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SUPERSTABILITY OF SOME FUNCTIONAL EQUATION

BARBARA PRZEBIERACZ

Abstract. In this paper we establish superstability of the functional equation

supl∈L f(x + l(y)) = f(x)f(y), x, y ∈ G. The unknown function f maps an

abelian group G into R, and by L we denote an arbitrary subset of GG which

includes the mappings x
id7→ x and x

− id7−→ −x. We solve this equation in the

particular case, when G is a complex vector space and L = {x 7→ λx : λ ∈
C, |λ| = 1}. Another special case of this equation, namely max{f(x+y), f(x−
y)} = f(x)f(y), x, y ∈ G, was examined by A. Simon and P. Volkmann.

1. Introduction

Throughout this paper R means the space of real and C that of complex numbers.
Let G be an abelian group. Suppose L ⊂ GG is such that id,− id ∈ L. We are
going to prove superstability of the functional equation

(1.1) sup
l∈L

f(x+ l(y)) = f(x)f(y), x, y ∈ G,

that is to show

Theorem 1. If a function f : G→ R satisfies

(1.2) |sup
l∈L

f(x+ l(y))− f(x)f(y)| ≤ ε, x, y ∈ G,

then it is either bounded or is a solution of (1.1).

(Here we used the definition of superstability according to Z. Moszner’s Survey [3],
Definition 4*). In paper [5] there was considered a particular case of (1.1), namely

(1.3) max{f(x+ y), f(x− y)} = f(x) · f(y), x, y ∈ G.
It has been proved that if G is divisible by 2 and 3, then the solutions f : G → R
of (1.3) are f(x) = 0 and f(x) = exp(|a(x)|) for some additive a : G → R. In the
present paper we will establish the solutions of (1.1) in another special case:

(1.4) sup
λ∈T

f(x+ λy) = f(x) · f(y), x, y ∈ V,

where V is a complex vector space and T = {z ∈ C : |z| = 1}. To do this, we need
a result from [2]:
f : V → R is a solution of

(1.5) sup
λ∈T

f(x+ λy) = f(x) + f(y), x, y ∈ V
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if and only if there is a linear functional φ : V → C, such that f(x) = |φ(x)|.
Let us mention that the equations

max{f(x+ y), f(x− y)} = f(x) + f(y), x, y ∈ G
and (1.5) are stable (both in the sense of Definition 1* and 2* from [3]), which
follows from P. Volkmann [6] and from [4], respectively.

2. Stability of equation (1.1)

Before we turn to the proof of Theorem 1, we fix some notation. As in [4], we
will write A ε∼ B instead of |A − B| ≤ ε, whenever we find it convenient. Notice
that inequality (1.2) can now be rewritten in the form

sup
l∈L

f(x+ l(y)) ε∼ f(x)f(y), x, y ∈ G.

Proof of Theorem 1. It is enough to show that if f is unbounded then it satisfies

sup
l∈L

f(x+ l(y)) = f(x)f(y), x, y ∈ G.

Since f is unbounded there is a sequence (wn)n∈N such that |f(wn)| n→∞→ ∞, but
taking into consideration that

sup
l∈L

f(wn + l(wn)) ε∼ (f(wn))2 n→∞−→ ∞,

we infer that there is a sequence (zn)n∈N with

f(zn) n→∞−→ ∞.
Of course, we can assume that f(zn) > 0 for every n ∈ N. Suppose that f(x) < 0
for some x ∈ G. We have

sup
l∈L

f(x+ l(zn)) ε∼ f(x)f(zn) n→∞−→ −∞,

whence, in particular,
f(x+ zn) n→∞−→ −∞.

Therefore,

f(x) ≤ sup
l∈L

f(x+ zn + l(zn)) ε∼ f(x+ zn)f(zn) n→∞−→ −∞,

which is impossible. Assuming that f(x) = 0 for some x ∈ G also leads to a
contradiction. Namely, we would have

0 = f(zn − x)f(x) ε∼ sup
l∈L

f(zn − x+ l(x)) ≥ f(zn) n→∞−→ ∞.

