.
Since (F) is a consequence of (R), we get from Propositions 1, 4, 5 the result:

Theorem 1. Assume (R), (S), (T1), (U), (V), (W), (A), (B), (C), (D), (E) to
hold. Then (P) < (Q), and the homomorphism h : S — E in (P) is uniquely
determined; it is given by the limit (7).

5. Stability. (S, 0) and (F, x) being given, we understand stability of equa-
tion (1) by means of the function ¢ : E x E — [0, 00) in the following way:

Definition. The homomorphism equation (1) is stable, if for each € > 0 there
exists a 6 > 0 such that for functions f : S — E satisfying (5) also (P) holds.

In view of Proposition 4 it is now of interest to get for each € > 0 some
d > 0 such that the inequality (5) in (Q;) implies (Qz): In such a case one
has stability, if also the hypotheses of Proposition 4 are satisfied.

Proposition 6. Assume (A<), (E), and the triangle inequality (T1;) to hold,
and suppose 0 < § < e(w —1). Then (5) implies (Qz).

Proof. We use (5) only for y = z, i.e.,
(8) p(f(2)? f(2%) <6 (x € S).
For z € S and n € IV, (Ty;) implies

e(f(@)*, F@™) < p(f(@)*, F@®* ) +
+o(f@)? T F @t ) o p(f (@2 (=),



and by (A<), (8) we get

o(f(@)*, f(@®) W o+ WA+ 6 =
T o1 Y o w_l—wg o1

i.e., (6) holds with n = —§/(w — 1).
As a consequence of Propositions 4, 6 we get:

Theorem 2. Suppose (R), (T11), (U), (V), (W), (A), (C), (D), (E) are fulfil-
led. Then equation (1) is stable: If € > 0 is arbitrary and § = (w — 1), then
(5) implies (P).

Remark. In the proof of Proposition 6 the inequality (5) was only needed
for y = x. Therefore Theorem 2 can be strengthened in the following way:
Suppose the hypotheses (R), ..., (E) of that theorem to hold. Let ¢ > 0
be given, suppose (5) to hold with some 6 > 0 (this 0 not necessarily being
linked to ¢€), and suppose

p(f(@)* f(2%) Se(w—1) (x€89).
Then (P) is true.

In the simple case (S,0) = (E,*) = (R,+) (and ¢(z,y) = |z — y|) this
remark means that for f : R — IR having the properties

[f(@) + fly) = fle+y) <6, |f22) =2f(2)[ <e (2,9 € R),
there is an additive h : R — IR such that |f(z) — h(z)| < e (x € R).

6. Examples. 1. Let E be a Banach space. As square symmetric operation

in this space we take the addition (and we write +, not ), as metric we take
(9) plu,v) = allu—v| (u,v € E),

where @ > 0 will be specified in a moment. Let V' be a closed, convex,
bounded subset of E, having zero in its interior, and let p : E — [0, 00) be
the Minkowski functional of this set (cf., e.g., Rudin [13]), in particular we

have

(10) V=Auluekl, uu) <1}



We take

(11) p(u,v) = plu—v) (u,v € E),

and we choose « in (9) such that p < ¢. Then F, ¢, p meet all the conditions
(R), (S), (T11), (U), (W), (A), (B), (C), (D), (E) in Theorems 1, 2 and we
have w = 2 for this case. In condition (B) the dependence of  upon ¢ is

given by [ = 2¢.

Moreover, let (S, o) be an arbitrary square symmetric structure (i.e., also (V)
holds true); by Theorem 2 we get stability with 6 = &, and because of (10),
(11) this means for ¢ = 1 the following: If f : S — F satisfies

(12) f(@)+f(y)—fzoy) €V (z,y € 9),
then there is h : S — E such that
(13) h(zoy) = h(z)+h(y), f(z)—h(x) €V (z,y € 5).

This result is already known for the more general case of bounded subsets V
of E, which are ideally convex in the sense of LifSic [7]; the proof in [17] is the
same as the former proof by Jacek Tabor [14] for commutative semigroups

(5,0).

2. Supposen € IN, n > 2, and 0 < p < 1. We take F = IR" with its addition

+ as square symmetric operation, and we equip R" with the F-norm

(14) lull =) ul? (u=(u1,... ,u,) € R").
v=1
Then p(u,v) = |ju — v|| (u,v € R") defines a translation invariant metric,

by which R" becomes a complete metric linear space (cf. Rolewicz [12]). We
take ¢ = p, and again F, p, p meet all conditions (R), (S), (T11), (U), (W),
(A), (B), (C), (D), (E) in Theorems 1, 2; this time we have w = 2P in (A),

hence w < 2.

In particular we get 0 < ¢ in Theorem 2, and actually § = ¢ is not possible:

To see this, suppose the contrary and define
(15) V={ulue R", |ul| <1}

As in the previous example, if (S5, 0) is a square symmetric structure, then
to each function f : S — E satisfying (12), there is an h : S — E such that
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(13) holds. If we take (S,0) = (R,+), then a theorem of Jacek Tabor [14]
forces V' to be a convex subset of R" (this space now being considered as a
Banach space). But because of 0 < p < 1 (and n > 2) in (14), the set (15) is

not convex.

3. In the foregoing example ¢ is a metric (¢ = p), and such cases are covered
by the papers of Forti [2] and of Borelli and Forti [1]. Now we take £ = R?,

again with + as operation, and we define

() = plug, ug) = { \/\/2_1511 |r§2‘| EZi i 8; (u = (uy,us) € R?).

Then ¢(u,v) = p(u —v) (u,v € IR?) is not symmetric, hence not a metric.
Finally we put p(u,v) = ||u—v|| (u,v € IR*) where || - || is given by (14) with
n =2, p=1. Then E, ¢, p meet all the conditions (R), (S), (T11), (U), (W),
(A), (B), (C), (D), (E) in Theorems 1, 2; here we have w = /2.

Let (S,0) be an arbitrary square symmetric structure, and let us look at
Theorem 2: If
W= {ulue R, pu) <1},

e >0, andif f: S — F satisfies

flx)+ fly) = f(xoy) € oW

(where § = (v/2 — 1)? = £(3 — 2v/2)), then there is h : S — E such that
(16) h(zoy) = h(x)+h(y), f(x)—h(z) € eW (z,y € 5).

The square in § = £(v/2 — 1)? comes from the fact that for r > 0 we have
p(u) < rif and only if u € r*W.

As Jacek Tabor has pointed out (oral communication), such type of stability
result can be reduced to our first example: Take F = R? and choose §; €
(0, ) according to

V=6 -convW CeW
(where conv W denotes the convex hull of W). Then, if a function f: S — E

satisfies
f(@)+ fy) = fwoy) € W,
we get (12), hence also (13) for some h : S — E, and therefore we have (16).
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4. Let us conclude by an infinite-dimensional version of the foregoing example:

We take the complete metric linear space

E={ulu=(u,ug,...), [Jull :Z\/|Un| < oo}
n=1

with + as operation, and for u = (uy, us,...) € E we define
_ ||(2U1,U2,U/37U4,,,.>H (Ul 2 0)
= { | (s < 0)

Again ¢(u,v) = p(u — v) (u,v € E) is not symmetric, hence not a metric,

and again we take p(u,v) = ||[u —v| (u,v € E).

Then E, ¢, p meet all the conditions (R), (S), (T11), (U), (W), (A), (B), (C),
(D), (E) in Theorems 1, 2, where w = /2.
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