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ON SUBSPACES OF Exp(N)

M. ISMAIL - SZ. PLEWIK - A. SZYMANSKI

Let exp(X) denote the exponential space of a topological space X introduced
by Vietoris [14]. In this paper, we study the subspaces of the space exp(N),
where N = {1, 2,3,...} is the discrete space of natura numbers. We aso show
that if the metrizability number of exp(X) is countable, then X (and exp(X))
must be compact and metrizable.

1. Preliminaries.

For every topological space X, let exp(X) denote the exponential space
of X with the Vietoris topology (see the definition below or [3]; 2.7.20).
Also, recal that the metrizability number of a space X, denoted by m(X),
is the smallest cardinal « such that X can be represented as a union of «
many metrizable subspaces. It was shown (cf. [5]; Corollary 5.3) that if X
is a compact Hausdorff space and m(exp(X)) < w, then X and exp(X) are
metrizable. We will show below (cf. Corollary 27) that the assumption in this
theorem that X be compact is redundant. This is shown by first determining
the metrizability number of the space exp(N), where N{1, 2, 3, ...} is the
discrete space of natural numbers. This motivated us to study the space
exp(N) and some of its subspaces in more detail.

Topological properties of the space exp(N) have aready been investi-
gated by many authors, for instance Michael [10], Keedling [7], Ellentuck
[2], Plewik [11] or [12]. It is known, for example, that the space exp(N)
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is first countable, zero-dimensional, completely regular, but not normal. In
this note we prove more topological properties of the space exp(N).

2. Notation.

Throughout this paper, let N = {1, 2, 3, ...} denote the discrete space
of natural numbers.

Let X be an arbitrary set. Following the standard notation we set:
2X ={Y:Y C X].

[X]? ={Y : Y] = w},
[X]=* = {Y : Y] < w}.

A filter on X is a non-empty family .# of subsets of X satisfying the
following two conditions:

1) if Ae# and AC B C X, then B € #;
(2 if AABe.Z#,then ANB e 7.

If ¥ ¢ #, then the filter . is caled a Proper filter; if ¥ € .#, then
F = 2%,

A pair A, B of subsets of X is said to be almost digoint if AN B is
a finite set.

A set A is said to be almost contained in a set B if A\B is a finite
Set.

For any pair F, A of subsets of X we set:
(F;A)={BC X:F C BCA}
For any ordered triple A, x, y of subsets of X we set:

AX,y) = XN (A\Y).

For any set X and a filter # on X we set T to be the topology on
2% generated by the base consisting of sets of the form

(X, A(X, ¥)),
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wherex, y € [X]=? and A € Z.Inthecase X = N, thetopologies T4 were
studied by A. Louveau (cf. [9]). In the whole spectrum of the topologies T,
there are two topologies that could be thought of as standing at the oposite
ends: one, when .# = {X}, and the other one when .# = 2X. The former
is the product (= Cantor) topology and the latter is the Vietoris topology
(see the definition, below).

For every topological space X, let exp(X) denote the set of all non-
empty closed subsets of the space X endowed with the Vietoris topology,
i.e., topology generated by the base consisting of sets of the form

(Ulv U27 ~-~,Un> :VlmVZa

where U1, Uy, ..., U, are open subsets of X and

Vi={Eeexp(X):ECUUUU...UUp}

and
Vo ={Eeexp(X): ENUj#@ foreach i =1,2,...,n}.
Thus, in the case X = N, the Vietoris topology on exp(N) is the
topology generated by the base consisting of sets of the form
(F; A)

where A € exp(N) and F is a finite subset of the set A.

Equivalently, the Vietoris topology on exp(N) is the topology generated
by the base consisting of sets of the form

Wh(A) = ({aa}, {az}, ... {an}, A={BCS N:{ay,a,....,an} S BC A}
where aj, ap, ..., ay are the first n elements of the set A with respect to

the natural ordering of the set N. Obvioudly, the sets W1 (A), W(A), ...
form a base at the point A € exp(N).

Let [N]® denote the subspace of exp(N) consisting of infinite subsets
of N. For each A € [N]?, let

Vn(A) = Wh(A) N[N]”.

