RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO Serie II, Tomo XLIX (2000), pp. 397-414

ON SUBSPACES OF Exp(N)

M. ISMAIL - SZ. PLEWIK - A. SZYMANSKI

Let $\exp(X)$ denote the exponential space of a topological space X introduced by Vietoris [14]. In this paper, we study the subspaces of the space $\exp(N)$, where $N = \{1, 2, 3, ...\}$ is the discrete space of natural numbers. We also show that if the metrizability number of $\exp(X)$ is countable, then X (and $\exp(X)$) must be compact and metrizable.

1. Preliminaries.

For every topological space X, let $\exp(X)$ denote the exponential space of X with the Vietoris topology (see the definition below or [3]; 2.7.20). Also, recall that the *metrizability number* of a space X, denoted by m(X), is the smallest cardinal κ such that X can be represented as a union of κ many metrizable subspaces. It was shown (cf. [5]; Corollary 5.3) that if X is a compact Hausdorff space and $m(\exp(X)) \leq \omega$, then X and $\exp(X)$ are metrizable. We will show below (cf. Corollary 27) that the assumption in this theorem that X be compact is redundant. This is shown by first determining the metrizability number of the space $\exp(N)$, where $N\{1, 2, 3, ...\}$ is the discrete space of natural numbers. This motivated us to study the space $\exp(N)$ and some of its subspaces in more detail.

Topological properties of the space $\exp(N)$ have already been investigated by many authors, for instance Michael [10], Keesling [7], Ellentuck [2], Plewik [11] or [12]. It is known, for example, that the space $\exp(N)$

AMS Classification: 54B20.

is first countable, zero-dimensional, completely regular, but not normal. In this note we prove more topological properties of the space $\exp(N)$.

2. Notation.

Throughout this paper, let $N = \{1, 2, 3, ...\}$ denote the discrete space of natural numbers.

Let X be an arbitrary set. Following the standard notation we set:

$$2^{X} = \{Y : Y \subseteq X\}.$$
$$[X]^{\omega} = \{Y : |Y| \ge \omega\},$$
$$[X]^{<\omega} = \{Y : |Y| < \omega\}.$$

A *filter* on X is a non-empty family \mathscr{F} of subsets of X satisfying the following two conditions:

- (1) if $A \in \mathscr{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathscr{F}$;
- (2) if $A, B \in \mathscr{F}$, then $A \cap B \in \mathscr{F}$.

If $\emptyset \notin \mathscr{F}$, then the filter \mathscr{F} is called a *Proper filter*; if $\emptyset \in \mathscr{F}$, then $\mathscr{F} = 2^X$.

A pair A, B of subsets of X is said to be *almost disjoint* if $A \cap B$ is a finite set.

A set A is said to be *almost contained* in a set B if $A \setminus B$ is a finite set.

For any pair F, A of subsets of X we set:

$$\langle F; A \rangle = \{ B \subseteq X : F \subseteq B \subseteq A \}.$$

For any ordered triple A, x, y of subsets of X we set:

$$A(x, y) = x \cap (A \setminus y).$$

For any set X and a filter \mathscr{F} on X we set $T_{\mathscr{F}}$ to be the topology on 2^X generated by the base consisting of sets of the form

$$\langle x, A(x, y) \rangle$$
,

where $x, y \in [X]^{<\omega}$ and $A \in \mathscr{F}$. In the case X = N, the topologies $T_{\mathscr{F}}$ were studied by A. Louveau (cf. [9]). In the whole spectrum of the topologies $T_{\mathscr{F}}$, there are two topologies that could be thought of as standing at the oposite ends: one, when $\mathscr{F} = \{X\}$, and the other one when $\mathscr{F} = 2^X$. The former is the product (= Cantor) topology and the latter is the Vietoris topology (see the definition, below).

