ON SUBSPACES OF $\operatorname{Exp}(N)$

M. ISMAIL - SZ. PLEWIK - A. SZYMANSKI

Let $\exp (X)$ denote the exponential space of a topological space X introduced by Vietoris [14]. In this paper, we study the subspaces of the space $\exp (N)$, where $N=\{1,2,3, \ldots\}$ is the discrete space of natural numbers. We also show that if the metrizability number of $\exp (X)$ is countable, then X (and $\exp (X)$) must be compact and metrizable.

1. Preliminaries.

For every topological space X, let $\exp (X)$ denote the exponential space of X with the Vietoris topology (see the definition below or [3]; 2.7.20). Also, recall that the metrizability number of a space X, denoted by $m(X)$, is the smallest cardinal κ such that X can be represented as a union of κ many metrizable subspaces. It was shown (cf. [5]; Corollary 5.3) that if X is a compact Hausdorff space and $m(\exp (X)) \leq \omega$, then X and $\exp (X)$ are metrizable. We will show below (cf. Corollary 27) that the assumption in this theorem that X be compact is redundant. This is shown by first determining the metrizability number of the space $\exp (N)$, where $N\{1,2,3, \ldots\}$ is the discrete space of natural numbers. This motivated us to study the space $\exp (N)$ and some of its subspaces in more detail.

Topological properties of the space $\exp (N)$ have already been investigated by many authors, for instance Michael [10], Keesling [7], Ellentuck [2], Plewik [11] or [12]. It is known, for example, that the space $\exp (N)$
is first countable, zero-dimensional, completely regular, but not normal. In this note we prove more topological properties of the space $\exp (N)$.

2. Notation.

Throughout this paper, let $N=\{1,2,3, \ldots\}$ denote the discrete space of natural numbers.

Let X be an arbitrary set. Following the standard notation we set:

$$
\begin{gathered}
2^{X}=\{Y: Y \subseteq X\} \\
{[X]^{\omega}=\{Y:|Y| \geq \omega\}} \\
{[X]^{<\omega}=\{Y:|Y|<\omega\} .}
\end{gathered}
$$

A filter on X is a non-empty family \mathscr{F} of subsets of X satisfying the following two conditions:
(1) if $A \in \mathscr{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathscr{F}$;
(2) if $A, B \in \mathscr{F}$, then $A \cap B \in \mathscr{F}$.

If $\emptyset \notin \mathscr{F}$, then the filter \mathscr{F} is called a Proper filter; if $\emptyset \in \mathscr{F}$, then $\mathscr{F}=2^{X}$.

A pair A, B of subsets of X is said to be almost disjoint if $A \cap B$ is a finite set.

A set A is said to be almost contained in a set B if $A \backslash B$ is a finite set.

For any pair F, A of subsets of X we set:

$$
\langle F ; A\rangle=\{B \subseteq X: F \subseteq B \subseteq A\}
$$

For any ordered triple A, x, y of subsets of X we set:

$$
A(x, y)=x \cap(A \backslash y)
$$

For any set X and a filter \mathscr{F} on X we set $T_{\mathscr{F}}$ to be the topology on 2^{X} generated by the base consisting of sets of the form

$$
\langle x, A(x, y)\rangle
$$

where $x, y \in[X]^{<\omega}$ and $A \in \mathscr{F}$. In the case $X=N$, the topologies $T_{\mathscr{F}}$ were studied by A. Louveau (cf. [9]). In the whole spectrum of the topologies $T_{\mathscr{F}}$, there are two topologies that could be thought of as standing at the oposite ends: one, when $\mathscr{F}=\{X\}$, and the other one when $\mathscr{F}=2^{X}$. The former is the product (= Cantor) topology and the latter is the Vietoris topology (see the definition, below).

For every topological space X, let $\exp (X)$ denote the set of all nonempty closed subsets of the space X endowed with the Vietoris topology, i.e., topology generated by the base consisting of sets of the form

$$
\left\langle U_{1}, U_{2}, \ldots, U_{n}\right\rangle=V_{1} \cap V_{2},
$$

where $U_{1}, U_{2}, \ldots, U_{n}$ are open subsets of X and

$$
V_{1}=\left\{E \in \exp (X): E \subseteq U_{1} \cup U_{2} \cup \ldots \cup U_{n}\right\}
$$

and

$$
V_{2}=\left\{E \in \exp (X): E \cap U_{i} \neq \emptyset \text { for each } i=1,2, \ldots, n\right\}
$$

Thus, in the case $X=N$, the Vietoris topology on $\exp (N)$ is the topology generated by the base consisting of sets of the form

$$
\langle F ; A\rangle
$$

where $A \in \exp (N)$ and F is a finite subset of the set A.
Equivalently, the Vietoris topology on $\exp (N)$ is the topology generated by the base consisting of sets of the form

$$
W_{n}(A)=\left\langle\left\{a_{1}\right\},\left\{a_{2}\right\}, \ldots,\left\{a_{n}\right\}, A\right\rangle=\left\{B \subseteq N:\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq B \subseteq A\right\},
$$

where $a_{1}, a_{2}, \ldots, a_{n}$ are the first n elements of the set A with respect to the natural ordering of the set N. Obviously, the sets $W_{1}(A), W_{2}(A), \ldots$ form a base at the point $A \in \exp (N)$.

Let $[N]^{\omega}$ denote the subspace of $\exp (N)$ consisting of infinite subsets of N. For each $A \in[N]^{\omega}$, let

$$
V_{n}(A)=W_{n}(A) \cap[N]^{\omega} .
$$

We refer to these sets as the basic open subsets of the space $[N]^{\omega}$.

3. Introductory Results.

LEMMA 1. If $B \in V_{n}(A)$, then the first n elements of the set B are exactly the same as the first n elements of the set A.

Proof. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$, where $a_{1}<a_{2}<\ldots<a_{n}<\ldots$, and $B=\left\{b_{1}, b_{2}, \ldots, b_{m}, \ldots\right\}$, where $b_{1}<b_{2}<\ldots<b_{m}<\ldots$. Since $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\} \subseteq B \subseteq A,\left\{1,2, \ldots, a_{n}\right\} \cap B=\left\{1,2, \ldots, a_{n}\right\}$ and therefore $a_{1}=b_{1}, \ldots, a_{n}=b_{n}$.