We refer to these sets as the basic open subsets of the space [N]“.
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3. Introductory Results.

LEMMA 1. If B € V,(A), then the first n elements of the set B are
exactly the same as the first n elements of the set A.

Proof. Let A={a;,a,...,a,, ...}, Whereay <ax < ... <a, < ...,
and B = {by,b,,....,0n, ...}, where by < b, < ... < by, < .... Since
{ag,a, ..., a0} S BCA {12, ...,a,)nB={1,2,...,a,} and therefore
ap=Db,...,a,=Dby. O

LEMMA 2. Let A={aj,ay,...,a8,, ..., Whereagy <ax <...<a, <
.,and C = {¢,Cp,...,Cp, ...}, WhENE Cp < G < ... < Cp < ... If

n <m and V,(A) NVyh(C)#£W, then = ¢ for eachi =1,2,...,n, and
ceAforeachi=n+1,n+2...,m.

Proof. Let B € Vh,(A) NV (C). If B = {by, by, ..., by, ...}, where

by <bb <...<by<...,then,by Lemmal, a =by =0¢,...,a, =
b, =c¢c, and chy1 = bny1,...,Cm = by. Since B C A, ¢ € A for each
i=n+1,n+2...,m. 0

LEMMA 3. If B e N{W(Ax) :k=1,2,...}, then B=nN{Ac: ke M}
for each M € [N]®.

Proof. Since B € W(Ay) foreach k=1,2,..., B C N{A«: ke M}.
To prove the converse inclusion, let m € N{A¢ : k € M}. Choose k ¢ M
suchthat k > m. Let A = {a¥, ak, ...}, where a¥ < a§ < ... Sincethe mth
element of an arbitrary subset of N isaways > m, m < aX < al'j Sincem e
A, me{ak ak, ....ak, ..., af. Since B e (A, {ak, ak, ..., af} C B,
and hence m € B. O

LEMMA 4. Let n; < np < ... be an increasing sequence of natural
numbers. Let Uy denote the basic open set V,, (A¢) for some infinite set
Ax C€ N. If any two elements of the family {Uy : k = 1, 2, ...} have non-
empty intersection, then N{Uy : k=1, 2, ...} is a one-point set.

Proof. For each k, let Aq = {ak, a%, ...}, where ak < ak < ... Let

B=uf{af,al,....ak} :k=12..}.
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We shall show that
NUc:k=1,2,...} ={B}.

To prove that B € N{Ux : k=1,2,...}, let k e N and let us show
that B € Uy, which is to show that {af, a5, ..., a5} € B € A. The first
inclusion follows immediately from the definition of the set B. To prove
the second inclusion let b € B. There exists m such that b = ajm for some
] <nm. Let | > max{k, m}. Since np, < n and U, NU;#£0, b = ajm = a},
by Lemma 2. Since ni < n; and U; N Uy, a} = a}‘ or aJ'- € Ay depending
on whether j < ng or not. Since b = a}, b e A

The fact that the intersection is a one-point set follows immediately
from Lemma 3. O

PROPOSITION 5. Let . be a family of basic open sets. Then N.7 is
the empty set or N.% is a one-point set or N.~ is a basic open set.

Proof. Suppose that N.# is non-empty. If for each n € N there exist
m > n and A € N such that Vp(A) € &7, then N is a one-point set
according to the above lemma. Otherwise, there exiss me N and B € N
such that Vih(B) € . and, if V,(A) € .7, then n < m. Let

C=n{A: V(A €., for some ne N}.

Claim. The sets B and C have the same first m e ements.

Proof of the clam. Let V,(A) € .. Since V,(A) N Vn(B)#0, by
Lemma 2, the first m elements of B are contained in A. Hence the first m
elements of B are contained in C. Since C € B, B and C have the same
first m elements.

We shall show that

NS = Vm(C).

Let D € Vuh(C),and let U € . Then U = V,,(A) and so n < m.
Clearly, D C A. Since V,,(A) NV (B)#d, by Lemma 2, the first n elements
of A are the same as the first n elements of B. By the above Claim, the
first n elements of A are the same as the first n elements of C. Hence
D € U, which shows that N. 2 Vy(C).

