A note on logarithms of self-adjoint operators

Christoph Schmoeger

Throughout this note \mathcal{H} will denote a complex Hilbert space, $\mathcal{L}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H}, endowed with the usual structure of a Banach space, $\sigma(T)$ and $r(T)$ will denote the spectrum of $T \in \mathcal{L}(\mathcal{H})$ and the spectral radius of T, respectively.

In [4], C.R. Putnam has proved that if A is a positive self-adjoint operator in $\mathcal{L}(\mathcal{H})$, $T \in \mathcal{L}(\mathcal{H})$ and $e^{T}=A$, then $\|T\| \leq 2 \log 2$ implies that T is self-adjoint. In [2], S. Kurepa has shown that it is sufficient to assume that $\|T\|<2 \pi$ in order that T be self-adjoint. This condition, already in the set of complex numbers, cannot be replaced by $\|T\| \leq 2 \pi$ without changing the conclusion.

The object of the present note is to give a new proof of Kurepa's result. Furthermore we will generalize some of the results in [2]. To this end we will use the following propositions.

Proposition 1 Suppose that $T \in \mathcal{L}(\mathcal{H})$ is normal. Then:
(a) $r(T)=\|T\|$,
(b) T is self-adjoint if and only if $\sigma(T) \subseteq \mathbb{R}$.

Proof. (a) is shown in [3, Lemma 4.3.11] and (b) is shown in [3, Proposition 4.4.7].
A set $\Omega \subset \mathbb{C}$ is called $2 \pi i$-congruence-free, if $\lambda_{1}, \lambda_{2} \in \Omega$ and $\lambda_{1} \equiv \lambda_{2}(\bmod 2 \pi i)$ imply that $\lambda_{1}=\lambda_{2}$.

The following result is due to E. Hille, [1].
Proposition 2 Let $T, S \in \mathcal{L}(\mathcal{H})$, let $\sigma(T)$ be $2 \pi i$-congruence-free and let

$$
e^{T}=e^{S}
$$

Then $T S=S T$.
Theorem 1 If A and T are operators in $\mathcal{L}(\mathcal{H}), A$ is positive and self-adjoint,

$$
e^{T}=A \quad \text { and } \quad r(T)<2 \pi,
$$

then T is self-adjoint.

Proof. Since A is positive and self-adjoint and $A=e^{T}$, we have $\sigma(A) \subseteq(0, \infty)$. Now take $\lambda \in \sigma(T)$. Then $e^{\lambda} \in \sigma(A)$, thus $e^{\lambda} \in(0, \infty)$. Hence there is $\alpha \in \mathbb{R}$ and $k \in \mathbb{Z}$ such that $\lambda=\alpha+2 k \pi i$. It follows that $|\lambda|^{2}=\alpha^{2}+4 k^{2} \pi^{2}<4 \pi^{2}$, so that $k=0$, thus $\lambda=\alpha \in \mathbb{R}$. This shows that $\sigma(T) \subseteq \mathbb{R}$ and therefore $\sigma(T)$ is $2 \pi i$-congruence-free. From

$$
e^{T^{*}}=\left(e^{T}\right)^{*}=A^{*}=A=e^{T}
$$

and Proposition 2 we get that T is normal. Proposition 1(b) shows now that T is selfadjoint.

As mentioned in the introduction, the condition $r(T)<2 \pi$ cannot be replaced by $r(T) \leq$ 2π. But we have
Theorem 2 Suppose that $A, T \in \mathcal{L}(\mathcal{H}), A$ is positive and self-adjoint,

$$
e^{T}=A, \quad r(T) \leq 2 \pi \quad \text { and } \quad 2 \pi i,-2 \pi i \notin \sigma(T)
$$

then T is self-adjoint.
Proof. Take $\lambda \in \sigma(T)$. As in the proof of Theorem $1, \lambda=\alpha+2 k \pi i$ for some $\alpha \in \mathbb{R}$ and some $k \in \mathbb{Z}$. From $|\lambda|^{2}=\alpha^{2}+4 k^{2} \pi^{2} \leq 4 \pi^{2}$, we see that $k \in\{0,1,-1\}$. If $k= \pm 1$ then $\alpha=0$ and therefore $\lambda= \pm 2 \pi i$. But this is a contradiction, since $\pm 2 \pi i \notin \sigma(T)$. It follows that $\sigma(T) \subseteq \mathbb{R}$. As in the proof of Theorem 1 we see that T is self-adjoint.

Corollary 1 If T and S are operators in $\mathcal{L}(\mathcal{H}), S$ is self-adjoint,

$$
e^{T}=e^{S} \quad \text { and } \quad r(T)<2 \pi,
$$

then $T=S$.
Proof. Put $A=e^{S}$. Then A is self-adjoint. By $(\cdot \mid \cdot)$ we denote the inner product on \mathcal{H}. Since

$$
(A x \mid x)=\left(e^{S / 2} e^{S / 2} x \mid x\right)=\left(e^{S / 2} x \mid e^{S / 2} x\right)=\left\|e^{S / 2} x\right\|^{2} \geq 0
$$

for each $x \in \mathcal{H}, A$ is positive. From Theorem 1 we conclude that T is self-adjoint. Proposition 2 gives $T S=S T$, thus $e^{T-S}=I$. Now take $\lambda \in \sigma(T-S)$. Then $e^{\lambda}=1$. Since $T-S$ is self-adjoint, $\lambda \in \mathbb{R}$. Hence $\lambda=0$. Therefore $\sigma(T-S)=\{0\}$. Use Proposition 1(a) to derive $\|T-S\|=r(T-S)=0$. Hence $T=S$, as desired.