LEMMA 2. Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}, \ldots\right\}$, where $a_{1}<a_{2}<\ldots<a_{n}<$ \ldots, and $C=\left\{c_{1}, c_{2}, \ldots, c_{m}, \ldots\right\}$, where $c_{1}<c_{2}<\ldots<c_{m}<\ldots$ If $n \leq m$ and $V_{n}(A) \cap V_{m}(C) \neq \emptyset$, then $a_{i}=c_{i}$ for each $i=1,2, \ldots, n$, and $c_{i} \in A$ for each $i=n+1, n+2, \ldots, m$.

Proof. Let $B \in V_{n}(A) \cap V_{m}(C)$. If $B=\left\{b_{1}, b_{2}, \ldots, b_{m}, \ldots\right\}$, where $b_{1}<b_{2}<\ldots<b_{m}<\ldots$, then, by Lemma $1, a_{1}=b_{1}=c_{1}, \ldots, a_{n}=$ $b_{n}=c_{n}$ and $c_{n+1}=b_{n+1}, \ldots, c_{m}=b_{m}$. Since $B \subseteq A, c_{i} \in A$ for each $i=n+1, n+2, \ldots, m$.

LEMMA 3. If $B \in \cap\left\{V_{k}\left(A_{k}\right): k=1,2, \ldots\right\}$, then $B=\cap\left\{A_{k}: k \in M\right\}$ for each $M \in[N]^{\omega}$.

Proof. Since $B \in V_{k}\left(A_{k}\right)$ for each $k=1,2, \ldots, B \subseteq \cap\left\{A_{k}: k \in M\right\}$. To prove the converse inclusion, let $m \in \cap\left\{A_{k}: k \in M\right\}$. Choose $k \in M$ such that $k \geq m$. Let $A_{k}=\left\{a_{1}^{k}, a_{2}^{k}, \ldots\right\}$, where $a_{1}^{k}<a_{2}^{k}<\ldots$. Since the m th element of an arbitrary subset of N is always $\geq m, m \leq a_{m}^{k} \leq a_{k}^{k}$. Since $m \in$ $A_{k}, m \in\left\{a_{1}^{k}, a_{2}^{k}, \ldots, a_{m}^{k}, \ldots, a_{k}^{k}\right\}$. Since $B \in V_{k}\left(A_{k}\right),\left\{a_{1}^{k}, a_{2}^{k}, \ldots, a_{k}^{k}\right\} \subseteq B$, and hence $m \in B$.

LEMMA 4. Let $n_{1}<n_{2}<\ldots$ be an increasing sequence of natural numbers. Let U_{k} denote the basic open set $V_{n_{k}}\left(A_{k}\right)$ for some infinite set $A_{k} \subseteq N$. If any two elements of the family $\left\{U_{k}: k=1,2, \ldots\right\}$ have nonempty intersection, then $\cap\left\{U_{k}: k=1,2, \ldots\right\}$ is a one-point set.

Proof. For each k, let $A_{k}=\left\{a_{1}^{k}, a_{2}^{k}, \ldots\right\}$, where $a_{1}^{k}<a_{2}^{k}<\ldots$ Let

$$
B=\cup\left\{\left\{a_{1}^{k}, a_{2}^{k}, \ldots, a_{n_{k}}^{k}\right\}: k=1,2, \ldots\right\}
$$

We shall show that

$$
\cap\left\{U_{k}: k=1,2, \ldots\right\}=\{B\}
$$

To prove that $B \in \cap\left\{U_{k}: k=1,2, \ldots\right\}$, let $k \in N$ and let us show that $B \in U_{k}$, which is to show that $\left\{a_{1}^{k}, a_{2}^{k}, \ldots, a_{n_{k}}^{k}\right\} \subseteq B \subseteq A_{k}$. The first inclusion follows immediately from the definition of the set B. To prove the second inclusion let $b \in B$. There exists m such that $b=a_{j}^{m}$ for some $j \leq n_{m}$. Let $l \geq \max \{k, m\}$. Since $n_{m} \leq n_{l}$ and $U_{m} \cap U_{l} \neq \emptyset, b=a_{j}^{m}=a_{j}^{l}$, by Lemma 2. Since $n_{k} \leq n_{l}$ and $U_{l} \cap U_{k} \neq \emptyset, a_{j}^{l}=a_{j}^{k}$ or $a_{j}^{l} \in A_{k}$ depending on whether $j \leq n_{k}$ or not. Since $b=a_{j}^{l}, b \in A_{k}$.

The fact that the intersection is a one-point set follows immediately from Lemma 3.

PROPOSITION 5. Let \mathscr{S} be a family of basic open sets. Then $\cap \mathscr{S}$ is the empty set or $\cap \mathscr{S}$ is a one-point set or $\cap \mathscr{S}$ is a basic open set.

Proof. Suppose that $\cap \mathscr{S}$ is non-empty. If for each $n \in N$ there exist $m \geq n$ and $A \subseteq N$ such that $V_{m}(A) \in \mathscr{S}$, then $\cap \mathscr{S}$ is a one-point set according to the above lemma. Otherwise, there exist $m \in N$ and $B \subseteq N$ such that $V_{m}(B) \in \mathscr{S}$ and, if $V_{n}(A) \in \mathscr{S}$, then $n \leq m$. Let

$$
C=\cap\left\{A: V_{n}(A) \in \mathscr{S}, \quad \text { for some } n \in N\right\}
$$

Claim. The sets B and C have the same first m elements.
Proof of the claim. Let $V_{n}(A) \in \mathscr{S}$. Since $V_{n}(A) \cap V_{m}(B) \neq \emptyset$, by Lemma 2, the first m elements of B are contained in A. Hence the first m elements of B are contained in C. Since $C \subseteq B, B$ and C have the same first m elements.

We shall show that

$$
\cap \mathscr{S}=V_{m}(C)
$$

Let $D \in V_{m}(C)$, and let $U \in \mathscr{S}$. Then $U=V_{n}(A)$ and so $n \leq m$. Clearly, $D \subseteq A$. Since $V_{n}(A) \cap V_{m}(B) \neq \emptyset$, by Lemma 2, the first n elements of A are the same as the first n elements of B. By the above Claim, the first n elements of A are the same as the first n elements of C. Hence $D \in U$, which shows that $\cap \mathscr{S} \supseteq V_{m}(C)$.