To prove the converse inclusion, let D € N. Then D C N{A :
Vh(A) € ¥} = C. Since Vn(B) € ., D € Vy(B). Thus D and B
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have the same first m elements. Hence by the above clam, D and C must
have the same first m elements. Therefore D € Vi, (C), which shows that
N C Vr(C). O

THEOREM 6. The space [N]® is a Baire space.

Proof. Let U be a non-empty open subset of the space [N]®, and
let Zq, Zo, ... be nowhere dense subsets of [N]“. By induction, one can
choose basic open sets Vy, (Ax), k=1,2,..., such that U O V,, (A1) 2
Vn,(A2) 2 ..., N1 < Ny < ..., and Vp (Ao N Zx = ¢. By Lemma 4,
U\U{Zc: k=12 ..}+#0. O

PROPOSITION 7. If An, A € exp(N), then A = I|m A, if and only

if for each n € N all but finitely many elements of the sequence {A} are
subsets of A and they have the same first n elements as those of the set A.

Proof. Suppose that A = I|m Ap andlet ne N. Thereexistsak > n

such that Ay € Vh(A) foreachm>k Then for each m > k, A, € A and
the first n elements of A, are the same as the first n elements of the set
A.

To prove the converse statement, let U be an arbitrary open neigh-
borhood of A. There exists n such that V,,(A) € U. Since all but finitely
many elements of the sequenc {Ay} are subsets of A and they have the
same first n elements as those of the set A, al but finitely many elements
of the sequence {Ax} are elements of V,,(A) CU. Thus A= nIan;lo A,. O

PROPOSITION 8. If the set differences N\B, N\Ai, N\ Ay, ... are
infinite and B € V,(Ay) for each n € N, then N\B = nIim (N\A).

Proof. Since B € N{W(Ax) : k=1,2,...}, by Lemma 3, B = N{A:
k=12,...}. Thus N\B = U{N\ A : k_l 2,...}.Letne N and let m
be the nth element of N\ B. Then the first m—n elements of the set B are
contained in the set {1, 2,..., m}. Since the set B and every set A¢ have
the same first m — n elements for each k > m —n, the set N\ B and every
set N\ Ax have the same first n elements for each k > m — n. Hence, by
Proposition 7, N\B = nILTo(N\A”)' O
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LEMMA 9. If B e N{W(Ax) : k=1,2,...} and the sequence {Ax} is
convergent in [N]®, then B = A, for all but finitely many n € N.

Proof. Suppose that A € [N]* and that A = I(Iim A.

Clam. B = A.

Indeed, let m be an arbitarry member of B. Supposeitistheith element
of the set B. Let ny be such that ny > i and A, € A. Since B € V,, (An,),
me A, € A Thus B € A. To prove the converse inclusion, take an
arbitrary element m of A. By Proposition 6, there exists k such that m € A,
and ng > m. Since B € Vj, (An), me B. Thus A € B and the Claim is
proved.

Let m be such that A, € A for each n > m. Since B € Vy(An),
BC A,C A= B. Hence B = A, for each n > m. O

THEOREM 10. (V. Popov) Every countably compact subset of the space
exp(N) is countable.

Proof. Let Y be the set exp(N) endowed with the Cantor set topology.
The idnetity map i : exp(N) — Y is continuous. Hence the function i
restricted to any countably compact subspace of exp(N) is a homeomorphi-
sm. Since any countably compact subspace of the Cantor set Y is compact,
any countably compact subspace of exp(N) is aso compact. Thus the theo-
rem will be shown if we prove that any compact subspace of exp(N) is
countable.

Let Z be a compact subspace of the space exp(N). For each n € N,
the family {W,(A) : A € Z} isan open cover of Z. Hence for each n € N,
there is a finite subset F, of Z such that Z € U{W,(A) : A € F,}. We
shall show that Z € U{F, : n € N}.

