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Let exp denote the exponential space of a topological space introduced
by Vietoris [14]. In this paper, we study the subspaces of the space exp ,
where 1 2 3 is the discrete space of natural numbers. We also show
that if the metrizability number of exp is countable, then (and exp )
must be compact and metrizable.

AMS Classification: 54B20.
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For every topological space , let exp denote the exponential space
of with the Vietoris topology (see the definition below or [3]; 2.7.20).
Also, recall that the of a space , denoted by ,
is the smallest cardinal such that can be represented as a union of
many metrizable subspaces. It was shown (cf. [5]; Corollary 5.3) that if
is a compact Hausdorff space and exp , then and exp are
metrizable. We will show below (cf. Corollary 27) that the assumption in this
theorem that be compact is redundant. This is shown by first determining
the metrizability number of the space exp , where 1 2 3 is the
discrete space of natural numbers. This motivated us to study the space
exp and some of its subspaces in more detail.

Topological properties of the space exp have already been investi-
gated by many authors, for instance Michael [10], Keesling [7], Ellentuck
[2], Plewik [11] or [12]. It is known, for example, that the space exp



F

ω

<ω

X

X

X

F

F F

F F

F F F

F

F

2. Notation.

M. ISMAIL - SZ. PLEWIK - A. SZYMANSKI

( )

, , , . . .

.

ω ,

< ω .

,

/

,

,

.

, ,

( , ) ( ).

, ( , ) ,

= { }

= { ⊆ }

= { | | ≥ }
= { | | }

∈ ⊆ ⊆ ∈
∈ ∩ ∈

∅ ∈ ∅ ∈
=

∩

\

〈 ; 〉 = { ⊆ ⊆ ⊆ }

= ∩ \

〈 〉

N

N

X

Y Y X

X Y Y

X Y Y

filter X X

A A B X B

A B A B

Proper filter

A B X almost disjoint A B

A almost contained B A B

F A X

F A B X F B A

A x y X

A x y x A y

X X T

x A x y

398

is first countable, zero-dimensional, completely regular, but not normal. In
this note we prove more topological properties of the space exp .

Throughout this paper, let 1 2 3 denote the discrete space
of natural numbers.

Let be an arbitrary set. Following the standard notation we set:

2 :

[ ] :

[ ] :

A on is a non-empty family of subsets of satisfying the
following two conditions:

(1) if and , then ;

(2) if , then .

If , then the filter is called a ; if , then
2 .

A pair of subsets of is said to be if is
a finite set.

A set is said to be in a set if is a finite
set.

For any pair of subsets of we set:

:

For any ordered triple of subsets of we set:

For any set and a filter on we set to be the topology on
2 generated by the base consisting of sets of the form



N( )

F

F

F

F F

<ω

ω

ω

ω

ω

X

n

n

n

i

n n n

n

n n

ON SUBSPACES OF Exp

1 2 1 2

1 2

1 1 2

2

1 2 1 2

1 2

1 2

∈ ∈ =

= { } =

〈 〉 = ∩

= { ∈ ⊆ ∪ ∪ ∪ }

= { ∈ ∩ 6=∅ = }

=

〈 ; 〉
∈

= 〈{ } { } { } 〉 = { ⊆ { } ⊆ ⊆ }

∈

∈
= ∩

,

( )

, , . . . , ,

, , . . . ,

( ) . . .

( ) , , . . . , .

( )

( )

( )

( ) , , . . . , , , , . . . , ,

, , . . . ,

( ) ( ), . . .

( )

( )

( ) ( ) .

x y X A X N T
T

X

X X
X

U U U V V

U U U X

V E X E U U U
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where [ ] and . In the case , the topologies were
studied by A. Louveau (cf. [9]). In the whole spectrum of the topologies ,
there are two topologies that could be thought of as standing at the oposite
ends: one, when , and the other one when 2 . The former
is the product (= Cantor) topology and the latter is the Vietoris topology
(see the definition, below).

For every topological space , let exp denote the set of all non-
empty closed subsets of the space endowed with the Vietoris topology,
i.e., topology generated by the base consisting of sets of the form

where are open subsets of and

exp :

and

exp : for each 1 2

Thus, in the case , the Vietoris topology on exp is the
topology generated by the base consisting of sets of the form

where exp and is a finite subset of the set .