To prove the converse inclusion, let $D \in \cap \mathscr{S}$. Then $D \subseteq \cap\{A$: $\left.V_{n}(A) \in \mathscr{S}\right\}=C$. Since $V_{m}(B) \in \mathscr{S}, D \in V_{m}(B)$. Thus D and B
have the same first m elements. Hence by the above claim, D and C must have the same first m elements. Therefore $D \in V_{m}(C)$, which shows that $\cap \mathscr{S} \subseteq V_{m}(C)$.

THEOREM 6. The space $[N]^{\omega}$ is a Baire space.
Proof. Let U be a non-empty open subset of the space $[N]^{\omega}$, and let Z_{1}, Z_{2}, \ldots be nowhere dense subsets of $[N]^{\omega}$. By induction, one can choose basic open sets $V_{n_{k}}\left(A_{k}\right), k=1,2, \ldots$, such that $U \supseteq V_{n_{1}}\left(A_{1}\right) \supseteq$ $V_{n_{2}}\left(A_{2}\right) \supseteq \ldots, n_{1}<n_{2}<\ldots$, and $V_{n_{k}}\left(A_{k}\right) \cap Z_{k}=\emptyset$. By Lemma 4, $U \backslash \cup\left\{Z_{k}: k=1,2, \ldots\right\} \neq \emptyset$.

PROPOSITION 7. If $A_{n}, A \in \exp (N)$, then $A=\lim _{n \rightarrow \infty} A_{n}$ if and only if for each $n \in N$ all but finitely many elements of the sequence $\left\{A_{k}\right\}$ are subsets of A and they have the same first n elements as those of the set A.

Proof. Suppose that $A=\lim _{n \rightarrow \infty} A_{n}$ and let $n \in N$. There exists a $k \geq n$ such that $A_{m} \in V_{n}(A)$ for each $m \geq k$. Then for each $m \geq k, A_{m} \subseteq A$ and the first n elements of A_{m} are the same as the first n elements of the set A.

To prove the converse statement, let U be an arbitrary open neighborhood of A. There exists n such that $V_{n}(A) \subseteq U$. Since all but finitely many elements of the sequenc $\left\{A_{k}\right\}$ are subsets of A and they have the same first n elements as those of the set A, all but finitely many elements of the sequence $\left\{A_{k}\right\}$ are elements of $V_{n}(A) \subseteq U$. Thus $A=\lim _{n \rightarrow \infty} A_{n}$.

PROPOSITION 8. If the set differences $N \backslash B, N \backslash A_{1}, N \backslash A_{2}, \ldots$ are infinite and $B \in V_{n}\left(A_{n}\right)$ for each $n \in N$, then $N \backslash B=\lim _{n \rightarrow \infty}\left(N \backslash A_{n}\right)$.

Proof. Since $B \in \cap\left\{V_{k}\left(A_{k}\right): k=1,2, \ldots\right\}$, by Lemma 3, $B=\cap\left\{A_{k}\right.$: $k=1,2, \ldots\}$. Thus $N \backslash B=\cup\left\{N \backslash A_{k}: k=1,2, \ldots\right\}$. Let $n \in N$ and let m be the nth element of $N \backslash B$. Then the first $m-n$ elements of the set B are contained in the set $\{1,2, \ldots, m\}$. Since the set B and every set A_{k} have the same first $m-n$ elements for each $k \geq m-n$, the set $N \backslash B$ and every set $N \backslash A_{k}$ have the same first n elements for each $k \geq m-n$. Hence, by Proposition $7, N \backslash B=\lim _{n \rightarrow \infty}\left(N \backslash A_{n}\right)$.

LEMMA 9. If $B \in \cap\left\{V_{k}\left(A_{k}\right): k=1,2, \ldots\right\}$ and the sequence $\left\{A_{k}\right\}$ is convergent in $[N]^{\omega}$, then $B=A_{n}$ for all but finitely many $n \in N$.

Proof. Suppose that $A \in[N]^{\omega}$ and that $A=\lim _{k \rightarrow \infty} A_{k}$.

Claim. $B=A$.

Indeed, let m be an arbitarry member of B. Suppose it is the i th element of the set B. Let n_{k} be such that $n_{k} \geq i$ and $A_{n_{k}} \subseteq A$. Since $B \in V_{n_{k}}\left(A_{n_{k}}\right)$, $m \in A_{n_{k}} \subseteq A$. Thus $B \subseteq A$. To prove the converse inclusion, take an arbitrary element m of A. By Proposition 6, there exists k such that $m \in A_{n_{k}}$ and $n_{k} \geq m$. Since $B \in V_{n_{k}}\left(A_{n_{k}}\right), m \in B$. Thus $A \subseteq B$ and the Claim is proved.

Let m be such that $A_{n} \subseteq A$ for each $n \geq m$. Since $B \in V_{n}\left(A_{n}\right)$, $B \subseteq A_{n} \subseteq A=B$. Hence $B=A_{n}$ for each $n \geq m$.

THEOREM 10. (V. Popov) Every countably compact subset of the space $\exp (N)$ is countable.

Proof. Let Y be the set $\exp (N)$ endowed with the Cantor set topology. The idnetity map $i: \exp (N) \rightarrow Y$ is continuous. Hence the function i restricted to any countably compact subspace of $\exp (N)$ is a homeomorphism. Since any countably compact subspace of the Cantor set Y is compact, any countably compact subspace of $\exp (N)$ is also compact. Thus the theorem will be shown if we prove that any compact subspace of $\exp (N)$ is countable.

Let Z be a compact subspace of the space $\exp (N)$. For each $n \in N$, the family $\left\{W_{n}(A): A \in Z\right\}$ is an open cover of Z. Hence for each $n \in N$, there is a finite subset F_{n} of Z such that $Z \subseteq \cup\left\{W_{n}(A): A \in F_{n}\right\}$. We shall show that $Z \subseteq \cup\left\{F_{n}: n \in N\right\}$.

Let $B \in Z$. Then for each $n \in N$ there exists $A_{n} \in F_{n}$ such that $B \in W_{n}\left(A_{n}\right)$. Since Z (being compact and first countable) is sequentially compact, the sequence $\left\{A_{n}\right\}$ has a subsequence that converges to a point of Z. Thus B is one of the sets A_{n} by virtue of Lemma 9 .

A family D of subsets of N is almost disjoint if for each $A, B \in D$, $A \neq B$, the intersection $A \cap B$ is a finit set.