Let B € Z. Then for each n € N there exists A, € F, such that
B € W,(Ap). Since Z (being compact and first countable) is sequentially
compact, the sequence {A,} has a subsequence that converges to a point of
Z. Thus B is one of the sets A, by virtue of Lemma 9. ]

A family D of subsets of N is amost digoint if for each A, B € D,
A+#B, the intersection AN B is a finit set.
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LEMMA 11. The cellularity of [N]“, c([N]®), equals 2®.

Proof. Let D c [N]® be an amost digoint family of cardinaity 2*.
Then {(¢, A) N[N]* : A € D} is adigoint family of open subsets of the
space [N]“ and the cardinality of this family equals 2. O

LEMMA 12. Let A, B € [N]® and let F € [N]* besuchthat F € ANB.
If (F, A)n(F, B)N[N]® =4, then A and B are almost dijoint.

Proof. If AN B were infinite, then AN B would belong to (F, A) N
(F, B) N[N]“. ]

THEOREM 13. Every subspace of [N]“ of cellularity < 2“ is nowthere
dense in [N]®.

Proof. Let Z be a subspace of [N]“ and c(Z) < 2“. Assume that Z
is not nowhere dense in [N]®. Then there exists a basic open set V such
that ZNV isdensein V. Then c(ZNV) < 2% and therefore c(V) < 2.
Since V is homeomorphic to [N]®, this contradicts Lemma 11. O

DEFINITION 14. Let h be the smallest cardinal « for which there exists
a collection # = {D, : a < «} such that the following conditions are
satisfied:
1. Each D, is a maximal almost digoint family contained in [N]“;

2. For each A € [N]® there exists B € U such that B is almost
contained in A.

The cardinal h was introduced by Balcar, Pelant and Simon [1]. Therein
it was shown that there exists a family # = {D,, : @ < h} that, in addition
to (1) and (2), also satisfies

(3). If « < B < h, then each element of the family Dg is almost
contained in some element of the family D,.

It was aso shown that w1 < h < 2% and that it is consistent with ZFC
that h < 2.

THEOREM 15. The space [N]“ contains a w-base which can be
represented as a union of h many disoint families.



ON SUBSPACES OF Exp(N) 405

Proof. Let 2# = {D, : @ < h} be a collection satisfying conditions
(1) and (2), above. For any pair x,y of finite subsets of N and for each
a < h,let D,(X,y) = {(X, AX, ¥))N[N]®: A e D,}. Then each D, (X, y)
is a digoint family of basic open subsets of [N]“. Let us show that

2 =U{Dy(X,y) :a < h and x,ye[N]=“}

is a w-base in [N]“.

Let B € [N]® and consider a basic neighborhood V,(B) of B. There
exist o, < h, and A € D, such that A\B is finite. Let x be the set of
first n elements of B and let y = A\B. Then (x, A(X, y)) € Vh(B). Thus
2 is arequired -base in the space [N]*.

Also, 2 is aunion of h-w = h many digoint families. O

THEOREM 16. Let « be a cardinal and let Z be a subspace of [N]“
such that Z has a w-base which can be represeted as a union of x many
digoint subfamilies. If x < h, then Z is a nowhere dense subset of [N]®.

Proof. Assume the contrary and suppose that there exists a basic open
set V such that ZNV isdense in V. Then Z NV aso has a x-base
which can be represented as a union of x many digoint subfamilies. Since
V is homeomorphic to [N]“, we can assume, without loss of generality,
that Z is dense in [N]“. Thus there exists a 7-base &2 of [N]“ such that
P = U{P, : a < k}, where each P, is a digoint family. Moreover, we
may assume that & consists of basic open sets.

For each @ < « and for each F € [N]=?, let

P(a, F) = {A € [N]”: (F, AAN[N]* € R,}.

By Lemma 12, each P(«, F) is an amost disoint family. We may
assume, without loss of generdlity, that each P(«, F) is even a maximal
amost digoint family. Since &7 isa -base of [N]®, given B € [N]?, there
exista <k, F € [N]=? and A € P(«a, F) suchthat (F, A)\N[N]® C (4, B).
Then A is amost contained in B. Hence 7 = {P(«,F) : @« < « and
F e [N]=“} satisfies conditions (1) and (2) of Definition 14. Since x-@ < h,
we have a contradiction. O

If one assumes that h < 2, then by Theorem 15, the space [N]®
may contain a -base which can be represented as a union of less that 2¢



406 M. ISMAIL - SZ. PLEWIK - A. SZYMANSKI

many digoint families. However this is not true for any base of [N]* as
the following proposition shows.