Equivalently, the Vietoris topology on exp is the topology generated
by the base consisting of sets of the form

:

where are the first elements of the set with respect to
the natural ordering of the set . Obviously, the sets ,
form a base at the point exp .

Let [ ] denote the subspace of exp consisting of infinite subsets
of . For each [ ] , let

[ ]

We refer to these sets as the basic open subsets of the space [ ] .
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L 1.

Let , where ,
and , where . Since

, 1 2 1 2 and therefore
.

L 2.

1 2
1 2

Let . If , where
, then, by Lemma 1,

and . Since , for each
1, 2 .

L 3. : 1 2 :
[ ]

Since for each 1 2 : .
To prove the converse inclusion, let : . Choose
such that . Let , where Since the th
element of an arbitrary subset of is always , . Since

, . Since , ,
and hence .

L 4.

: 1 2
: 1 2

For each , let , where Let

: 1 2

If B V A , then the first n elements of the set B are
exactly the same as the first n elements of the set A.

Proof. A a a a a a a
B b b b b b b

a a a B A a B a
a b a b

Let A a a a , where a a a
, and C c c c , where c c c If

n m and V A V C , then a c for each i n, and
c A for each i n , n m.

Proof. B V A V C B b b b
b b b a b c a
b c c b c b B A c A
i n n m

If B V A k , then B A k M
for each M N .

Proof. B V A k B A k M
m A k M k M

k m A a a a a m
N m m a a m

A m a a a a B V A a a a B
m B

Let n n be an increasing sequence of natural
numbers. Let U denote the basic open set V A for some infinite set
A N . If any two elements of the family U k have non-
empty intersection, then U k is a one-point set.

Proof. k A a a a a

B a a a k
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Let be a family of basic open sets. Then is
the empty set or is a one-point set or is a basic open set.

Proof. n N
m n A N V A

m N B N
V B V A n m

C A V A n N

B C m

V A V A V B
m B A m

B C C B B C
m

V C

D V C U U V A n m
D A V A V B n

A n B
n A n C

D U V C

D D A
V A C V B D V B D B
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We shall show that

: 1 2

To prove that : 1 2 , let and let us show
that , which is to show that . The first
inclusion follows immediately from the definition of the set . To prove
the second inclusion let . There exists such that for some

. Let max . Since and , ,
by Lemma 2. Since and , or depending
on whether or not. Since , .

The fact that the intersection is a one-point set follows immediately
from Lemma 3.

P 5.

Suppose that is non-empty. If for each there exist
and such that , then is a one-point set

according to the above lemma. Otherwise, there exist and
such that and, if , then . Let

: for some

Claim. The sets and have the same first elements.

Proof of the claim. Let . Since , by
Lemma 2, the first elements of are contained in . Hence the first
elements of are contained in . Since , and have the same
first elements.

We shall show that

Let , and let . Then and so .
Clearly, . Since , by Lemma 2, the first elements
of are the same as the first elements of . By the above Claim, the
first elements of are the same as the first elements of . Hence

, which shows that .

To prove the converse inclusion, let . Then :
. Since , . Thus and
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The space N is a Baire space.

Proof. U N
Z Z N

V A k U V A
V A n n V A Z
U Z k

If A , A N , then A A if and only

if for each n N all but finitely many elements of the sequence A are
subsets of A and they have the same first n elements as those of the set A.

Proof. A A n N k n

A V A m k m k A A
n A n

A

U
A n V A U

A A
n A

A V A U A A

If the set differences N B, N A , N A are
infinite and B V A for each n N , then N B N A .

Proof. B V A k B A
k N B N A k n N m

n N B m n B
m B A

m n k m n N B
N A n k m n

N B N A
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have the same first elements. Hence by the above claim, and must
have the same first elements. Therefore , which shows that

.

T 6. [ ]

Let be a non-empty open subset of the space [ ] , and
let be nowhere dense subsets of [ ] . By induction, one can
choose basic open sets , 1 2 such that

, , and . By Lemma 4,
: 1 2 .

P 7. exp lim

Suppose that lim and let . There exists a

such that for each . Then for each , and
the first elements of are the same as the first elements of the set

.