LEMMA 11. The cellularity of $[N]^{\omega}, c\left([N]^{\omega}\right)$, equals 2^{ω}.
Proof. Let $D \subset[N]^{\omega}$ be an almost disjoint family of cardinality 2^{ω}. Then $\left\{\langle\emptyset, A\rangle \cap[N]^{\omega}: A \in D\right\}$ is a disjoint family of open subsets of the space $[N]^{\omega}$ and the cardinality of this family equals 2^{ω}.

Lemma 12. Let $A, B \in[N]^{\omega}$ and let $F \in[N]^{\omega}$ be such that $F \subseteq A \cap B$. If $\langle F, A\rangle \cap\langle F, B\rangle \cap[N]^{\omega}=\emptyset$, then A and B are almost disjoint.

Proof. If $A \cap B$ were infinite, then $A \cap B$ would belong to $\langle F, A\rangle \cap$ $\langle F, B\rangle \cap[N]^{\omega}$.

THEOREM 13. Every subspace of $[N]^{\omega}$ of cellularity $<2^{\omega}$ is nowthere dense in $[N]^{\omega}$.

Proof. Let Z be a subspace of $[N]^{\omega}$ and $c(Z)<2^{\omega}$. Assume that Z is not nowhere dense in $[N]^{\omega}$. Then there exists a basic open set V such that $Z \cap V$ is dense in V. Then $c(Z \cap V)<2^{\omega}$ and therefore $c(V)<2^{\omega}$. Since V is homeomorphic to $[N]^{\omega}$, this contradicts Lemma 11.

DEFINITION 14. Let h be the smallest cardinal κ for which there exists a collection $\mathscr{H}=\left\{D_{\alpha}: \alpha<\kappa\right\}$ such that the following conditions are satisfied:

1. Each D_{α} is a maximal almost disjoint family contained in $[N]^{\omega}$;
2. For each $A \in[N]^{\omega}$ there exists $B \in \cup \mathscr{H}$ such that B is almost contained in A.

The cardinal h was introduced by Balcar, Pelant and Simon [1]. Therein it was shown that there exists a family $\mathscr{H}=\left\{D_{\alpha}: \alpha<h\right\}$ that, in addition to (1) and (2), also satisfies
(3). If $\alpha<\beta<h$, then each element of the family D_{β} is almost contained in some element of the family D_{α}.

It was also shown that $\omega_{1} \leq h \leq 2^{\omega}$ and that it is consistent with ZFC that $h<2^{\omega}$.

THEOREM 15. The space $[N]^{\omega}$ contains a π-base which can be represented as a union of h many disjoint families.

Proof. Let $\mathscr{H}=\left\{D_{\alpha}: \alpha<h\right\}$ be a collection satisfying conditions (1) and (2), above. For any pair x, y of finite subsets of N and for each $\alpha<h$, let $D_{\alpha}(x, y)=\left\{\langle x, A(x, y)\rangle \cap[N]^{\omega}: A \in D_{\alpha}\right\}$. Then each $D_{\alpha}(x, y)$ is a disjoint family of basic open subsets of $[N]^{\omega}$. Let us show that

$$
\mathscr{D}=\cup\left\{D_{\alpha}(x, y): \alpha<h \text { and } x, y \in[N]^{<\omega}\right\}
$$

is a π-base in $[N]^{\omega}$.
Let $B \in[N]^{\omega}$ and consider a basic neighborhood $V_{n}(B)$ of B. There exist $\alpha, \alpha<h$, and $A \in D_{\alpha}$ such that $A \backslash B$ is finite. Let x be the set of first n elements of B and let $y=A \backslash B$. Then $\langle x, A(x, y)\rangle \subseteq V_{n}(B)$. Thus \mathscr{D} is a required π-base in the space $[N]^{\omega}$.

Also, \mathscr{D} is a union of $h \cdot \omega=h$ many disjoint families.
THEOREM 16. Let κ be a cardinal and let Z be a subspace of $[N]^{\omega}$ such that Z has a π-base which can be represeted as a union of κ many disjoint subfamilies. If $\kappa<h$, then Z is a nowhere dense subset of $[N]^{\omega}$.

Proof. Assume the contrary and suppose that there exists a basic open set V such that $Z \cap V$ is dense in V. Then $Z \cap V$ also has a π-base which can be represented as a union of κ many disjoint subfamilies. Since V is homeomorphic to $[N]^{\omega}$, we can assume, without loss of generality, that Z is dense in $[N]^{\omega}$. Thus there exists a π-base \mathscr{P} of $[N]^{\omega}$ such that $\mathscr{P}=\cup\left\{P_{\alpha}: \alpha<\kappa\right\}$, where each P_{α} is a disjoint family. Moreover, we may assume that \mathscr{P} consists of basic open sets.

For each $\alpha<\kappa$ and for each $F \in[N]^{<\omega}$, let

$$
P(\alpha, F)=\left\{A \in[N]^{\omega}:\langle F, A\rangle \cap[N]^{\omega} \in P_{\alpha}\right\} .
$$

By Lemma 12, each $P(\alpha, F)$ is an almost disjoint family. We may assume, without loss of generality, that each $P(\alpha, F)$ is even a maximal almost disjoint family. Since \mathscr{P} is a π-base of $[N]^{\omega}$, given $B \in[N]^{\omega}$, there exist $a<\kappa, F \in[N]^{<\omega}$ and $A \in P(\alpha, F)$ such that $\langle F, A\rangle \cap[N]^{\omega} \subseteq\langle\emptyset, B\rangle$. Then A is almost contained in B. Hence $\mathscr{H}=\{P(\alpha, F): \alpha<\kappa$ and $\left.F \in[N]^{<\omega}\right\}$ satisfies conditions (1) and (2) of Definition 14. Since $\kappa \cdot \omega<h$, we have a contradiction.

If one assumes that $h<2^{\omega}$, then by Theorem 15 , the space [$\left.N\right]^{\omega}$ may contain a π-base which can be represented as a union of less that 2^{ω}
many disjoint families. However this is not true for any base of $[N]^{\omega}$ as the following proposition shows.

PROPOSITION 17. No base of the space $[N]^{\omega}$ can be represented as a union of less than 2^{ω} many disjoint families.

