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Dense sets of additive functions

Karol Baron and Peter Volkmann

Abstract. We consider the topological vector space A of all additive functions
from R to R with the Tychonoff topology induced by RR and we prove that the
following subsets of A and their complements (with respect to A) are dense: the
set of all additive injections, surjections, bijections, involutions, additive functions
with countable image, additive functions with big graph. We are using a lemma
which characterizes the density of subsets of A.

1. Introduction

Consider the real (locally convex) topological vector space RR of all functions
from R to R with the usual Tychonoff topology and let

A = {a ∈ RR : a is additive},
Ac = {a ∈ A : a is continuous}.

Then A,Ac are closed subspaces of RR and, in fact, Ac is one–dimensional. We
consider A with the topology induced by RR, and by a Hamel basis of R we mean
a basis of the vector space R over the field Q.

Theorem 1. For any Hamel basis H of R the operator Λ : A → RH defined by
Λa = a|H is a linear homeomorphism.

The proof will be given in section 2. Since R and H are equipotent, the topo-
logical vector spaces RR and RH are isomorphic, and we have the following

Corollary. The topological vector spaces A and RR are isomorphic.

It is the aim of this paper to show that some well known sets of additive functions
are dense subsets of A. Namely we can prove

Theorem 2. The following eight subsets of A and their complements (with respect
to A) are dense:

Ainj = {a ∈ A : a is injective},
Asur = {a ∈ A : a(R) = R},

Abij = Ainj ∩ Asur,

Ainv = {a ∈ A : a ◦ a = idR},
AQ = {a ∈ A : a(R) ⊂ Q},

Asmall = {a ∈ A : a(R) is countable},
Ainj \ Asur, Asur \ Ainj.

For the proof the following lemma will be used:
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Lemma. A subset D of A is dense in A if and only if the following condition is
satisfied:
(P) For M ∈ N, for reals h1, . . . , hM , h′

1, . . . , h′
M being linearly independent over

Q, and for ε > 0, there exists a ∈ D such that

(1) h′
m − ε < a(hm) < h′

m + ε (m = 1, . . . , M).

In applications it is sometimes possible to verify (P) with (1) replaced by

(2) a(hm) = h′
m (m = 1, . . . , M),

the ε > 0 then being superfluous. The lemma will be proved in section 3 and the
Theorem 2 in section 4.

The elements of Asmall are the additive functions with small graph (cf. [1; p.287]).
There are also additive functions with big graph (cf. [1; p.287]); the definition will
be given in section 5, where also the following result will be proved:

Theorem 3. The set Abig of additive functions with big graph is dense in A, and
also A \ Abig is dense.

Concerning Abig we can show that it has property (P) (with (2) instead of (1)),
hence we can apply the lemma, a procedure which is similar to some steps in
the proof of Theorem 2. The difference is that now we use transfinite induction,
therefore some basic facts on ordinal numbers are required. For the lemma we need
the following fact (the proof of which is left to the reader):

Remark. Given M ∈ N, reals y1, . . . , yM , a finite set H0 of reals linearly inde-
pendent over Q, and a positive ε, then there exist reals h′

1, . . . , h′
M such that

H0 ∪ {h′
1, . . . , h′

M} is linearly independent over Q and

|h′
m − ym| < ε (m = 1, . . . ,M).

2. Proof of Theorem 1

Obviously Λ is a linear bijection. We shall show that it is also a homeomorphism.
To see that Λ is continuous consider the cartesian product projections πx : RR →
R, ph : RH → R, and note that

ph ◦ Λ = πh|A (h ∈ H).

To get continuity of Λ−1 : RH → RR observe that for finite sums

x =
∑
h∈H

rhh

with rationals rh we have
πx ◦ Λ−1 =

∑
h∈H

rhph.
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3. Proof of the lemma

Let D be a subset of A. Assume (P) and let H be any Hamel basis of R. Due
to Theorem 1 it is enough to prove that Λ(D) is dense in RH . Let U be an open
and non–empty subset of RH . To show that U ∩ Λ(D) ̸= ∅ we may assume

U = X
h∈H

Uh,

where the Uh are non–empty open subsets of R such that Uh = R for h ∈ H \
{h1, . . . , hM} (the h1, . . . , hM being different elements of H). When applying the
remark from the end of the introduction we find ε > 0 and reals h′

1, . . . , h′
M such

that h1, . . . , hM , h′
1, . . . , h′

M are linearly independent over Q and

(h′
m − ε, h′

m + ε) ⊂ Uhm (m = 1, . . . ,M).

By using (P) we get an element a of D satisfying (1). Then Λa ∈ U and this ends
the proof of the density of D. The fact that any dense subset D of A satisfies (P)
is obvious.

4. Proof of Theorem 2

We shall show the density of Ainv,Ainj \Asur,Asur \Ainj by applying the lemma.
The density of AQ can be shown directly. Then the rest follows from the following
inclusions:

Ainv ⊂ Ainj ∩ Asur ∩ (A \ AQ) ∩ (A \ Asmall),

AQ ⊂ Asmall ∩ (A \ Ainj) ∩ (A \ Asur) ∩ (A \ Abij) ∩ (A \ Ainv),

Asur ⊂ A \ (Ainj \ Asur), Ainj ⊂ A \ (Asur \ Ainj).

For M ∈ N and for reals h1, . . . , hM , h′
1, . . . , h′

M being linearly independent over
Q, let H be a Hamel basis of R containing them.

The function a ∈ A defined by putting

a(hm) = h′
m, a(h′

m) = hm (m = 1, . . . , M)

and
a(h) = h for h ∈ H \ {h1, . . . , hM , h′

1, . . . , h′
M}

satisfies (2) and
(a ◦ a)(h) = h (h ∈ H),

hence also
(a ◦ a)(x) = x (x ∈ R).

Therefore the density of Ainv follows from the lemma.
To apply the lemma to Ainj \ Asur it is enough to consider any a ∈ A satisfying

(2) and such that a|H is an injection of H onto a proper subset of H.
In the case of Asur \Ainj we choose any a ∈ A such that (2) holds and a|H maps

H onto H but is not one–to–one.
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The density of AQ can easily be given by using condition (P) in full (i.e. with
the ε > 0 in it). Note that the density of AQ follows also from Theorem 1 since

Λ(AQ) = QH .

5. Big graph

Following [1; p.287] we say that an additive function a : R → R has a big graph
if B∩ Graph(a) ̸= ∅ for every Borel subset B of R2 such that

(3) {x ∈ R : (x, y) ∈ B} has continuum cardinality.

Such functions have a lot of interesting properties, we refer the reader to [1; pp.288–
291, 297].

For the proof of Theorem 3 denote by γ the first ordinal such that the set of
smaller ordinals has continuum cardinality. Let all Borel subsets B of R2 with
property (3) be arranged in a transfinite sequence (Bα)α<γ . To apply the lemma
let also an M ∈ N be given as well as reals h1, . . . , hM , h′

1, . . . , h′
M which are

linearly independent over Q. Now we can find transfinite sequences (xα)α<γ and
(yα)α<γ of reals such that

(4) (xα, yα) ∈ Bα, xα ̸∈ Lin({xβ : β < α} ∪ {h1, . . . , hM}) (α < γ)

(where Lin denotes linear hull in the vector space R over Q). Since the set {xα :
α < γ}∪{h1, . . . , hM} is linearly independent over Q, there exists a ∈ A such that
(2) and

a(xα) = yα (α < γ)

hold. It follows from the first part of (4) that a has a big graph.
The density of A \ Abig follows, e.g., from the density of its subset AQ.
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