PROPOSITION 17. No base of the space [N]® can be represented as a
union of less than 2 many digoint families.

Proof. It is known that the space [N]“ contains a subspace, say Z, that
is separable and of weight 2¢ (cf. [11]). Since the space Z is separable,
any digoint family of open subsets of the space Z must be countable. Since
w(Z) = 2¢, no base of the space Z can be represented as a union of less
than 2 many digjoint families. Thus the same conclusion holds for [N]®. O

Remark 1. In connection with the above proposition, let us remark that
the space [N]® contains a dense subspace Z such that Z has a base that
can be represented as a union of h many digjoint families. To show this, let
Z beamn-base of [N]“ such that 22 = U{P, : @ < h}, whereeach P, isa
digoint family. For each « < h and for each U € P, fix A(U) € U and fix
a countable base Z(U) of AU) inU. Let Z={AU):U € P,,a < h},
adlet Z={VNZ:VecABU),Ue€P,,a <h}. Then Z is dense in
[N]® and Z is a base of Z that can be represented as a union of h many
digoint families. O

4. Metrizable subspaces of [N]“.

THEOREM 18. Every subspace of [N]“ with a o-digoint 7-base (in
particular, every metrizable subspace of [N]“) is nowhere dense in [N]“.

Proof. This fact follows immediately from Theorem 16. O
A topological space is called a o-space if it has a o -discrete network.

THEOREM 19. Every subspace of exp(N) which is a o-space is o-
discrete.

Proof. Let Z be a subspace of exp(N) and let Z be a o-space. Let
& =U{S i € N} be a network of Z, where each S is a discrete family
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of subsets of Z. For each i € N, let

Zi={Ae Z: theeexistsU € § suchthat Ae U C (4, A)}.

Since .« is a network of Z, Z = U{Z; : i € N}. Let us show that
each Z; is discrete (and closed) in Z. For each A € Zj, fix Up € §
such that A € Uap C (4, A). Then for A, B € Z;, A4B, Ua#Ug (for
otherwise, A € (4, B) and B € (¢, A) which would imply that A = B).
Since {Ua : A € Z;} isadiscrete family in Z, Z; is a closed discrete subset
of Z. O

A topological space Z is said to be developable if there exists a
collection {%; i =1, 2,...}, caled a development for Z, possessing the
following properties:

1. For each i, %; is an open cover of Z;
2. Foreach pe Z, if Uj € % issuch that p € U; for each i € N, then
the family {U; :i € N} isabase a p.

An extensive discussion of developable spaces can be found, for exam-
ple, in [3] or [4].

Metrizable spaces are developable and every regular devel opable space
is a o-space [4]. We therefore have the following corollary.

COROLLARY 20. Every developable subspace of exp(N) is o -discrete.

THEOREM 21. Every subspace of exp(N) possessing a o -point - finite
base is o -discrete.

Proof. Let Z be a subspace of exp(N) and let # = U{B; :i € N} be
a base of Z, where each B; is point-finite. For each i € N, let

Zi={Ae Z: thereexists U € B; such that Ae U C (#, A)}.

Since # isabase of Z, Z =U{Z; :i € N}. Let us show that each
Z; is o-discrete.

For each n € N, let

Zi(n) ={A e Z : A belongs to exactly n elements of B;}.
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Since Bj is point-finite, Zi = U{Zj(n) : n € N}. It is enough to show
that each Z;(n) is a discrete subset of Z.

For each A € Z(n), let Wi, Ws, ..., W, € B; be such that A e W,
foreach j = 1,2,...,n. Weset Wa = W, NW,N...NW,. Thus Wx
is an open neighborhood of A. Notice also that Wa C (@, A). It follows
that Wa N Zj(n) = {A}. indeed, if B € W N Zj(n), then Wy = Wg for
Wi, Wa, ..., W, are also the only elements of B; such that B € W, for
each j =1,2,...,n. Hence A e (¢, B) and B € (@, A) which implies that
A = B. O

THEOREM 22. If Z isa developable subspace of [N]“, then | Z| = w(Z).

