A note on logarithms of self-adjoint operators

Christoph Schmoeger

Throughout this note \mathcal{H} will denote a complex Hilbert space, $\mathcal{L}(\mathcal{H})$ the set of all bounded linear operators on \mathcal{H} , endowed with the usual structure of a Banach space, $\sigma(T)$ and r(T) will denote the spectrum of $T \in \mathcal{L}(\mathcal{H})$ and the spectral radius of T, respectively.

In [4], C.R. Putnam has proved that if A is a positive self-adjoint operator in $\mathcal{L}(\mathcal{H})$, $T \in \mathcal{L}(\mathcal{H})$ and $e^T = A$, then $||T|| \leq 2 \log 2$ implies that T is self-adjoint. In [2], S. Kurepa has shown that it is sufficient to assume that $||T|| < 2\pi$ in order that T be self-adjoint. This condition, already in the set of complex numbers, cannot be replaced by $||T|| \leq 2\pi$ without changing the conclusion.

The object of the present note is to give a new proof of Kurepa's result. Furthermore we will generalize some of the results in [2]. To this end we will use the following propositions.

Proposition 1 Suppose that $T \in \mathcal{L}(\mathcal{H})$ is normal. Then:

- (a) r(T) = ||T||,
- (b) T is self-adjoint if and only if $\sigma(T) \subseteq \mathbb{R}$.

Proof. (a) is shown in [3, Lemma 4.3.11] and (b) is shown in [3, Proposition 4.4.7].

A set $\Omega \subset \mathbb{C}$ is called $2\pi i$ -congruence-free, if $\lambda_1, \lambda_2 \in \Omega$ and $\lambda_1 \equiv \lambda_2 \pmod{2\pi i}$ imply that $\lambda_1 = \lambda_2$.

The following result is due to E. Hille, [1].

Proposition 2 Let $T, S \in \mathcal{L}(\mathcal{H})$, let $\sigma(T)$ be $2\pi i$ -congruence-free and let

$$e^T = e^S$$
.

Then TS = ST.

Theorem 1 If A and T are operators in $\mathcal{L}(\mathcal{H})$, A is positive and self-adjoint,

 $e^T = A$ and $r(T) < 2\pi$,

then T is self-adjoint.

Proof. Since A is positive and self-adjoint and $A = e^T$, we have $\sigma(A) \subseteq (0, \infty)$. Now take $\lambda \in \sigma(T)$. Then $e^{\lambda} \in \sigma(A)$, thus $e^{\lambda} \in (0, \infty)$. Hence there is $\alpha \in \mathbb{R}$ and $k \in \mathbb{Z}$ such that $\lambda = \alpha + 2k\pi i$. It follows that $|\lambda|^2 = \alpha^2 + 4k^2\pi^2 < 4\pi^2$, so that k = 0, thus $\lambda = \alpha \in \mathbb{R}$. This shows that $\sigma(T) \subseteq \mathbb{R}$ and therefore $\sigma(T)$ is $2\pi i$ -congruence-free. From

$$e^{T^*} = (e^T)^* = A^* = A = e^T$$

and Proposition 2 we get that T is normal. Proposition 1(b) shows now that T is self-adjoint.

As mentioned in the introduction, the condition $r(T) < 2\pi$ cannot be replaced by $r(T) \le 2\pi$. But we have

Theorem 2 Suppose that $A, T \in \mathcal{L}(\mathcal{H})$, A is positive and self-adjoint,

$$e^T = A$$
, $r(T) \leq 2\pi$ and $2\pi i, -2\pi i \notin \sigma(T)$,

then T is self-adjoint.

Proof. Take $\lambda \in \sigma(T)$. As in the proof of Theorem 1, $\lambda = \alpha + 2k\pi i$ for some $\alpha \in \mathbb{R}$ and some $k \in \mathbb{Z}$. From $|\lambda|^2 = \alpha^2 + 4k^2\pi^2 \leq 4\pi^2$, we see that $k \in \{0, 1, -1\}$. If $k = \pm 1$ then $\alpha = 0$ and therefore $\lambda = \pm 2\pi i$. But this is a contradiction, since $\pm 2\pi i \notin \sigma(T)$. It follows that $\sigma(T) \subseteq \mathbb{R}$. As in the proof of Theorem 1 we see that T is self-adjoint.

Corollary 1 If T and S are operators in $\mathcal{L}(\mathcal{H})$, S is self-adjoint,

$$e^T = e^S$$
 and $r(T) < 2\pi$,

then T = S.