To prove the converse statement, let be an arbitrary open neigh-
borhood of . There exists such that . Since all but finitely
many elements of the sequenc are subsets of and they have the
same first elements as those of the set , all but finitely many elements
of the sequence are elements of . Thus lim .

P 8.
lim

Since : 1 2 , by Lemma 3, :
1 2 . Thus : 1 2 . Let and let

be the th element of . Then the first elements of the set are
contained in the set 1 2 . Since the set and every set have
the same first elements for each , the set and every
set have the same first elements for each . Hence, by
Proposition 7, lim .
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If B V A k and the sequence A is
convergent in N , then B A for all but finitely many n N .

Proof. A N A A

Claim. B A

m B ith
B n n i A A B V A

m A A B A
m A k m A

n m B V A m B A B

m A A n m B V A
B A A B B A n m

Every countably compact subset of the space
N is countable.

Proof. Y N
i N Y i

N
Y

N
N

Z N n N
W A A Z Z n N

F Z Z W A A F
Z F n N

B Z n N A F
B W A Z

A
Z B A

D N A B D
A B A B
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L 9. : 1 2
[ ]

Suppose that [ ] and that lim .

.

Indeed, let be an arbitarry member of . Suppose it is the element
of the set . Let be such that and . Since ,

. Thus . To prove the converse inclusion, take an
arbitrary element of . By Proposition 6, there exists such that
and . Since , . Thus and the Claim is
proved.

Let be such that for each . Since ,
. Hence for each .

T 10. (V. Popov)
exp

Let be the set exp endowed with the Cantor set topology.
The idnetity map : exp is continuous. Hence the function
restricted to any countably compact subspace of exp is a homeomorphi-
sm. Since any countably compact subspace of the Cantor set is compact,
any countably compact subspace of exp is also compact. Thus the theo-
rem will be shown if we prove that any compact subspace of exp is
countable.

Let be a compact subspace of the space exp . For each ,
the family : is an open cover of . Hence for each ,
there is a finite subset of such that : . We
shall show that : .

Let . Then for each there exists such that
. Since (being compact and first countable) is sequentially

compact, the sequence has a subsequence that converges to a point of
. Thus is one of the sets by virtue of Lemma 9.

A family of subsets of is almost disjoint if for each ,
, the intersection is a finit set.
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The cellularity of N , c N , equals .

Proof. D N
A N A D

N

Let A B N and let F N be such that F A B.
If F A F B N , then A and B are almost disjoint.

Proof. A B A B F A
F B N

Every subspace of N of cellularity is nowthere
dense in N .

Proof. Z N c Z Z
N V

Z V V c Z V c V
V N

Let h be the smallest cardinal for which there exists
a collection D such that the following conditions are
satisfied:

1. Each D is a maximal almost disjoint family contained in N ;

2. For each A N there exists B such that B is almost
contained in A.

h
D h

h D
D

h
h

The space N contains a -base which can be
represented as a union of h many disjoint families.
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L 11. [ ] [ ] 2

Let [ ] be an almost disjoint family of cardinality 2 .
Then [ ] : is a disjoint family of open subsets of the
space [ ] and the cardinality of this family equals 2 .

L 12. [ ] [ ]
[ ]

If were infinite, then would belong to
[ ] .

T 13. [ ] 2
[ ]

Let be a subspace of [ ] and 2 . Assume that
is not nowhere dense in [ ] . Then there exists a basic open set such
that is dense in . Then 2 and therefore 2 .
Since is homeomorphic to [ ] , this contradicts Lemma 11.

D 14.
:

[ ]

[ ]

The cardinal was introduced by Balcar, Pelant and Simon [1]. Therein
it was shown that there exists a family : that, in addition
to (1) and (2), also satisfies

(3). If , then each element of the family is almost
contained in some element of the family .

It was also shown that 2 and that it is consistent with ZFC
that 2 .

T 15. [ ]



N( )

n

n

HEOREM

H

D

D

D

P

P

P

P

H

ON SUBSPACES OF Exp

α

α
ω

α α
ω

α
<ω

ω

ω

α

ω

ω

ω

ω

ω ω

α α

<ω

ω ω
α

ω ω

<ω ω

<ω

ω ω

ω

= { }

= {〈 〉∩ ∈ }

= ∪{ ∈ }

∈
∈ \

= \ 〈 〉 ⊆

· = ut

∩ ∩

= ∪{ }

∈
= { ∈ 〈 〉 ∩ ∈ }

∈
∈ ∈ 〈 〉∩ ⊆ 〈∅ 〉

= {
∈ } ·

ut

α <

,

α < ( , ) , ( , ) ( , )

( , ) α < ,

π

( )

α, α <

, ( , ) ( )

π

ω

κ

π κ

κ <

π

κ

π

α < κ

α < κ

(α, ) , .

