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Differential inequalities

Gerd Herzog, Roland Lemmert

1. Introduction. Consider a function f : [a, b] × R → R and differentiable
functions u, v : [a, b] → R. It is well known [17], p.65 that

u′(t) − f(t, u(t)) < v′(t) − f(t, v(t)) (t ∈ [a, b]), u(a) < v(a)

imply u(t) < v(t) (t ∈ [a, b]). What about ≤ instead of < everywhere? For
example u(t) = t2, v(t) = 0 satisfy

0 = u′(t) − 2
√

|u(t)| = v′(t) − 2
√

|v(t)| (t ∈ [0, 1]), u(0) = v(0) = 0

but here u(t) > v(t) (t ∈ (0, 1]). On the other hand replacing < by ≤ is
allowed in case f is for example Lipschitz continuous in its second variable
[17], p.69.
May these results be generalized to several variables or even infinite dimen-
sions? The answer is known [14], but is maybe not common knowledge out-
side the ODE community. We want to present here, in the finite dimensional
setting, some simple facts on differential inequalites and its applications, for
example to fixed point theory.

2. Norm and order. To get results on inequalities for vector valued
functions we have to say what x ≤ y means in case that x, y ∈ Rn. Consider
a closed and convex subset K of Rn with the following properties:

λK ⊆ K (λ ≥ 0), K ∩ (−K) = {0}.

Such a set is called a cone and typical examples are (x = (x1, . . . , xn))

Knat := {x ∈ Rn : x1 ≥ 0, . . . , xn ≥ 0}

the natural cone,

Kice := {x ∈ Rn : xn ≥
√

x2
1 + · · · + x2

n−1}
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the n-dimensional ice-cream cone, and

Kpol := {x ∈ Rn : x1 + x2s + · · · + xns
n−1 ≥ 0 (s ∈ R)},

which we will call the polynomial cone.
A cone K is called solid if its interior K◦ is not empty. For example Knat

and Kice are solid cones and Kpol is solid in case n is odd. In the sequel we
will only consider solid cones.
If K is a cone we can define a partial ordering on Rn by

x ≤ y ⇐⇒ y − x ∈ K,

and we write x ≪ y for y−x ∈ K◦. In case x ≤ y we define the order interval
[x, y] by {z ∈ Rn : x ≤ z ≤ y}, which is the same as (x + K) ∩ (y − K).

It is useful to connect an ordering to a norm. We fix p ∈ K◦. The order inter-
val [−p, p] is a closed, bounded and absolut convex set with nonempty interior
and is therefore the unit ball of a norm || · ||. For example p = (1, . . . , 1) ∈
(Knat)

◦ leads to the maximum norm, and for p = (0, . . . , 0, 1) ∈ (Kice)
◦ we

get ||x|| = |xn| +
√

x2
1 + · · · + x2

n−1. We have the following compatibility
properties between norm and order:

1. 0 ≤ x ≤ y ⇒ ||x|| ≤ ||y|| (x, y ∈ Rn).
2. −y ≤ x ≤ y ⇒ ||x|| ≤ ||y|| (x, y ∈ Rn).
3. −λp ≤ x ≤ λp ⇔ ||x|| ≤ λ (x ∈ Rn, λ ≥ 0).
4. −||y||p ≤ x ≤ ||y||p ⇔ ||x|| ≤ ||y|| (x, y ∈ Rn).
5. [x, y] is a bounded and convex set (x, y ∈ Rn, x ≤ y).
6. If (xn) is a sequence in Rn and x1 ≤ x2 ≤ · · · ≤ y for some y ∈ Rn, then
(xn) is convergent.

We will not give a proof of these properties here, for the details see [2], §19.
At least for Knat and p = (1, . . . , 1) the relations above are quite obvious.