Proof. It is known that the space $[N]^{\omega}$ contains a subspace, say Z, that is separable and of weight 2^{ω} (cf. [11]). Since the space Z is separable, any disjoint family of open subsets of the space Z must be countable. Since $w(Z)=2^{\omega}$, no base of the space Z can be represented as a union of less than 2^{ω} many disjoint families. Thus the same conclusion holds for $[N]^{\omega}$.

Remark 1. In connection with the above proposition, let us remark that the space $[N]^{\omega}$ contains a dense subspace Z such that Z has a base that can be represented as a union of h many disjoint families. To show this, let \mathscr{P} be a π-base of $[N]^{\omega}$ such that $\mathscr{P}=\cup\left\{P_{\alpha}: \alpha<h\right\}$, where each P_{α} is a disjoint family. For each $\alpha<h$ and for each $U \in P_{\alpha}$ fix $A(U) \in U$ and fix a countable base $\mathscr{B}(U)$ of $A(U)$ in U. Let $Z=\left\{A(U): U \in P_{\alpha}, \alpha<h\right\}$, and let $\mathscr{B}=\left\{V \cap Z: V \in \mathscr{B}(U), U \in P_{\alpha}, \alpha<h\right\}$. Then Z is dense in $[N]^{\omega}$ and \mathscr{B} is a base of Z that can be represented as a union of h many disjoint families.

4. Metrizable subspaces of $[N]^{\omega}$.

THEOREM 18. Every subspace of $[N]^{\omega}$ with a σ-disjoint π-base (in particular, every metrizable subspace of $[N]^{\omega}$) is nowhere dense in $[N]^{\omega}$.

Proof. This fact follows immediately from Theorem 16.

A topological space is called a σ-space if it has a σ-discrete network.

THEOREM 19. Every subspace of $\exp (N)$ which is a σ-space is σ discrete.

Proof. Let Z be a subspace of $\exp (N)$ and let Z be a σ-space. Let $\mathscr{S}=\cup\left\{S_{i}: i \in N\right\}$ be a network of Z, where each S_{i} is a discrete family
of subsets of Z. For each $i \in N$, let
$Z_{i}=\left\{A \in Z:\right.$ there exists $U \in S_{i}$ such that $\left.A \in U \subseteq\langle\emptyset, A\rangle\right\}$.
Since \mathscr{S} is a network of $Z, Z=\cup\left\{Z_{i}: i \in N\right\}$. Let us show that each Z_{i} is discrete (and closed) in Z. For each $A \in Z_{i}$, fix $U_{A} \in S_{i}$ such that $A \in U_{A} \subseteq\langle\emptyset, A\rangle$. Then for $A, B \in Z_{i}, A \neq B, U_{A} \neq U_{B}$ (for otherwise, $A \in\langle\emptyset, B\rangle$ and $B \in\langle\emptyset, A\rangle$ which would imply that $A=B$). Since $\left\{U_{A}: A \in Z_{i}\right\}$ is a discrete family in Z, Z_{i} is a closed discrete subset of Z.

A topological space Z is said to be developable if there exists a collection $\left\{\mathscr{B}_{i}: i=1,2, \ldots\right\}$, called a development for Z, possessing the following properties:

1. For each i, \mathscr{B}_{i} is an open cover of Z;
2. For each $p \in Z$, if $U_{i} \in \mathscr{B}_{i}$ is such that $p \in U_{i}$ for each $i \in N$, then the family $\left\{U_{i}: i \in N\right\}$ is a base at p.

An extensive discussion of developable spaces can be found, for example, in [3] or [4].

Metrizable spaces are developable and every regular developable space is a σ-space [4]. We therefore have the following corollary.

COROLLARY 20. Every developable subspace of $\exp (N)$ is σ-discrete.
THEOREM 21. Every subspace of $\exp (N)$ possessing a σ-point - finite base is σ-discrete.

Proof. Let Z be a subspace of $\exp (N)$ and let $\mathscr{B}=\cup\left\{B_{i}: i \in N\right\}$ be a base of Z, where each B_{i} is point-finite. For each $i \in N$, let
$Z_{i}=\left\{A \in Z:\right.$ there exists $U \in B_{i}$ such that $\left.A \in U \subseteq\langle\emptyset, A\rangle\right\}$.
Since \mathscr{B} is a base of $Z, Z=\cup\left\{Z_{i}: i \in N\right\}$. Let us show that each Z_{i} is σ-discrete.

For each $n \in N$, let

$$
Z_{i}(n)=\left\{A \in Z_{i}: A \text { belongs to exactly } n \text { elements of } B_{i}\right\}
$$

Since B_{i} is point-finite, $Z_{i}=\cup\left\{Z_{i}(n): n \in N\right\}$. It is enough to show that each $Z_{i}(n)$ is a discrete subset of Z.

For each $A \in Z_{i}(n)$, let $W_{1}, W_{2}, \ldots, W_{n} \in B_{i}$ be such that $A \in W_{j}$, for each $j=1,2, \ldots, n$. We set $W_{A}=W_{1} \cap W_{2} \cap \ldots \cap W_{n}$. Thus W_{A} is an open neighborhood of A. Notice also that $W_{A} \subseteq\langle\emptyset, A\rangle$. It follows that $W_{A} \cap Z_{i}(n)=\{A\}$. indeed, if $B \in W_{A} \cap Z_{i}(n)$, then $W_{A}=W_{B}$ for $W_{1}, W_{2}, \ldots, W_{n}$ are also the only elements of B_{i} such that $B \in W_{j}$, for each $j=1,2, \ldots, n$. Hence $A \in\langle\emptyset, B\rangle$ and $B \in\langle\emptyset, A\rangle$ which implies that $A=B$.

THEOREM 22. If Z is a developable subspace of $[N]^{\omega}$, then $|Z|=w(Z)$.

Proof. The theorem is trivial in the case Z is finite. So suppose Z is infinite. Let $\kappa=w(Z)$ and let $\left\{\mathscr{B}_{i}: i=1,2, \ldots\right\}$ be a development for Z. One may assume that the development has the following additional properties:
(a) For each $i,\left|\mathscr{B}_{i}\right| \leq \kappa$;
(b) For each i, \mathscr{B}_{i} consists of basic open sets of the form $V_{n}(A) \cap Z$, where $A \in Z$.