(α, )

(α, )

π

< κ (α, ) , ,

(α, ) α < κ

κ ω <

<

π

Proof. D h
x y N

h D x y x A x y N A D D x y
N

D x y h x y N

base N

B N V B B
h A D A B x

n B y A B x A x y V B
base N

h h

Let be a cardinal and let Z be a subspace of N
such that Z has a -base which can be represeted as a union of many
disjoint subfamilies. If h, then Z is a nowhere dense subset of N .

Proof.
V Z V V Z V base

V N
Z N base N

P P

F N

P F A N F A N P

P F
P F

base N B N
a F N A P F F A N B
A B P F

F N h

h N
base
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Let : be a collection satisfying conditions
(1) and (2), above. For any pair of finite subsets of and for each

, let [ ] : . Then each
is a disjoint family of basic open subsets of [ ] . Let us show that

: and [ ]

is a - in [ ] .

Let [ ] and consider a basic neighborhood of . There
exist , and such that is finite. Let be the set of
first elements of and let . Then . Thus

is a required - in the space [ ] .

Also, is a union of many disjoint families.

T 16. [ ]

[ ]

Assume the contrary and suppose that there exists a basic open
set such that is dense in . Then also has a -
which can be represented as a union of many disjoint subfamilies. Since

is homeomorphic to [ ] , we can assume, without loss of generality,
that is dense in [ ] . Thus there exists a - of [ ] such that

: , where each is a disjoint family. Moreover, we
may assume that consists of basic open sets.

For each and for each [ ] , let

[ ] : [ ]

By Lemma 12, each is an almost disjoint family. We may
assume, without loss of generality, that each is even a maximal
almost disjoint family. Since is a - of [ ] , given [ ] , there
exist , [ ] and such that [ ] .
Then is almost contained in . Hence : and

[ ] satisfies conditions (1) and (2) of Definition 14. Since ,
we have a contradiction.

If one assumes that 2 , then by Theorem 15, the space [ ]
may contain a - which can be represented as a union of less that 2
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w( )

π α <

α < ( )

( ) ( ) ( ) , α <

( ), , α <

σ π

σ σ

( ) σ σ

( ) σ

N

No base of the space N can be represented as a
union of less than many disjoint families.

Proof. N Z
Z

Z
Z Z

N

Remark
N Z Z

h
base N P h P

h U P A U U
U A U U Z A U U P h

V Z V U U P h Z
N Z h

N

Every subspace of N with a -disjoint -base (in
particular, every metrizable subspace of N ) is nowhere dense in N .

Proof.

space discrete

Every subspace of N which is a -space is -
discrete.

Proof. Z N Z space
S i N Z S
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many disjoint families. However this is not true for any base of [ ] as
the following proposition shows.

P 17. [ ]
2

It is known that the space [ ] contains a subspace, say , that
is separable and of weight 2 (cf. [11]). Since the space is separable,
any disjoint family of open subsets of the space must be countable. Since

2 , no base of the space can be represented as a union of less
than 2 many disjoint families. Thus the same conclusion holds for [ ] .

1. In connection with the above proposition, let us remark that
the space [ ] contains a dense subspace such that has a base that
can be represented as a union of many disjoint families. To show this, let

be a - of [ ] such that : , where each is a
disjoint family. For each and for each fix and fix
a countable base of in . Let : ,
and let : . Then is dense in
[ ] and is a base of that can be represented as a union of many
disjoint families.

[ ]

T 18. [ ]
[ ] [ ]

This fact follows immediately from Theorem 16.

A topological space is called a - if it has a - network.