3. Quasimonotonicity. Let ⟨·, ·⟩ denote the standard inner product on Rn.
The set

K∗ := {ξ ∈ Rn : ⟨x, ξ⟩ ≥ 0 (x ∈ K)}

is a cone since K is solid, and is called the dual cone of K. For example
K∗

nat = Knat and K∗
ice = Kice. In general K∗ ̸= K. Now, consider x ∈ Rn.

We have x ≥ 0 if and only if ⟨x, ξ⟩ ≥ 0 for each ξ ∈ K∗. If x ≫ 0 then
⟨x, ξ⟩ > 0 for each 0 ̸= ξ ∈ K∗. On the other hand, if x is in the boundary
of K then ⟨x, ξ⟩ = 0 for some 0 ̸= ξ ∈ K∗.

A function g : Rn → Rn is called quasimonotone increasing (qmi) [14] if it
has the following property:
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If x, y ∈ Rn and ξ ∈ K∗ are such that x ≤ y and ⟨x, ξ⟩ = ⟨y, ξ⟩, then
⟨g(x), ξ⟩ ≤ ⟨g(y), ξ⟩.
This definition calls for some comments. If g : Rn → Rn is monotone increas-
ing (that is x ≤ y ⇒ g(x) ≤ g(y)), then g is qmi. Moreover x 7→ λx is qmi
for each λ ∈ R. Hence g is qmi for example if g + λid is increasing for some
λ ∈ R. But this is far from the general case since in the one dimensional
case (K = [0,∞)) every function g : R → R is qmi. The most common case
is Rn ordered by Knat. In this case g = (g1, . . . , gn) : Rn → Rn is qmi if and
only if it has the following property [14]: If x, y ∈ Rn and k ∈ {1, . . . , n} are
such that x ≤ y and xk = yk then gk(x) ≤ gk(y).

A function f : [a, b] × Rn → Rn is called qmi in x if x 7→ f(t, x) is qmi for
each t ∈ [a, b].

A connection between quasimonotonicity and differential inequalities is as
follows [14].

Theorem 1 Let f : [a, b] × Rn → Rn be qmi in x, and let u, v : [a, b] → Rn

be differentiable. Then

u′(t) − f(t, u(t)) ≪ v′(t) − f(t, v(t)) (t ∈ [a, b]), u(a) ≪ v(a)

imply u(t) ≪ v(t) (t ∈ [a, b]).

Proof: Since u, v are continuous with u(a) ≪ v(a) we have u(t) ≪ v(t) in a
right neighbourhood of a. Assume that our assertion does not hold. Then
there exists t0 ∈ (a, b] such that x := v(t0)−u(t0) ∈ ∂K and u(t) ≪ v(t) (t ∈
[a, t0)). Then ⟨x, ξ⟩ = 0 for some 0 ̸= ξ ∈ K∗ and therefore ⟨f(t0, u(t0)), ξ⟩ ≤
⟨f(t0, v(t0)), ξ⟩. The function h : [a, b] → R defined by h(t) = ⟨v(t)− u(t), ξ⟩
is differentiable with h′(t0) ≤ 0 since h(t) > 0 (t ∈ [a, t0)) and h(t0) = 0. On
the other hand h′(t0) = ⟨v′(t0)−u′(t0), ξ⟩ > ⟨f(t0, v(t0))−f(t0, u(t0)), ξ⟩ ≥ 0.

Let us say that a function f : [a, b]×Rn → Rn is locally Lipschitz continuous
in x if to each r > 0 there is a constant Lr such that

||f(t, x) − f(t, y)|| ≤ Lr||x − y|| (t ∈ [a, b], ||x||, ||y|| ≤ r).

We will now give an elementary proof of a ≤ version of Theorem 1, see [14].

Theorem 2 Let f : [a, b]×Rn → Rn be qmi and locally Lipschitz continuous
in x, and let u, v : [a, b] → Rn be differentiable. Then

u′(t) − f(t, u(t)) ≤ v′(t) − f(t, v(t)) (t ∈ [a, b]), u(a) ≤ v(a)

imply u(t) ≤ v(t) (t ∈ [a, b]).
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Proof: Let r > 0 such that ||u(t)||, ||v(t)|| ≤ r − 1 (t ∈ [a, b]). Since f is
locally Lipschitz continuous and according to the relations between norm and
order there is a constant L = Lr > 0 such that

f(t, x) − f(t, y) ≤ L||x − y|| p (t ∈ [a, b], ||x||, ||y|| ≤ r).