Proof. Put $A = e^S$. Then A is self-adjoint. By $(\cdot|\cdot)$ we denote the inner product on \mathcal{H} . Since

$$(Ax|x) = (e^{S/2}e^{S/2}x|x) = (e^{S/2}x|e^{S/2}x) = ||e^{S/2}x||^2 \ge 0$$

for each $x \in \mathcal{H}$, A is positive. From Theorem 1 we conclude that T is self-adjoint. Proposition 2 gives TS = ST, thus $e^{T-S} = I$. Now take $\lambda \in \sigma(T-S)$. Then $e^{\lambda} = 1$. Since T-S is self-adjoint, $\lambda \in \mathbb{R}$. Hence $\lambda = 0$. Therefore $\sigma(T-S) = \{0\}$. Use Proposition 1(a) to derive ||T-S|| = r(T-S) = 0. Hence T = S, as desired.

Corollary 2 If $T, S \in \mathcal{L}(\mathcal{H})$, S is self-adjoint,

$$e^T = e^S$$
, $r(T) \le 2\pi$ and $2\pi i, -2\pi i \notin \sigma(T)$,

then T = S.

Proof. Argue as in the proof of Corollary 1. Use Theorem 2 to see that T is self-adjoint.

The following corollary can be found in [2]. We will give a slightly different proof.

Corollary 3 Let $T, A \in \mathcal{L}(\mathcal{H})$ and $\theta \in [0, 2\pi]$. Suppose that A is positive and selfadjoint and that $e^T = e^{i\theta}A$.

- (a) If $\theta \in [0, \pi]$, then $r(T) \ge \theta$.
- (b) If $\theta \in [\pi, 2\pi]$, then $r(T) \ge 2\pi \theta$.

Proof. (a) Suppose that $r(T) < \theta$. Then

$$r(T - i\theta I) \le r(T) + \theta < 2\theta < 2\pi.$$

From $e^{T-i\theta I} = e^T e^{-i\theta} I = A$ and Theorem 1, we see that $T - i\theta I$ is self-adjoint, thus T is normal and $T - T^* = 2i\theta$. Since T and T^* commute, $r(T - T^*) \leq r(T) + r(T^*)$ (see [3, Exercise 4.1.12]). Thus

$$2\theta = r(T - T^*) \le r(T) + r(T^*) = 2r(T) < 2\theta,$$

a contradiction.

(b) Put $\tau = 2\pi - \theta$. Then $e^{T^*} = e^{-i\theta}A = e^{i(2\pi - \theta)}A = e^{i\tau}A$. Since $\tau \in [0, \pi]$, (a) shows that $r(T^*) \ge \tau$. Thus $r(T) \ge 2\pi - \theta$.

As an immediate consequence of Corollary 3 we have:

Corollary 4 Suppose that $T, A \in \mathcal{L}(\mathcal{H})$ and that A is positive and self-adjoint.

- (a) If $e^T = -A$, then $r(T) \ge \pi$.
- (b) If $e^T = iA$, then $r(T) \ge \frac{\pi}{2}$.
- (c) If $e^T = -iA$, then $r(T) \ge \frac{\pi}{2}$.

We close this paper with results concerning logarithms of unitary operators.

Theorem 3 Suppose that $U \in \mathcal{L}(\mathcal{H})$ is unitary, $T \in \mathcal{L}(\mathcal{H})$, $r(T) \leq \pi$ and $e^{iT} = U$. If $\pi \notin \sigma(T)$ or $-\pi \notin \sigma(T)$, then T is self-adjoint.

Proof. Take $\lambda \in \sigma(iT)$. Then $e^{\lambda} \in \sigma(U)$, thus $|e^{\lambda}| = 1$. Hence $\lambda = i\beta$ for some $\beta \in \mathbb{R}$. From $|\beta| = |\lambda| \leq r(T) \leq \pi$ we see that

$$\sigma(iT) \subseteq \{i\beta : \beta \in [-\pi,\pi]\}.$$

Since $\pi \notin \sigma(T)$ or $-\pi \notin \sigma(T)$, $\sigma(iT)$ is $2\pi i$ -congruence-free. From

$$e^{-iT^*} = (e^{iT})^* = U^* = U^{-1} = e^{-iT}$$

and Proposition 2 we derive $TT^* = T^*T$. Hence T is normal. Furthermore we have $\sigma(T) \subseteq [-\pi, \pi]$. It follows from Proposition 1(b) that T is self-adjoint.

Corollary 5 If $T \in \mathcal{L}(\mathcal{H})$, $r(T) < \pi$ and e^{iT} is unitary, then T is self-adjoint.

References

- E. Hille: On roots and logarithms of elements of a complex Banach algebra. Math. Ann. 136 (1958), 46–57.
- [2] S. Kurepa: A note on logarithms of normal operators. Proc. Amer. Math. Soc. 13 (1962), 307–311.
- [3] G.K. Petersen: Analysis Now. Springer New York (1988).
- C.R. Putnam: On square roots and logarithms of self-adjoint operators. Proc. Glasgow Math. Assoc. 4 (1958), 1–2.

Christoph Schmoeger Mathematisches Institut I Universität Karlsruhe 76128 Karlsruhe Germany

E-Mail: christoph.schmoeger@math.uni-karlsruhe.de