T 19. exp

Let be a subspace of exp and let be a - . Let
: be a network of , where each is a discrete family
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i

i i A i

A i A B

A i i

i

i

i i i

i

i

i

i i

i

i

i i i

∈
= { ∈ ∈ ∈ ⊆ 〈∅ 〉}

= ∪{ ∈ }
∈ ∈

∈ ⊆ 〈∅ 〉 ∈ 6= 6=
∈ 〈∅ 〉 ∈ 〈∅ 〉 =

{ ∈ }
ut

{ = }

∈ ∈ ∈ ∈
{ ∈ }

= ∪{ ∈ }
∈

= { ∈ ∈ ∈ ⊆ 〈∅ 〉}

= ∪{ ∈ }

∈
= { ∈ }

Z i N

Z A Z U S A U A

Z Z Z i N
Z Z A Z U S

A U A A B Z A B U U
A B B A A B

U A Z Z Z
Z

Z developable
i development Z

i Z

p Z U p U i N
U i N p

space

Every developable subspace of N is -discrete.

Every subspace of N possessing a -point - finite
base is -discrete.

Proof. Z N B i N
Z B i N

Z A Z U B A U A

Z Z Z i N
Z discrete

n N

Z n A Z A n B
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of subsets of . For each , let

: there exists such that .

Since is a network of , : . Let us show that
each is discrete (and closed) in . For each , fix
such that . Then for , , (for
otherwise, and which would imply that ).
Since : is a discrete family in , is a closed discrete subset
of .

A topological space is said to be if there exists a
collection : 1 2 , called a for , possessing the
following properties:

1. For each , is an open cover of ;

2. For each , if is such that for each , then
the family : is a base at .

An extensive discussion of developable spaces can be found, for exam-
ple, in [3] or [4].

Metrizable spaces are developable and every regular developable space
is a - [4]. We therefore have the following corollary.

C 20. exp

T 21. exp

Let be a subspace of exp and let : be
a base of , where each is point-finite. For each , let

: there exists such that

Since is a base of , : . Let us show that each
is - .

For each , let

: belongs to exactly elements of
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A

A i A i A B
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n i

n i i
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n i

i i

i

n i

( )

( )

( ) , , . . . ,

, , . . . , . . .

,

( ) ( )

, . . . ,

, , . . . , , ,

w( )

κ w( ) , , . . .

κ

( )

( ) .

( )

( ) , , . . .

( )

( )

( )

κ ω κ ω κ

κ w( ) κ

= ∪{ ∈ }

∈ ∈ ∈
= = ∩ ∩ ∩

⊆ 〈∅ 〉
∩ = { } ∈ ∩ =

∈
= ∈ 〈∅ 〉 ∈ 〈∅ 〉

= ut

| | =

= { = }

| | ≤
∩

∈
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∩ ∈
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{ } = ∩

= { ∈ }
=

|{ ∩ ∈ }|
≤ · | | ≤ · =
= ≤ | | | | = ut

B Z Z n n N
Z n Z

A Z n W W W B A W
j n W W W W W

A W A
W Z n A B W Z n W W

W W W B B W
j n A B B A

A B

If Z is a developable subspace of N , then Z Z .

Proof. Z Z
Z i

Z

i

i V A Z
A Z

Z A V A Z i n

B Z i V A Z
B V A Z i

Z V A Z i N
B Z B Z B V A Z

i B A A i N
B B A

i

A V A Z i n

Z Z
Z Z Z

The weight of any uncountable subspace of the space
N is uncountable.
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Since is point-finite, : . It is enough to show
that each is a discrete subset of .

For each , let be such that ,
for each 1 2 . We set . Thus
is an open neighborhood of . Notice also that . It follows
that . indeed, if , then for

, are also the only elements of such that , for
each 1 2 . Hence and which implies that

.

T 22. [ ]

The theorem is trivial in the case is finite. So suppose
is infinite. Let and let : 1 2 be a development
for . One may assume that the development has the following additional
properties:

(a) For each , ;

(b) For each , consists of basic open sets of the form ,
where .

We shall show that

: for some and for some

To this end, let be a point of . For each , chose
such that . Since the family : 1 2 is a
development for , the family : is a base at the point

in the subspace . If is an isolated point of , then
for some ; Hence . Otherwise, the sequence : contains
a subsequence converging to . Hence, by virtue of Lemma 9, for
some and the inclusion is shown.

Since : for some and for some

, . Since has countable base at every point,
. Thus .

C 23.
[ ]
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The space N contains a subspace homeomorphic to
the Sorgenfrey line.