Proof. The theorem is trivial in the case Z is finite. So suppose Z
is infinite. Let « = w(Z) and let {%; :i = 1,2,...} be a development
for Z. One may assume that the development has the following additional
properties:

(@ For each i, |%i| <«;

(b) For each i, % consists of basic open sets of the form V,(A) N Z,
where A e Z.

We shall show that

ZC{A:Vh(ANZe% for somei and for some n}.

To thisend, let B be apoint of Z. For each i, chose V, (A)NZ € %,
such that B € V,, (A) N Z. Since the family {% i = 1,2,...} isa
development for Z, the family {V, (A))NZ :i € N} is a base at the point
B in the subspace Z. If B is an isolated point of Z, then {B} =V, (A)NZ
for some i; Hence B = A;. Otherwise, the sequence {A; :i € N} contains
a subsequence converging to B. Hence, by virtue of Lemma 9, B = A; for
some i and the inclusion is shown.

Since [{A: Vh(A)NZ € % for some i and for some n}|

<k-w, |Z| <k-w=k.Snce Z has countable base at every point,
Kk =w(Z) <|Z|. Thus |Z| = «. O

COROLLARY 23. The weight of any uncountable subspace of the space
[N]® is uncountable.
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The following fact was discovered by V. Popov (cf. [13], Example 5)
in 1978. We provide a dightly different proof for the sake of completeness.

THEOREM 24. The space [N]® contains a subspace homeomorphic to
the Sorgenfrey line.

Proof. Let Q denote the set of rational numbers with the discrete
topology. Then exp(Q) ishomeomorphicto exp(N). Let X = {C € exp(Q) :
C isacut}. Recal that a proper subset C of Q isacut if C has no largest
element and for each p € C, (—o0, p) N Q € C. Also, if C and D are
cuts and C is a proper subset of D, then we write C < D.

Let us show that the subspace X of [N]® is homeomorphic to the
Sorgenfrey line whose basic neighborhoods point to the left.

Let C and D be cuts such that C < D, and let E € (C, D]. Then for
any g € E\C, E € ({q}, E)n X C (C, D]. This shows that (C, D] is open
in X. Conversely, let W = (F, A)N X, where F is afinite subset of Q, and
let D € W. Let p bethelargest elementof F andlet C={r € Q:r < p}.
Then C < D and (C, D] € W. This shows that W is open in the topology
generated by sets of the form (C, D]. O

COROLLARY 25. m(exp(N)) = 2¢.

Proof. Let X be a subspace of [N]® which is homeomorphic to the
Sorgenfrey line. Then X is hereditarily separable and the netweight of X
is 2¢. Hence m(X) = 2 and in consequence, m(exp(N)) = 2*. O

COROLLARY 26. Let X be a T; space such that m(exp(X)) < 2¢. Then
X is countably compact.

Proof. Assume X is not countably compact. Then X contains a closed
subspace homeomorphic to N. Therefore exp(N) is embedded into exp(X).
Hence m(exp(X)) > m(exp(N)) = 2%. This is a contradiction. 0

COROLLARY 27. Let X be a T; space such that m(exp(X)) < w. Then
X (hence exp(X)) is compact and m(X) = m(exp(X)) = 1.

Proof. By the previous corollary, X is countably compact. Also, since
m(X) < w, X is w-refinable in the sense of [6]. Therefore, by [6]; Theorem
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1, X is compact. Hence, by [5]; Corollary 5.3, m(X) = m(exp(X)) = 1.0

Given apartition & = {N; : j € J} of N into pairwise digoint infinite
sets, let us define a mapping

no o[ [{INI” 1 € 3y = [N]”

by
ne((Aj i jed)=U{A 1]ed)
Let
Yo =02 (H{[Nj]w e J})«

LEMMA 28. The mapping n4 IS one-to-one.