For every topological space X, let exp(X) denote the set of all nonempty closed subsets of the space X endowed with the Vietoris topology, i.e., topology generated by the base consisting of sets of the form

$$\langle U_1, U_2, \ldots, U_n \rangle = V_1 \cap V_2,$$

where U_1, U_2, \ldots, U_n are open subsets of X and

$$V_1 = \{E \in \exp(X) : E \subseteq U_1 \cup U_2 \cup \ldots \cup U_n\}$$

and

$$V_2 = \{ E \in \exp(X) : E \cap U_i \neq \emptyset \text{ for each } i = 1, 2, \dots, n \}.$$

Thus, in the case X = N, the Vietoris topology on exp(N) is the topology generated by the base consisting of sets of the form

 $\langle F; A \rangle$

where $A \in \exp(N)$ and F is a finite subset of the set A.

Equivalently, the Vietoris topology on exp(N) is the topology generated by the base consisting of sets of the form

$$W_n(A) = \langle \{a_1\}, \{a_2\}, \dots, \{a_n\}, A \rangle = \{B \subseteq N : \{a_1, a_2, \dots, a_n\} \subseteq B \subseteq A\},\$$

where a_1, a_2, \ldots, a_n are the first *n* elements of the set *A* with respect to the natural ordering of the set *N*. Obviously, the sets $W_1(A), W_2(A), \ldots$ form a base at the point $A \in \exp(N)$.

Let $[N]^{\omega}$ denote the subspace of $\exp(N)$ consisting of infinite subsets of N. For each $A \in [N]^{\omega}$, let

$$V_n(A) = W_n(A) \cap [N]^{\omega}.$$

We refer to these sets as the basic open subsets of the space $[N]^{\omega}$.

3. Introductory Results.

LEMMA 1. If $B \in V_n(A)$, then the first n elements of the set B are exactly the same as the first n elements of the set A.

Proof. Let $A = \{a_1, a_2, ..., a_n, ...\}$, where $a_1 < a_2 < ... < a_n < ...$, and $B = \{b_1, b_2, ..., b_m, ...\}$, where $b_1 < b_2 < ... < b_m < ...$ Since $\{a_1, a_2, ..., a_n\} \subseteq B \subseteq A$, $\{1, 2, ..., a_n\} \cap B = \{1, 2, ..., a_n\}$ and therefore $a_1 = b_1, ..., a_n = b_n$.

LEMMA 2. Let $A = \{a_1, a_2, ..., a_n, ...\}$, where $a_1 < a_2 < ... < a_n < ...,$ and $C = \{c_1, c_2, ..., c_m, ...\}$, where $c_1 < c_2 < ... < c_m < ...$ If $n \le m$ and $V_n(A) \cap V_m(C) \ne \emptyset$, then $a_i = c_i$ for each i = 1, 2, ..., n, and $c_i \in A$ for each i = n + 1, n + 2, ..., m.

Proof. Let $B \in V_n(A) \cap V_m(C)$. If $B = \{b_1, b_2, ..., b_m, ...\}$, where $b_1 < b_2 < ... < b_m < ...$, then, by Lemma 1, $a_1 = b_1 = c_1, ..., a_n = b_n = c_n$ and $c_{n+1} = b_{n+1}, ..., c_m = b_m$. Since $B \subseteq A$, $c_i \in A$ for each i = n + 1, n + 2, ..., m.

LEMMA 3. If $B \in \cap \{V_k(A_k) : k = 1, 2, ...\}$, then $B = \cap \{A_k : k \in M\}$ for each $M \in [N]^{\omega}$.

Proof. Since $B \in V_k(A_k)$ for each $k = 1, 2, ..., B \subseteq \cap \{A_k : k \in M\}$. To prove the converse inclusion, let $m \in \cap \{A_k : k \in M\}$. Choose $k \in M$ such that $k \ge m$. Let $A_k = \{a_1^k, a_2^k, ...\}$, where $a_1^k < a_2^k < ...$ Since the *m*th element of an arbitrary subset of N is always $\ge m, m \le a_m^k \le a_k^k$. Since $m \in A_k, m \in \{a_1^k, a_2^k, ..., a_m^k\}$. Since $B \in V_k(A_k), \{a_1^k, a_2^k, ..., a_k^k\} \subseteq B$, and hence $m \in B$.