Corollary 2 If $T, S \in \mathcal{L}(\mathcal{H})$, S is self-adjoint,

$$
e^{T}=e^{S}, \quad r(T) \leq 2 \pi \quad \text { and } \quad 2 \pi i,-2 \pi i \notin \sigma(T),
$$

then $T=S$.
Proof. Argue as in the proof of Corollary 1. Use Theorem 2 to see that T is self-adjoint.

The following corollary can be found in [2]. We will give a slightly different proof.
Corollary 3 Let $T, A \in \mathcal{L}(\mathcal{H})$ and $\theta \in[0,2 \pi]$. Suppose that A is positive and selfadjoint and that $e^{T}=e^{i \theta} A$.
(a) If $\theta \in[0, \pi]$, then $r(T) \geq \theta$.
(b) If $\theta \in[\pi, 2 \pi]$, then $r(T) \geq 2 \pi-\theta$.

Proof. (a) Suppose that $r(T)<\theta$. Then

$$
r(T-i \theta I) \leq r(T)+\theta<2 \theta<2 \pi .
$$

From $e^{T-i \theta I}=e^{T} e^{-i \theta} I=A$ and Theorem 1, we see that $T-i \theta I$ is self-adjoint, thus T is normal and $T-T^{*}=2 i \theta$. Since T and T^{*} commute, $r\left(T-T^{*}\right) \leq r(T)+r\left(T^{*}\right)$ (see [3, Exercise 4.1.12]). Thus

$$
2 \theta=r\left(T-T^{*}\right) \leq r(T)+r\left(T^{*}\right)=2 r(T)<2 \theta,
$$

a contradiction.
(b) Put $\tau=2 \pi-\theta$. Then $e^{T^{*}}=e^{-i \theta} A=e^{i(2 \pi-\theta)} A=e^{i \tau} A$. Since $\tau \in[0, \pi]$, (a) shows that $r\left(T^{*}\right) \geq \tau$. Thus $r(T) \geq 2 \pi-\theta$.

As an immediate consequence of Corollary 3 we have:
Corollary 4 Suppose that $T, A \in \mathcal{L}(\mathcal{H})$ and that A is positive and self-adjoint.
(a) If $e^{T}=-A$, then $r(T) \geq \pi$.
(b) If $e^{T}=i A$, then $r(T) \geq \frac{\pi}{2}$.
(c) If $e^{T}=-i A$, then $r(T) \geq \frac{\pi}{2}$.

We close this paper with results concerning logarithms of unitary operators.
Theorem 3 Suppose that $U \in \mathcal{L}(\mathcal{H})$ is unitary, $T \in \mathcal{L}(\mathcal{H}), r(T) \leq \pi$ and $e^{i T}=U$. If $\pi \notin \sigma(T)$ or $-\pi \notin \sigma(T)$, then T is self-adjoint.

Proof. Take $\lambda \in \sigma(i T)$. Then $e^{\lambda} \in \sigma(U)$, thus $\left|e^{\lambda}\right|=1$. Hence $\lambda=i \beta$ for some $\beta \in \mathbb{R}$. From $|\beta|=|\lambda| \leq r(T) \leq \pi$ we see that

$$
\sigma(i T) \subseteq\{i \beta: \beta \in[-\pi, \pi]\} .
$$

Since $\pi \notin \sigma(T)$ or $-\pi \notin \sigma(T), \sigma(i T)$ is $2 \pi i$-congruence-free. From

$$
e^{-i T^{*}}=\left(e^{i T}\right)^{*}=U^{*}=U^{-1}=e^{-i T}
$$

and Proposition 2 we derive $T T^{*}=T^{*} T$. Hence T is normal. Furthermore we have $\sigma(T) \subseteq[-\pi, \pi]$. It follows from Proposition $1(\mathrm{~b})$ that T is self-adjoint.

Corollary 5 If $T \in \mathcal{L}(\mathcal{H}), r(T)<\pi$ and $e^{i T}$ is unitary, then T is self-adjoint.

References

[1] E. Hille: On roots and logarithms of elements of a complex Banach algebra. Math. Ann. 136 (1958), 46-57.
[2] S. Kurepa: A note on logarithms of normal operators. Proc. Amer. Math. Soc. 13 (1962), 307-311.
[3] G.K. Petersen: Analysis Now. Springer New York (1988).
[4] C.R. Putnam: On square roots and logarithms of self-adjoint operators. Proc. Glasgow Math. Assoc. 4 (1958), 1-2.

Christoph Schmoeger
Mathematisches Institut I
Universität Karlsruhe
76128 Karlsruhe
Germany

E-Mail: christoph.schmoeger@math.uni-karlsruhe.de