For ε > 0 we consider the functions hε : [a, b] → R,

hε(t) = ε exp(L(t − a)) +
ε

L
(exp(L(t − a)) − 1),

which has the properties

h′
ε(t) = Lhε(t) + ε, hε(t) ≥ ε

for t ∈ [a, b], and hε(t) → 0 as ε → 0+ uniformly on [a, b]. We set

uε(t) = u(t) − hε(t) p, vε(t) = v(t) + hε(t) p.

We have uε(a) ≪ vε(a), and we choose ε > 0 such that hε ≤ 1 on [a, b]. Then
||uε(t)||, ||vε(t)|| ≤ r (t ∈ [a, b]) and therefore

u′
ε(t) − f(t, uε(t)) = u′(t) − h′

ε(t) p − f(t, u(t)) + f(t, u(t)) − f(t, uε(t))

≤ v′(t) − f(t, v(t)) − h′
ε(t) p + L||hε(t) p|| p

= v′
ε(t) − f(t, vε(t)) − 2h′

ε(t) p + f(t, vε(t)) − f(t, v(t)) + Lhε(t) p

≤ v′
ε(t) − f(t, vε(t)) − 2h′

ε(t) p + 2Lhε(t) p

= v′
ε(t) − f(t, vε(t)) − 2ε p ≪ v′

ε(t) − f(t, vε(t)) (t ∈ [a, b]).

By Theorem 1 we have uε(t) ≪ vε(t) (t ∈ [a, b]). Hence ε → 0+ leads to
u(t) ≤ v(t) (t ∈ [a, b]).

An immediate consequence of Theorem 1 is for example the monotone de-
pendence of the solution of an initial value problem with qmi right hand side
on the initial value. If f : [a, b]×Rn → Rn is continuous and locally Lipschitz
continuous in x then the problems

u′(t) = f(t, u(t)), u(a) = u0, v′(t) = f(t, v(t)), v(a) = v0

are uniquely locally solvable to the right. If f is qmi in x and u0 ≤ v0 then
Theorem 2 gives u(t) ≤ v(t) as long as both solutions exist.

For differentiable functions the question wether g is qmi or not can be reduced
to the linear case.
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Theorem 3 Let g : Rn → Rn be differentiable on Rn. Then g is qmi if and
only if x 7→ g′(z)x is qmi for each z ∈ Rn.

Proof: 1. Let g be qmi and fix z ∈ Rn. Let x ≤ y and ξ ∈ K∗ such
that ⟨x, ξ⟩ = ⟨y, ξ⟩. Then for t ∈ [0, 1] we have z ≤ z + t(y − x) and
⟨z, ξ⟩ = ⟨z + t(y − x), ξ⟩ and therefore ⟨g(z), ξ⟩ ≤ ⟨g(z + t(y − x)), ξ⟩. Now,

⟨g′(z)(y − x), ξ⟩ = lim
t→0+

⟨g(z + t(y − x)) − g(z), ξ⟩
t

≥ 0,

that is ⟨g′(z)x, ξ⟩ ≤ ⟨g′(z)y, ξ⟩.
2. Let x 7→ g′(z)x be qmi for each z ∈ Rn. Again let x ≤ y and ξ ∈ K∗ such
that ⟨x, ξ⟩ = ⟨y, ξ⟩. By the Mean Value Theorem there exisis t0 ∈ [0, 1] such
that

⟨g(y) − g(x), ξ⟩ = ⟨g′(x + t0(y − x))(y − x), ξ⟩ ≥ 0.

Hence ⟨g(x), ξ⟩ ≤ ⟨g(y), ξ⟩.
Thus, it is interesting to know which linear functions are qmi.