We shall show that

$$
Z \subseteq\left\{A: V_{n}(A) \cap Z \in \mathscr{B}_{i} \text { for some } i \text { and for some } n\right\}
$$

To this end, let B be a point of Z. For each i, chose $V_{n_{i}}\left(A_{i}\right) \cap Z \in \mathscr{B}_{i}$ such that $B \in V_{n_{i}}\left(A_{i}\right) \cap Z$. Since the family $\left\{\mathscr{B}_{i}: i=1,2, \ldots\right\}$ is a development for Z, the family $\left\{V_{n_{i}}\left(A_{i}\right) \cap Z: i \in N\right\}$ is a base at the point B in the subspace Z. If B is an isolated point of Z, then $\{B\}=V_{n_{i}}\left(A_{i}\right) \cap Z$ for some i; Hence $B=A_{i}$. Otherwise, the sequence $\left\{A_{i}: i \in N\right\}$ contains a subsequence converging to B. Hence, by virtue of Lemma $9, B=A_{i}$ for some i and the inclusion is shown.

Since $\mid\left\{A: V_{n}(A) \cap Z \in \mathscr{B}_{i}\right.$ for some i and for some $\left.n\right\} \mid$
$\leq \kappa \cdot \omega,|Z| \leq \kappa \cdot \omega=\kappa$. Since Z has countable base at every point, $\kappa=w(Z) \leq|Z|$. Thus $|Z|=\kappa$.

COROLLARY 23. The weight of any uncountable subspace of the space $[N]^{\omega}$ is uncountable.

The following fact was discovered by V. Popov (cf. [13], Example 5) in 1978. We provide a slightly different proof for the sake of completeness.

THEOREM 24. The space $[N]^{\omega}$ contains a subspace homeomorphic to the Sorgenfrey line.

Proof. Let Q denote the set of rational numbers with the discrete topology. Then $\exp (Q)$ is homeomorphic to $\exp (N)$. Let $X=\{C \in \exp (Q)$: C is a cut $\}$. Recall that a proper subset C of Q is a cut if C has no largest element and for each $p \in C,(-\infty, p] \cap Q \subseteq C$. Also, if C and D are cuts and C is a proper subset of D, then we write $C<D$.

Let us show that the subspace X of $[N]^{\omega}$ is homeomorphic to the Sorgenfrey line whose basic neighborhoods point to the left.

Let C and D be cuts such that $C<D$, and let $E \in(C, D]$. Then for any $q \in E \backslash C, E \in\langle\{q\}, E\rangle \cap X \subseteq(C, D]$. This shows that $(C, D]$ is open in X. Conversely, let $W=\langle F, A\rangle \cap X$, where F is a finite subset of Q, and let $D \in W$. Let p be the largest element of F and let $C=\{r \in Q: r<p\}$. Then $C<D$ and $(C, D] \subseteq W$. This shows that W is open in the topology generated by sets of the form $(C, D]$.

COROLLARY 25. $m(\exp (N))=2^{\omega}$.

Proof. Let X be a subspace of $[N]^{\omega}$ which is homeomorphic to the Sorgenfrey line. Then X is hereditarily separable and the netweight of X is 2^{ω}. Hence $m(X)=2^{\omega}$ and in consequence, $m(\exp (N))=2^{\omega}$.

COROLLARY 26. Let X be a T_{1} space such that $m(\exp (X))<2^{\omega}$. Then X is countably compact.

Proof. Assume X is not countably compact. Then X contains a closed subspace homeomorphic to N. Therefore $\exp (N)$ is embedded into $\exp (X)$. Hence $m(\exp (X)) \geq m(\exp (N))=2^{\omega}$. This is a contradiction.

COROLLARY 27. Let X be a T_{1} space such that $m(\exp (X)) \leq \omega$. Then $X($ hence $\exp (X))$ is compact and $m(X)=m(\exp (X))=1$.

Proof. By the previous corollary, X is countably compact. Also, since $m(X) \leq \omega, X$ is ω-refinable in the sense of [6]. Therefore, by [6]; Theorem

1, X is compact. Hence, by [5]; Corollary 5.3, $m(X)=m(\exp (X))=1 . \square$

Given a partition $\mathscr{P}=\left\{N_{j}: j \in J\right\}$ of N into pairwise disjoint infinite sets, let us define a mapping

$$
\eta_{\mathscr{P}}: \prod\left\{\left[N_{j}\right]^{\omega}: j \in J\right\} \rightarrow[N]^{\omega}
$$

by

$$
\eta_{\mathscr{P}}\left(\left(A_{j}: j \in J\right)\right)=\cup\left\{A_{j}: j \in J\right\} .
$$

Let

$$
Y_{\mathscr{P}}=\eta_{\mathscr{P}}\left(\prod\left\{\left[N_{j}\right]^{\omega}: j \in J\right\}\right)
$$

LEMMA 28. The mapping $\eta_{\mathscr{P}}$ is one-to-one.
Proof. Let $\left(A_{j}: j \in J\right),\left(B_{j}: j \in J\right) \in \prod\left\{\left[N_{j}\right]^{\omega}: j \in J\right\}$ be such that $\left(A_{j}: j \in J\right) \neq\left(B_{j}: j \in J\right)$. Then $A_{j} \neq B_{j}$, for some $j \in J$. Since \mathscr{P} is a partition of $N, \cup\left\{A_{j}: j \in J\right\} \neq \cup\left\{B_{j}: j \in J\right\}$.

LEMMA 29. Let X_{j} be a closed subspace of $\left[N_{j}\right]^{\omega}$ for each $j \in J$. Then $\eta_{\mathscr{P}}\left(\prod\left\{X_{j}: j \in J\right\}\right)$ is a closed subspace of $[N]^{\omega}$.

Proof. Let $A \in[N]^{\omega} \backslash \eta_{\mathscr{P}}\left(\prod\left\{X_{j}: j \in J\right\}\right)$. Then $A \cap N_{j} \notin X_{j}$ for some $j \in J$. There exists a finite set $F \subseteq A \cap N_{j}$ such that $\left\langle F, A \cap N_{j}\right\rangle \cap X_{j}=\emptyset$. Hence $\langle F, A\rangle \cap \eta_{\mathscr{P}}\left(\prod\left\{X_{j}: j \in J\right\}\right)=\emptyset$.

LEMMA 30. The mapping $\eta_{\mathscr{P}}$ is continuous when $\prod\left\{\left[N_{j}\right]^{\omega}: j \in J\right\}$ is equipped with the box product topology.