Hence we proved that f > 0.

In the rest of the proof we use ideas from [1]. Notice that

(2.1) sup
l1∈L

f(x+ l1(y))f(z) ε∼ sup
l1∈L

sup
l2∈L

f(x+ l1(y) + l2(z)) =

= sup
l2∈L

sup
l1∈L

f(x+ l1(y) + l2(z)) ε∼ sup
l2∈L

(f(x+ l2(z))f(y)) =

= (sup
l2∈L

f(x+ l2(z)))f(y)
ε·f(y)∼ f(x)f(z)f(y).
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Thereby

sup
l1∈L

f(x+ l1(y))f(z)
2ε+ε·f(y)∼ f(x)f(z)f(y), x, y, z ∈ G.

Putting z = zn and dividing by f(zn) we get

sup
l1∈L

f(x+ l1(y))
2ε+ε·f(y)

f(zn)∼ f(x)f(y), x, y ∈ G, n ∈ N.

This implies that supl∈L f(x+ l(y)) = f(x)f(y), x, y ∈ G. �

Remark. If f : G→ R satisfying (1.2) is bounded, then

|f(x)| ≤ 1 +
√

1 + 4ε
2

, x ∈ G.

Proof. Put M0 = 1+
√

1+4ε
2 and B = supx∈G|f(x)|. Choose a sequence xn ∈ G,

n ∈ N with

|f(xn)| =: An
n→∞−→ B.

By (1.2) we have

A2
n = f(xn)2 ε∼ sup

l∈L
f(xn + l(xn)) ≤ B, n ∈ N,

which results in A2
n ≤ B + ε, n ∈ N. Therefore B2 ≤ B + ε, whence B ≤M0. �

3. Solution of equation (1.4)

Lemma. Let f : C → R satisfy (1.4) (with V = C) and suppose that f(0) = 1.
Then f(z) > 0 for every z ∈ C.

Proof. Notice that

f(0)f(z) = sup
λ∈T

f(λz) = f(0)f(|z|), z ∈ C,

whence

(3.1) f(z) = f(|z|), z ∈ C.

Using this we get

f(a)f(b) = sup
λ∈T

f(b+ λ · a) = sup
λ∈T

f(|b+ λ · a|) =

= sup f([b− a, b+ a]) ≥ f(b), 0 ≤ a ≤ b.
(3.2)

Furthermore, 0 /∈ f(C), since (f(z))2 = supλ∈T f(z + λz) ≥ f(0) = 1. Suppose
that f(y) < 0 for some y ∈ C. Owing to (3.1), we can assume that y ∈ (0,∞). As
follows from (3.2), f(x) < 0 for x > y. In particular, f(2y) < 0 and moreover

0 < f(2y)f(y) = sup f([y, 3y]) ≤ 0,

which is impossible. �
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Theorem 2. Let f : V → R satisfy (1.4). Then either f ≡ 0 or f(x) = exp |φ(x)|,
where φ : V → C is a linear functional.

Proof. Putting x = y = 0 in (1.4) we get (f(0))2 = f(0) whence either f(0) = 0 or
f(0) = 1. In the first case we obtain

0 = f(x)f(0) = sup
λ∈T

f(x+ λ · 0) = f(x), x ∈ V,

which means f ≡ 0. Now consider the other case, i.e., f(0) = 1. We will show that
f > 0.
Fix an arbitrary x0 ∈ V . Define fx0 : C → R by fx0(α) = f(αx0). It is easy to
verify that fx0 is the solution of (1.4) with V = C and fx0(0) = 1. According to
our Lemma we infer that fx0 > 0, and, particularly, f(x0) = fx0(1) > 0.

Put g(x) := log f(x) and notice that g : V → R satisfies the equation (1.5).
Hence, by the result in [2], already mentioned in the Introduction, we get g(x) =
|φ(x)|, for some linear functional φ : V → C and, therefore, f(x) = exp |φ(x)|. �
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