4. The linear case. Let us call a matrix A ∈ Rn×n qmi if x 7→ Ax is
qmi. For Rn ordered by Knat it is easy to recognize qmi matrices by the
signs of their entries. In this case A = (aij) is qmi if and only if aij ≥ 0 if
i ̸= j. For Kice it is more difficult to characterize the qmi matrices, but a
characterization is known [12]:

Let Rn be ordered by Kice and let Q ∈ Rn×n denote the diagonal matrix
with first n − 1 entries 1 and last entry −1. Then A is qmi if and only if
QA + A⊤Q + λQ is negative semidefinite for some λ ∈ R. In case n = 3 we
get a class of matrices for which A and −A are qmi, see [12], namely if A is
of the form

A =

 α β γ
−β α δ
γ δ α

 .

For example each Jacobi matrix of

g : R3 → R3, g(x, y, z) = (2xy,−x2 + y2 + z2, 2yz)

is of this form and by Theorem 3 the functions g and −g are qmi.

A difference to Knat is worth mentioning. If A is qmi with respect to Knat

then A + λI is monotone increasing if λ is big enough. This cannot be said
for Kice [8]: For example

A =

 λ 0 1
0 λ 0
1 0 λ


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is qmi but never monotone increasing, no matter how big λ is chosen.

Let us return to the general case. If A ∈ Rn×n is qmi, then x 7→ exp(tA)x
is monotone increasing for each t ≥ 0. This follows by Theorem 2 since for
x0 ≥ 0, u(t) = 0 and v(t) = exp(tA)x0

u′(t) − Au(t) = 0 = v′(t) − Av(t) (t ≥ 0), u(a) ≤ v(a)

imply exp(tA)x0 ≥ 0 (t ≥ 0). Likewise the converse is true. If x 7→ exp(tA)x
is monotone increasing for each t ≥ 0, then A is qmi. To see this consider
x0 ∈ K and ξ ∈ K∗ such that ⟨x0, ξ⟩ = 0. Then

⟨Ax0, ξ⟩ = lim
t→0+

⟨exp(tA)x0 − x0, ξ⟩
t

≥ 0.

Moreover if A is qmi and −A is qmi then A2 is qmi. The reason is that
x0 ∈ K, ξ ∈ K∗ and ⟨x0, ξ⟩ = 0 imply ⟨Ax0, ξ⟩ = 0 and then

⟨A2x0, ξ⟩ = lim
t→0+

2
⟨exp(tA)x0 − x0 − tAx0, ξ⟩

t2
≥ 0.

These considerations lead to a nice example of a qmi linear mapping in R2n+1

odered by Kpol. We identify R2n+1 and P2n, the space of all real polynomials
with degree ≤ 2n. We consider D : P2n → P2n defined by Dq = q′ (q ∈ P2n).
According to Taylor’s formula

(exp(tD)q)(s) = q(t + s) (t ∈ R).

Hence D and −D are qmi and therefore the second derivative D2 is qmi. If
for example q ≥ 0, the function w : [0,∞)×R → R, w(t, s) = (exp(tD2)q)(s)
solves the Cauchy problem

wt(t, s) = wss(t, s), w(0, s) = q(s)

and is nonnegative since D2 is qmi. Thinking of the integral representation
for solutions of the Cauchy problem for the heat equation, w(t, s) ≥ 0 is
obvious. But we did not need this representation.

5. Zeros, fixed points and intermediate values. We consider a contin-
uously differentiable and qmi function g : Rn → Rn. For a scalar initial value
problem, the solution of y′(t) = g(y(t)), y(0) = y0 is increasing if g(y0) ≥ 0
and decreasing if g(y0) ≤ 0. The same result holds to the right for n > 1, see
[11], p.34.
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Theorem 4 For T > 0 let y : [0, T ] → Rn solve y′(t) = g(y(t)). Then y is
increasing if g(y(0)) ≥ 0 and decreasing if g(y(0)) ≤ 0.