Proof. Let (Aj:j € J), (Bj:jeJ) e[[{[N;]”:] € J} be such that
(Aj 1] e #Bj:jed). Then Aj#B;j, for some j € J. Since & is a
partition of N, U{A; : j € J}#U{B;: ] € J}. O

LEMMA 29. Let X; be a closed subspace of [N;]* for each | € J.
Then no ([T{X; : j € J}) is a closed subspace of [N]“.

Proof. Let A € [N]”\n4 (]_[{X,- 1] € J}). Then ANN; ¢ X; for some
j € J. There exists afinite set F € ANN; such that (F, ANN;)NX; =¢.
Hence (F, A) Nna ([T{X; 1 j € 3}) = 0. O

LEMMA 30. The mapping ng is continuous when [[{[N;]” : j € J}
is equipped with the box product topology.

Proof. Let (Aj : j e ) e [H{IN;]]?:j e I} let A=nzp((A | € J)),
andlet (F, A) beabasic neighborhood of A. Foreach j € J,let Fj = FNN;
andletU = [[{(Fj, A)) : j € J}. Then U isaneighborhood of (A; : j € J)
and n»U) C (F, A). O

LEMMA 3L If 2 = {N; : ] € J} is a finite partition of N, then the
mapping n4 Is a homeomorphism onto Y.

Proof. By virtue of the preceding lemmas, it is enough to show that
the mapping n;} is continuous.
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Itis easy to verify that for any basic open set U = [[{(Fj, A;) : j € J}
of the space [[{[N;]” : j € I}, ne»(U) = (F, AiNYg, where A= U{A :
jedyand F =U{F : ] € J}. Thus ng isan open mapping and therefore
N5 s continuous. O

THEOREM 32. (1) Any finite power ([N]“)" of the space [N]* is
embedded into [N]“ as a closed subspace. (2) Any finite power of the
Sorgenfrey line is embedded into [N]®.

Proof. If follows imemdiately from the preceding lemmas and Theorem
24. O

The space [N]® contains an uncountable subspace which is hereditarily
Lindelof and hereditarily separable: the Sorgenfrey lineis an instance of such
a subspace. The following theorems give characterizations of hereditarily
Lindelof and hereditarily separable subspaces of the space exp(N).

THEOREM 33. A subspace X of exp(N) is hereditarily Lindelof if and
only if for each Y C X there exists a countable subset Z of Y such that
for each A €Y there exists B € Z such that A C B.

Proof. Supposethat X C exp(N) ishereditarily Lindelof and let Y C X.
Since the family {(4, A)NY : A€ Y} is an open cover of Y, there exists
a countable subset Z of Y such that {(#, AANY : Ae Z} covers Y Thus
for each A €Y there exists B € Z such that A C B.

Conversely, suppose that X satisfies the above condition. Let Y be a
subspace of X and let ¢4 be a cover of Y by sets of the form (F, A)NY,
where A € Y and F is a finite subset of A. For each F € [N]~¢, let
Y(F) ={AeY : :(F,ANY € G}. Let Z(F) be a counatble subset
of Y(F) such that for each A € Y(F) there exists B € Z(F) such
that A C B. Let ¥(F) = {{(F,BYnY : B € Z(F)} and, finaly, let
H = U{¥((F) : F € [N]=®}. Then »# is a countable subfamily of ¥.
Since for each F € [N]=?, U(F, AANY : A e Y(F)} € U¥9(F), the
family 7 is a cover of Y. O

THEOREM 34. A subspace X of exp(N) is hereditarily separable if and
only if for each Y C X there exists a countable subset Z of Y such that
for each A €Y there exists B € Z such that B C A.
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Proof. Suppose that X C exp(N) is hereditarily separable and let
Y C X. Let Z be a countable and dense subset of Y. Then for each AeY,
(?, Ay N Z#£P. Thus for each A € Y these exists B € Z such that B C A.

Conversely, suppose that X satisfies the baove condition. Let Y be a
subspace of X. For each F € [N]=“, let Y(F) = {AeY :F C A}. Let
Z(F) be a countable subset of Y(F) such that for each A € Y(F) there
exists B € Z(F) such that B € A. Then Z = U{Z(F) : F € [N]=*} isa
countable dense subset of Y. O

COROLLARY 35. A subspace X of exp(N) is hereditarily Lindelof if
and only if the subspace X¢ = {N\ A : A € X}\ {4} is hereditarily separable.