Proof. Q
Q N X C Q

C is a cut C Q C
p C p Q C C D

C D C D

X N

C D C D E C D
q E C E q E X C D C D

X W F A X F Q
D W p F C r Q r p

C D C D W W
C D

m N

Proof. X N
X X

m X m N

Let X be a T space such that m X . Then
X is countably compact.

Proof. X X
N N X

m X m N

Let X be a T space such that m X . Then
X (hence X ) is compact and m X m X .

Proof. X
m X X refinable
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The following fact was discovered by V. Popov (cf. [13], Example 5)
in 1978. We provide a slightly different proof for the sake of completeness.

T 24. [ ]

Let denote the set of rational numbers with the discrete
topology. Then exp is homeomorphic to exp . Let exp :

. Recall that a proper subset of is a cut if has no largest
element and for each , ] . Also, if and are
cuts and is a proper subset of , then we write .

Let us show that the subspace of [ ] is homeomorphic to the
Sorgenfrey line whose basic neighborhoods point to the left.

Let and be cuts such that , and let ]. Then for
any , ]. This shows that ] is open
in . Conversely, let , where is a finite subset of , and
let . Let be the largest element of and let : .
Then and ] . This shows that is open in the topology
generated by sets of the form ].

C 25. exp 2 .

Let be a subspace of [ ] which is homeomorphic to the
Sorgenfrey line. Then is hereditarily separable and the netweight of
is 2 . Hence 2 and in consequence, exp 2 .

C 26. exp 2

Assume is not countably compact. Then contains a closed
subspace homeomorphic to . Therefore exp is embedded into exp .
Hence exp exp 2 . This is a contradiction.

C 27. exp
exp exp 1

By the previous corollary, is countably compact. Also, since
, is - in the sense of [6]. Therefore, by [6]; Theorem
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X m X m X

N j J N

N j J N

A j J A j J

Y N j J

The mapping is one-to-one.

Proof. A j J B j J N j J
A j J B j J A B j J

N A j J B j J

Let X be a closed subspace of N for each j J .
Then X j J is a closed subspace of N .

Proof. A N X j J A N X
j J F A N F A N X

F A X j J

The mapping is continuous when N j J
is equipped with the box product topology.

Proof. A j J N j J A A j J
F A A j J F F N

U F A j J U A j J
U F A

If N j J is a finite partition of N , then the
mapping is a homeomorphism onto Y .

Proof.
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1, is compact. Hence, by [5]; Corollary 5.3, exp 1.

Given a partition : of into pairwise disjoint infinite
sets, let us define a mapping

: [ ] : [ ]

by

: :

Let

[ ] :

L 28.

Let : , : [ ] : be such that
: : . Then , for some . Since is a

partition of , : : .

L 29. [ ]
: [ ]

Let [ ] : . Then for some
. There exists a finite set such that .

Hence : .

L 30. [ ] :

Let : [ ] : , let : ,
and let be a basic neighborhood of . For each , let
and let : . Then is a neighborhood of :
and .

L 31. :

By virtue of the preceding lemmas, it is enough to show that
the mapping is continuous.
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U F A j J
N j J U F A Y A A

j J F F j J

(1) Any finite power N of the space N is
embedded into N as a closed subspace. (2) Any finite power of the
Sorgenfrey line is embedded into N .

Proof.

N

N

A subspace X of N is hereditarily Lindelöf if and
only if for each Y X there exists a countable subset Z of Y such that
for each A Y there exists B Z such that A B.

Proof. X N Y X
A Y A Y Y

Z Y A Y A Z Y
A Y B Z A B

X Y
X Y F A Y

A Y F A F N
Y F A Y F A Y G Z F

Y F A Y F B Z F
A B F F B Y B Z F

F F N
F N F A Y A Y F F

Y

A subspace X of N is hereditarily separable if and
only if for each Y X there exists a countable subset Z of Y such that
for each A Y there exists B Z such that B A.
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It is easy to verify that for any basic open set :
of the space [ ] : , , where :

and : . Thus is an open mapping and therefore
is continuous.

T 32. [ ] [ ]
[ ]

[ ]

If follows imemdiately from the preceding lemmas and Theorem
24.