Proof: Consider the case g(y(0)) ≥ 0. We have y′′(t) = g′(y(t))y′(t) (t ∈
[0, T ]) and y′(0) = g(y(0)). The function f : [0, T ] × Rn → Rn, f(t, x) =
g′(y(t))x is qmi in x according to Theorem 3. For u, v : [0, T ] → Rn defined
by u(t) = 0 and v(t) = y′(t) we have

u′(t) − f(t, u(t)) = 0 = v′(t) − f(t, v(t)) (t ∈ [0, T ]), u(0) ≤ v(0).

By Theorem 2, u(t) ≤ v(t), that is 0 ≤ y′(t) (t ∈ [0, T ]). Now, let 0 ≤
t1 ≤ t2 ≤ T . If y(t1) ≤ y(t2) does not hold, there is some ξ ∈ K∗ such that
⟨y(t1) − y(t2), ξ⟩ < 0. But ⟨y(t), ξ⟩ is increasing, a contradiction.

Theorem 4 is a key to results on zeros and fixed points of qmi functions.

Theorem 5 Let u0, v0 ∈ Rn be such that

u0 ≤ v0, g(u0) ≥ 0, g(v0) ≤ 0.

Then g has a zero in the order interval [u0, v0].

Proof: Let u, v be the solutions of y′(t) = g(y(t)) with inital value y(0) = u0

and y(0) = v0, and with the maximal interval of existence [0, ωu) and [0, ωv),
respectively. By Theorem 2, u(t) ≤ v(t) as long as both solutions exist. By
Theorem 4, u is increasing and v is decreasing. In particular u and v do not
leave [u0, v0] and therefore ωu = ωv = ∞. Since u is increasing and u(t) ≤ v0

(t ≥ 0) the limit x0 := limt→∞ u(t) exists; it is a zero of g.

Theorem 5 can be transformed to a fixed point theorem or an intermediate
value theorem:

Theorem 6 Let u0, v0 ∈ Rn be such that u0 ≤ v0, g(u0) ≥ u0, g(v0) ≤ v0.
Then g has a fixed point in the order interval [u0, v0].

Proof: Apply Theorem 5 to x 7→ g(x) − x.

Theorem 7 Let u0, v0 ∈ Rn be such that u0 ≤ v0, g(v0) ≤ g(u0). Then
[g(v0), g(u0)] ⊆ g([u0, v0]).
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Proof: Choose y0 ∈ [g(v0), g(u0)] and apply Theorem 5 to x 7→ g(x) − y0.

Finally let us discuss an example to Theorem 6. Let R2 be ordered by Knat

and consider g : R2 → R2 defined by

g(x, y) =
(
− 2 exp(−y3) cos2(x),− exp(−x5) cos4(y)

)
.

This function is qmi since y 7→ −2 exp(−y3) cos2(x) is increasing for each x
and x 7→ − exp(−x5) cos4(y) is increasing for each y.
For u0 = (−π/2,−π/2) ≤ (0, 0) = v0 we have

g(u0) = (0, 0) ≥ (−π/2,−π/2) = u0, g(v0) = (−2,−1) ≤ (0, 0) = v0.

By Theorem 6 there is a fixed point of g in [u0, v0]. Since (−2,−1) is not in
[u0, v0], Brouwer’s Fixed Point Theorem cannot be applied.

6. Further reading. Comprehensive texts focusing differential inequalities
are for example [7], [13] and [17]. Generalizations of Theorem 2 can also be
found in [10] and [15]. For a survey on monotonicity and quasimonotonicity
methods for ODEs in infinite dimensional Banach spaces see [16]. The mono-
graph [11] provides a dynamical system view on ODEs with qmi right hand
side with many applications, for example to population dynamics. For the
linear case in a Banach algebra setting see [4], and for positive semigroups
we refer to [1]. Some papers on fixed points and related questions are [3], [5],
[6], and [9].
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