Proof. Let $\left(A_{j}: j \in J\right) \in \prod\left\{\left[N_{j}\right]^{\omega}: j \in J\right\}$, let $A=\eta_{\mathscr{P}}\left(\left(A_{j}: j \in J\right)\right)$, and let $\langle F, A\rangle$ be a basic neighborhood of A. For each $j \in J$, let $F_{j}=F \cap N_{j}$ and let $U=\prod\left\{\left\langle F_{j}, A_{j}\right\rangle: j \in J\right\}$. Then U is a neighborhood of $\left(A_{j}: j \in J\right)$ and $\eta_{\mathscr{P}}(U) \subseteq\langle F, A\rangle$.

LEMMA 31. If $\mathscr{P}=\left\{N_{j}: j \in J\right\}$ is a finite partition of N, then the mapping $\eta_{\mathscr{P}}$ is a homeomorphism onto $Y_{\mathscr{P}}$.

Proof. By virtue of the preceding lemmas, it is enough to show that the mapping $\eta_{\mathscr{P}}^{-1}$ is continuous.

It is easy to verify that for any basic open set $U=\prod\left\{\left\langle F_{j}, A_{j}\right\rangle: j \in J\right\}$ of the space $\prod\left\{\left[N_{j}\right]^{\omega}: j \in J\right\}, \eta_{\mathscr{P}}(U)=\langle F, A\} \cap Y_{\mathscr{P}}$, where $A=\cup\left\{A_{j}\right.$: $j \in J\}$ and $F=\cup\left\{F_{j}: j \in J\right\}$. Thus $\eta_{\mathscr{P}}$ is an open mapping and therefore $\eta_{\mathscr{P}}^{-1}$ is continuous.

THEOREM 32. (1) Any finite power $\left([N]^{\omega}\right)^{n}$ of the space $[N]^{\omega}$ is embedded into $[N]^{\omega}$ as a closed subspace. (2) Any finite power of the Sorgenfrey line is embedded into $[N]^{\omega}$.

Proof. If follows imemdiately from the preceding lemmas and Theorem 24.

The space $[N]^{\omega}$ contains an uncountable subspace which is hereditarily Lindelöf and hereditarily separable: the Sorgenfrey line is an instance of such a subspace. The following theorems give characterizations of hereditarily Lindelöf and hereditarily separable subspaces of the $\operatorname{space} \exp (N)$.

THEOREM 33. A subspace X of $\exp (N)$ is hereditarily Lindelöf if and only if for each $Y \subseteq X$ there exists a countable subset Z of Y such that for each $A \in Y$ there exists $B \in Z$ such that $A \subseteq B$.

Proof. Suppose that $X \subseteq \exp (N)$ is hereditarily Lindelöf and let $Y \subseteq X$. Since the family $\{\langle\emptyset, A\rangle \cap Y: A \in Y\}$ is an open cover of Y, there exists a countable subset Z of Y such that $\{\langle\emptyset, A\rangle \cap Y: A \in Z\}$ covers Y Thus for each $A \in Y$ there exists $B \in Z$ such that $A \subseteq B$.

Conversely, suppose that X satisfies the above condition. Let Y be a subspace of X and let \mathscr{G} be a cover of Y by sets of the form $\langle F, A\rangle \cap Y$, where $A \in Y$ and F is a finite subset of A. For each $F \in[N]^{<\omega}$, let $Y(F)=\{A \in Y:\langle F, A\rangle \cap Y \in G\}$. Let $Z(F)$ be a counatble subset of $Y(F)$ such that for each $A \in Y(F)$ there exists $B \in Z(F)$ such that $A \subseteq B$. Let $\mathscr{G}(F)=\{\langle F, B\rangle \cap Y: B \in Z(F)\}$ and, finally, let $\mathscr{H}=\cup\left\{\mathscr{G}(F): F \in[N]^{<\omega}\right\}$. Then \mathscr{H} is a countable subfamily of \mathscr{G}. Since for each $F \in[N]^{<\omega}, \cup\{\langle F, A\rangle \cap Y: A \in Y(F)\} \subseteq \cup \mathscr{G}(F)$, the family \mathscr{H} is a cover of Y.

THEOREM 34. A subspace X of $\exp (N)$ is hereditarily separable if and only if for each $Y \subseteq X$ there exists a countable subset Z of Y such that for each $A \in Y$ there exists $B \in Z$ such that $B \subseteq A$.

Proof. Suppose that $X \subseteq \exp (N)$ is hereditarily separable and let $Y \subseteq X$. Let Z be a countable and dense subset of Y. Then for each $A \in Y$, $\langle\emptyset, A\rangle \cap Z \neq \emptyset$. Thus for each $A \in Y$ these exists $B \in Z$ such that $B \subseteq A$.

Conversely, suppose that X satisfies the baove condition. Let Y be a subspace of X. For each $F \in[N]^{<\omega}$, let $Y(F)=\{A \in Y: F \subseteq A\}$. Let $Z(F)$ be a countable subset of $Y(F)$ such that for each $A \in Y(F)$ there exists $B \in Z(F)$ such that $B \subseteq A$. Then $Z=\cup\left\{Z(F): F \in[N]^{<\omega}\right\}$ is a countable dense subset of Y.

COROLLARY 35. A subspace X of $\exp (N)$ is hereditarily Lindelöf if and only if the subspace $X^{c}=\{N \backslash A: A \in X\} \backslash\{\emptyset\}$ is hereditarily separable.

Any non-empty subset of $\exp (N)$ that is linearly ordered by \subseteq is called a chain in $\exp (N)$. The Sorgenfrey line constructed in Theorem 24 is a chain in $\exp (N)$ of cardinality 2^{ω}.

THEOREM 36. Any chain in $\exp (N)$ is both hereditarily Lindelöf and hereditarily separable.

Proof. Since the set of all complements of a chain is a chain again, in view of the preceding corollary, it is enough to show that every subspace of $\exp (N)$ that is a chain is hereditarily Lindelöf.

Since every chain of subsets of a countable set contains a countable cofinal subset, every chain of subsets of N satisfies the condition of Theorem 33 and thus it is hereditarily Lindelöf.

For every subspace X of $\exp (N)$, let $X^{c}=\{N \backslash A: A \in X\} \backslash\{\emptyset\}$. As the above corollary shows, a subspace X of $\exp (N)$ is hereditarily Lindelöf if and only if X^{c} is hereditarily separable. This duality between X and X^{c} holds only in one direction if the word "hereditarily" is omitted from the above statement.

