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Abstract. It is known that quasimonotonicity of a continuous function can
be characterized by means of differential inequalities. Using this we give a
characterization by means of functional inequalities.

1 Notations

Let R denote the reals, let E be a real Hausdorff topological vector space,
and let K be a wedge in E, i.e. a non-void subset satisfying

A>0,zeK, ye K= \Nz+y) e K.
We suppose K to be closed and such that
Int K # ().
For z,y € E we write
r<ysy—xekK,
r<Lysy—aclnt K.

K™ denotes the dual wedge of K, i.e. the set of all linear, continuous ¢ : £ —
R satisfying ¢(z) > 0 for z € K.

A function
(1) ft,z): D — FE
(where D C R x E) is called quasimonotone increasing with respect to x, if

(t,z),(t,y) € D,z <y,p € K*,0(x) = ¢(y) = o(f(t, 7)) < p(f(ty))

For functions u : [to,t1] — E and ty < t < ¢; we mean by u/(t) the strong
derivative

(if it exists).

2 Known results and a question

The here used quasimonotonicity stems from [7]; Herzog [4] gives a survey of
results. For functions (1) being quasimonotone increasing with respect to x
the following is known (cf. [7]):



(P) If v,w : [to,t1] — E are continuous functions fulfilling v(ty) < w(ty)
and v'(t) — f(t,v(t)) < w'(t) — f(t,w(t)) (to <t < t1), then v(t) <K
w(t) (to <t <t).

According to Uhl [6] we have the following (converse) result (which for Ba-
nach spaces F is known from [5]):

Theorem A Let D be an open subset of R x FE, and let f : D — FE be
a continuous function, for which (P) holds. Then f(¢,x) is quasimonotone
increasing with respect to x.

In [8] quasimonotonicity occurs in the context of functional equations
(2) ul(F(8) + f{t,u(t) =0 (to <t < 1)

(cf. the surveys [2] and [1] for such equations), where

(3) to < F(t) <t.

According to [8] (and inspired by a talk of Brydak [3]) the following holds
for functions (1) being quasimonotone increasing with respect to z:

(Q) If v,w : [to,t1] — E are continuous functions fulfilling v(ty) < w(ty)
and w(F(t)) + f(t,w(t)) < v(F(t)) + f(t,v(t)) (with F satisfying (3)
for to <t < tl), then U(t) < ’(U(t) (to <t< t1>

Looking at Theorem A now the question arises: Suppose function (1) to be
continuous (D being an open subset of R x E). Can we use property (Q) to
characterize the quasimonotonicity of f?

3 A negative result
In this paragraph we assume

(4) f(t,z): R x E — E continuous.

Suppose v, w: [ty, t;] — E and F':|tg,t;] — [to, t1] are such that the hypothe-
ses of (Q) are fulfilled. Passing to the limit ¢ | ¢y in the functional inequality
leads to

w(to) + f(to, w(to)) < v(to) + f(to, v(to))-

With
(5) v(te) < wlty)

we then get

(6) f(to, w(to)) < f(to, v(to))-



Now, if for t € R and a,b € E we always have
(7) a<<b= “f(t,b) < f(t,a) does not hold”,

then (5), (6) cannot occur simultaneously, so the hypotheses of (Q) cannot
be satisfied, hence (Q) is (vacuously) true. If K # E, then a special case of
(7) is a (weakly) monotone increasing function, i.e.

(8) a<b= f(t,a) < f(t,b).

On the other hand, if K = F, then the conclusion of (Q) is always vacuously
true. Summarizing we can state:

Remark 1 If function (4) is monotone increasing with respect to x (cf. (8)),
then (Q) is vacuously true.

Despite of this, (Q) will be used in a certain sense for a characterization of
quasimonotonicity (cf. the next paragraph). But let us first state:

Remark 2 Theorem A does not remain true, when (P) is replaced by (Q).

Let us give an example: £ = R? with its usual topology, ordered by K =
R% ={(z1,22) | 21 > 0,25 > 0}, and function (4) defined by

f(t,x) = f(t,x1,29) = (—x2,0).

This linear function is not quasimonotone increasing. On the other hand, (7)

holds, hence also (Q).

4 A positive result

The starting point is the observation that function (1) remains quasimono-
tone increasing with respect to x if it is changed into

(9) filt,x) = Mt)x + h(t)f(t,x) ((t,z) € D)
with arbitrary
(10) A R— R, h:R—[0,00[.

Then we have (Q) also with all the functions (9), and this leads to an analogue
of Theorem A, viz.

Theorem B Let D be an open subset of R x E, and let f : D — E be
continuous. Suppose (Q) always to be true if f is replaced by f; from (9), the
A, h being as in (10). Then f(t, ) is quasimonotone increasing with respect
to .

P r oo f If not, then (P) does not hold (according to Theorem A). So there



are continuous v, w : [tg,t1] — F (on an appropriate interval [to, t1]; to < t1)
satisfying

(11) v(ty) < w(ty),

(12) V() = ft o) <w'(t) = [t w(t) (b <t <t),
but such that
(13) v(t) < w(t) (to <t <t;) does not hold.

Suppose ty < t < t;. In (12) we approximate the derivatives v'(t), w'(t)
by left-handed difference quotients in such a manner that the inequality <
remains true:

1y Y= ZZ)— h(t))

— f(t () < &

where to < t — h(t) < t, hence h(t) >0 (ty < t < t1). Now
F(t)=t—h(t) (to <t < t,)
has property (3), and (14) can be written as
w(F(t)) —w(t) + h(t) f(¢,w(t) < v(F(t) —v(t) + h(t) f(E,v(t))

for tg < t < t1. Together with (11) we therefore have the hypotheses of (Q)
fulfilled with f replaced by the function

fitx) = =z +h(t) f(t,z) ((t,2) € D)

(h(t) > 0 being defined arbitrarily for ¢ ¢|tg,¢;]). By the hypotheses of Theo-
rem B we get v(t) < w(t) (to <t < 1), which is a contradiction to (13).

Remark 3 In Uhl’s proof for Theorem A (cf. [6]), (P) is only needed for
linear functions v(t) = a + tp,w(t) = b+ tq (a,b,p,q € E). Taking this into
account, other versions of Theorem B are possible. Our approach reflects
some kind of idea of a general comparison of the functional equation (2) and
the differential equation u'(t) = f(t, u(t)).
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