Any non-empty subset of exp(N) that is linearly ordered by C iscalled
achainin exp(N). The Sorgenfrey line constructed in Theorem 24 is a chain
in exp(N) of cardinality 2®.

THEOREM 36. Any chain in exp(N) is both hereditarily Lindelof and
hereditarily separable.

Proof. Since the set of al complements of a chain is a chain again, in
view of the preceding corollary, it is enough to show that every subspace
of exp(N) that is a chain is hereditarily Lindelof.

Since every chain of subsets of a countable set contains a countable
cofinal subset, every chain of subsets of N satisfies the condition of Theorem
33 and thus it is hereditarily Lindelof. ]

For every subspace X of exp(N), let X¢ = {N\A: A e X}\{0}. As
the above corollary shows, a subspace X of exp(N) is hereditarily Lindel 6f
if and only if X° is hereditarily separable. This duality between X and X°
holds only in one direction if the word “hereditarily” is omitted from the
above statement.

PROPOSITION 37. If a subspace X of exp(N) is Lindelof, then X€ is
separable.

Proof. We can assume, without loss of generality, that N ¢ X. For each
n € N, there exists a countable subset Z,, of X such that X € U{W,(B) :
Be Z,}. Let Z=U{Z,:n e NJ}. Let us show that the set

D=2Z°U((X°N[N]=®)
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is dense in XC.

Let N\A € X if N\A isfinite, then N\A € D. Assume that N\ A
is infinite and let us consider an arbitrary basic neighborhood Wi, (N\A).
Suppose that k is the mth element of N\ A. There exists B € Zy such that
A € Wi(B). Then N\B € D N WH(N\A). O

EXAMPLE 38. There exists a separable subspace X of [N]“ such that
X¢ is homeomorphic to the Sorgenfrey plane and hence X° is not Lindel of.

Let Q bethe set of al rational numbers with discrete topology and let
Q1 and Q> be two digjoint dense (with respect to the usual topology) subsets
of Q suchthat {Qi, Q»} isapartitionof Q. LetY = {A e exp(Q) : ANQ:
isacutin Q; and ANQy isacutin Q,}. By Theorem 24 and Lemma 31, it
follows that the subspace Y of exp(Q) is homeomorphic to the Sorgenfrey
plane, and thus, Y is not Lindelof. Let X = Y. For each (s,t) € Q1 x Qo,
let A(s, t) = ([s,00)NQU([t, 00)NQ2). Then {A(s, 1) : (s, 1) € Q1 x Qz}
is a countable dense subset of the space X. Therefore X is separable but
X¢ =Y is not Lindelof. |

EXAMPLE 39. There exists a separable subspace X of exp(N) such
that X° is not separable.

Let 2 bean amost disjoint family of infinite subsets of N of cardinality
continuum and let Cof be the family of al cofinite subsets of N that
are different from N. Then 2°¢ is an open discrete subset of the space
Y = Cof U 2° because for each N\A € 2°, (¥, N\A)NY = {N\A}.
Therefore Y cannot be separable. However the dual of Y contains [N]=*
and thus it is separable. Setting X = Y¢ we get an example of a separable
subspace X of exp(N) such that X® is not separable. ]

EXAMPLE 40. If no subset of reals of cardinality continuum is concen-
trated about a countable set, then there exists a metrizable subspace X of
exp(N) such that X¢ is not metrizable.

Let Y = Cof UZ° be asin the above example. Then, when Y is viewed
as a subset of the Cantor set, there exists an open neighborhood U of the
countable set Cof such that 2°—U isuncountable. LetX = Cof U(2°—-U).
Then X, being the digoint sum of two metrizable subspaces of exp(N),
is metrizable. Since X® contains a countable dense set [N]=“ and an
uncountable discrete subspace (2° — U)¢, X is not metrizable. O
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Remark 2. It was shown by Lavre [8] that it is consistent that no
uncountable subset of real is concentrated about a countable set.
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