Proposition 37. If a subspace X of $\exp (N)$ is Lindelöf, then X^{c} is separable.

Proof. We can assume, without loss of generality, that $N \notin X$. For each $n \in N$, there exists a countable subset Z_{n} of X such that $X \subseteq \cup\left\{W_{n}(B)\right.$: $\left.B \in Z_{n}\right\}$. Let $Z=\cup\left\{Z_{n}: n \in N\right\}$. Let us show that the set

$$
D=Z^{c} \cup\left(X^{c} \cap[N]^{<\omega}\right)
$$

is dense in X^{c}.
Let $N \backslash A \in X^{c}$. if $N \backslash A$ is finite, then $N \backslash A \in D$. Assume that $N \backslash A$ is infinite and let us consider an arbitrary basic neighborhood $W_{m}(N \backslash A)$. Suppose that k is the $m t h$ element of $N \backslash A$. There exists $B \in Z_{k}$ such that $A \in W_{k}(B)$. Then $N \backslash B \in D \cap W_{m}(N \backslash A)$.

EXAMPLE 38. There exists a separable subspace X of $[N]^{\omega}$ such that X^{c} is homeomorphic to the Sorgenfrey plane and hence X^{c} is not Lindelöf.

Let Q be the set of all rational numbers with discrete topology and let Q_{1} and Q_{2} be two disjoint dense (with respect to the usual topology) subsets of Q such that $\left\{Q_{1}, Q_{2}\right\}$ is a partition of Q. Let $Y=\left\{A \in \exp (Q): A \cap Q_{1}\right.$ is a cut in Q_{1} and $A \cap Q_{2}$ is a cut in $\left.Q_{2}\right\}$. By Theorem 24 and Lemma 31, it follows that the subspace Y of $\exp (Q)$ is homeomorphic to the Sorgenfrey plane, and thus, Y is not Lindelöf. Let $X=Y^{c}$. For each $(s, t) \in Q_{1} \times Q_{2}$, let $A(s, t)=\left([s, \infty) \cap Q_{1}\right) \cup\left([t, \infty) \cap Q_{2}\right)$. Then $\left\{A(s, t):(s, t) \in Q_{1} \times Q_{2}\right\}$ is a countable dense subset of the space X. Therefore X is separable but $X^{c}=Y$ is not Lindelöf.

EXAMPLE 39. There exists a separable subspace X of $\exp (N)$ such that X^{c} is not separable.

Let \mathscr{D} be an almost disjoint family of infinite subsets of N of cardinality continuum and let Cof be the family of all cofinite subsets of N that are different from N. Then \mathscr{D}^{c} is an open discrete subset of the space $Y=\operatorname{Cof} \cup \mathscr{D}^{c}$ because for each $N \backslash A \in \mathscr{D}^{c},\langle\emptyset, N \backslash A\rangle \cap Y=\{N \backslash A\}$. Therefore Y cannot be separable. However the dual of Y contains $[N]^{<\omega}$ and thus it is separable. Setting $X=Y^{c}$ we get an example of a separable subspace X of $\exp (N)$ such that X^{c} is not separable.

EXAMPLE 40. If no subset of reals of cardinality continuum is concentrated about a countable set, then there exists a metrizable subspace X of $\exp (N)$ such that X^{c} is not metrizable.

Let $Y=\operatorname{Cof} \cup \mathscr{D}^{c}$ be as in the above example. Then, when Y is viewed as a subset of the Cantor set, there exists an open neighborhood U of the countable set Cof such that $\mathscr{D}^{c}-U$ is uncountable. Let $X=\operatorname{Cof} \cup\left(\mathscr{D}^{c}-U\right)$. Then X, being the disjoint sum of two metrizable subspaces of $\exp (N)$, is metrizable. Since X^{c} contains a countable dense set $[N]^{<\omega}$ and an uncountable discrete subspace $\left(\mathscr{D}^{c}-U\right)^{c}, X^{c}$ is not metrizable.

Remark 2. It was shown by Lavre [8] that it is consistent that no uncountable subset of real is concentrated about a countable set.

REFERENCES

[1] Balcar B., Pelant J., Simon P., The space of ultrafilters on N covered by nowhere dense sets, Fundamenta Mathematicae, 110 (1980), 11-24.
[2] Ellentuck E., A new proof that analytic sets are Ramsey, The Journal of Symbolic Logic, 39 (1974), 163-165.
[3] Engelking R., General Topology, Heldermann Verlag, Berlin 1989.
[4] Gruenhage G., Generalized metric spaces, in: Handbook of Set Theoretic Topology, (North Holland 1984), 423-501.
[5] Ismail M., Szymanski A., On the metrizability number and related invariants of spaces, II, Topology and its Applicastions, 71 (1996), 179-191.
[6] Ismail M., Szymanski A., Compact spaces representable as unions of nice subspace, Topology and its Applications, 59 (1994), 287-294.
[7] Keesling J., Normality and properties related to compactness in hyperspaces, Proceedings of the American Mathematical Society, 24 (1970), 760-766.
[8] Laver R., On the consistency of Borel's conjecture, Acta Mathematica, 137 (1976), 151-169.
[9] Louveau A., Une démonstration topologique des théorémes de Silver et Mathias, Bull. Sc. Math. séries, 98 (1974), 97-102.
[10] Michael E., Topologies on spaces of subsets, Transactions of the American Mathematical Society, 71 (1951), 152-182.
[11] Plewik Sz., On completely Ramsey sets, Fundamenta Mathematicae, 127 (1986), 127-132.
[12] Plewik Sz., Ideals of nowhere Ramsey sets are isomorphic, The Journal of Symbolic Logic, 59 (1994), 662-667.
[13] Popov V., On the subspaces of $\exp X$, Colloquia Mathematica Societatis Janos Bolyai, 23. Topology, Budapest (1978), 977-984.
[14] Vietoris L., Bereiche Zweiter Ordnung, Monatshefte für Mathematik und Physik, 32 (1922), 258-280.

Pervenuto il 7 gennaio 1999.
M. Ismail - A. Szymanski

Department of Mathematics
Slippery Rock University of Pennsylvania Slippery Rock, PA 16057, U.S.A.

Sz. Plewik
University of Silesia
Bankowa 14, 40-007 Katowice, Poland