The space [ ] contains an uncountable subspace which is hereditarily
Lindelöf and hereditarily separable: the Sorgenfrey line is an instance of such
a subspace. The following theorems give characterizations of hereditarily
Lindelöf and hereditarily separable subspaces of the space exp .

T 33. exp

Suppose that exp is hereditarily Lindelöf and let .
Since the family : is an open cover of , there exists
a countable subset of such that : covers Thus
for each there exists such that .

Conversely, suppose that satisfies the above condition. Let be a
subspace of and let be a cover of by sets of the form ,
where and is a finite subset of . For each [ ] , let

: . Let be a counatble subset
of such that for each there exists such
that . Let : and, finally, let

: [ ] . Then is a countable subfamily of .
Since for each [ ] , : , the
family is a cover of .

T 34. exp
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Proof. X N
Y X Z Y A Y

A Z A Y B Z B A

X Y
X F N Y F A Y F A

Z F Y F A Y F
B Z F B A Z Z F F N

Y

A subspace X of N is hereditarily Lindelöf if
and only if the subspace X N A A X is hereditarily separable.

N
N

N

Any chain in N is both hereditarily Lindelöf and
hereditarily separable.

Proof.

N

N

X N X N A A X
X N

X X X

If a subspace X of N is Lindelöf, then X is
separable.

Proof. N X
n N Z X X W B
B Z Z Z n N

D Z X N
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Suppose that exp is hereditarily separable and let
. Let be a countable and dense subset of . Then for each ,

. Thus for each these exists such that .

Conversely, suppose that satisfies the baove condition. Let be a
subspace of . For each [ ] , let : . Let

be a countable subset of such that for each there
exists such that . Then : [ ] is a
countable dense subset of .

C 35. exp
:

Any non-empty subset of exp that is linearly ordered by is called
a chain in exp . The Sorgenfrey line constructed in Theorem 24 is a chain
in exp of cardinality 2 .

T 36. exp

Since the set of all complements of a chain is a chain again, in
view of the preceding corollary, it is enough to show that every subspace
of exp that is a chain is hereditarily Lindelöf.

Since every chain of subsets of a countable set contains a countable
cofinal subset, every chain of subsets of satisfies the condition of Theorem
33 and thus it is hereditarily Lindelöf.

For every subspace of exp , let : . As
the above corollary shows, a subspace of exp is hereditarily Lindelöf
if and only if is hereditarily separable. This duality between and
holds only in one direction if the word “hereditarily” is omitted from the
above statement.

P 37. exp

We can assume, without loss of generality, that . For each
, there exists a countable subset of such that :

. Let : . Let us show that the set

[ ]
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is dense in .

Let . if is finite, then . Assume that
is infinite and let us consider an arbitrary basic neighborhood .
Suppose that is the element of . There exists such that

. Then .

E 38. There exists a separable subspace of [ ] such that
is homeomorphic to the Sorgenfrey plane and hence is not Lindelöf.

Let be the set of all rational numbers with discrete topology and let
and be two disjoint dense (with respect to the usual topology) subsets

of such that is a partition of . Let exp :
is a cut in and is a cut in . By Theorem 24 and Lemma 31, it
follows that the subspace of exp is homeomorphic to the Sorgenfrey
plane, and thus, is not Lindelöf. Let . For each ,
let [ [ . Then :
is a countable dense subset of the space . Therefore is separable but

is not Lindelöf.

E 39. There exists a separable subspace of exp such
that is not separable.

Let be an almost disjoint family of infinite subsets of of cardinality
continuum and let be the family of all cofinite subsets of that
are different from . Then is an open discrete subset of the space

because for each , .
Therefore cannot be separable. However the dual of contains [ ]
and thus it is separable. Setting we get an example of a separable
subspace of exp such that is not separable.

E 40. If no subset of reals of cardinality continuum is concen-
trated about a countable set, then there exists a metrizable subspace of
exp such that is not metrizable.

Let be as in the above example. Then, when is viewed
as a subset of the Cantor set, there exists an open neighborhood of the
countable set such that is uncountable. Let .
Then , being the disjoint sum of two metrizable subspaces of exp ,
is metrizable. Since contains a countable dense set [ ] and an
uncountable discrete subspace , is not metrizable.
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2. It was shown by Lavre [8] that it is consistent that no
uncountable subset of real is concentrated about a countable set.
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