LEMMA 4. Let $n_1 < n_2 < ...$ be an increasing sequence of natural numbers. Let U_k denote the basic open set $V_{n_k}(A_k)$ for some infinite set $A_k \subseteq N$. If any two elements of the family $\{U_k : k = 1, 2, ...\}$ have non-empty intersection, then $\cap\{U_k : k = 1, 2, ...\}$ is a one-point set.

Proof. For each k, let $A_k = \{a_1^k, a_2^k, \ldots\}$, where $a_1^k < a_2^k < \ldots$ Let $B = \bigcup \{\{a_1^k, a_2^k, \ldots, a_{n_k}^k\} : k = 1, 2, \ldots\}.$

We shall show that

$$\cap \{U_k : k = 1, 2, \ldots\} = \{B\}.$$

To prove that $B \in \cap \{U_k : k = 1, 2, ...\}$, let $k \in N$ and let us show that $B \in U_k$, which is to show that $\{a_1^k, a_2^k, ..., a_{n_k}^k\} \subseteq B \subseteq A_k$. The first inclusion follows immediately from the definition of the set B. To prove the second inclusion let $b \in B$. There exists m such that $b = a_j^m$ for some $j \le n_m$. Let $l \ge \max\{k, m\}$. Since $n_m \le n_l$ and $U_m \cap U_l \ne \emptyset$, $b = a_j^m = a_j^l$, by Lemma 2. Since $n_k \le n_l$ and $U_l \cap U_k \ne \emptyset$, $a_j^l = a_j^k$ or $a_j^l \in A_k$ depending on whether $j \le n_k$ or not. Since $b = a_j^l$, $b \in A_k$.

The fact that the intersection is a one-point set follows immediately from Lemma 3. $\hfill \Box$

PROPOSITION 5. Let \mathscr{S} be a family of basic open sets. Then $\cap \mathscr{S}$ is the empty set or $\cap \mathscr{S}$ is a one-point set or $\cap \mathscr{S}$ is a basic open set.

Proof. Suppose that $\cap \mathscr{S}$ is non-empty. If for each $n \in N$ there exist $m \geq n$ and $A \subseteq N$ such that $V_m(A) \in \mathscr{S}$, then $\cap \mathscr{S}$ is a one-point set according to the above lemma. Otherwise, there exist $m \in N$ and $B \subseteq N$ such that $V_m(B) \in \mathscr{S}$ and, if $V_n(A) \in \mathscr{S}$, then $n \leq m$. Let

$$C = \cap \{A : V_n(A) \in \mathscr{S}, \text{ for some } n \in N\}.$$

Claim. The sets B and C have the same first m elements.

Proof of the claim. Let $V_n(A) \in \mathscr{S}$. Since $V_n(A) \cap V_m(B) \neq \emptyset$, by Lemma 2, the first *m* elements of *B* are contained in *A*. Hence the first *m* elements of *B* are contained in *C*. Since $C \subseteq B$, *B* and *C* have the same first *m* elements.

We shall show that

$$\cap \mathscr{S} = V_m(C).$$

Let $D \in V_m(C)$, and let $U \in \mathscr{S}$. Then $U = V_n(A)$ and so $n \leq m$. Clearly, $D \subseteq A$. Since $V_n(A) \cap V_m(B) \neq \emptyset$, by Lemma 2, the first *n* elements of *A* are the same as the first *n* elements of *B*. By the above Claim, the first *n* elements of *A* are the same as the first *n* elements of *C*. Hence $D \in U$, which shows that $\cap \mathscr{S} \supseteq V_m(C)$.

To prove the converse inclusion, let $D \in \cap \mathscr{S}$. Then $D \subseteq \cap \{A : V_n(A) \in \mathscr{S}\} = C$. Since $V_m(B) \in \mathscr{S}$, $D \in V_m(B)$. Thus D and B

have the same first *m* elements. Hence by the above claim, *D* and *C* must have the same first *m* elements. Therefore $D \in V_m(C)$, which shows that $\cap \mathscr{S} \subseteq V_m(C)$.

THEOREM 6. The space $[N]^{\omega}$ is a Baire space.

Proof. Let U be a non-empty open subset of the space $[N]^{\omega}$, and let Z_1, Z_2, \ldots be nowhere dense subsets of $[N]^{\omega}$. By induction, one can choose basic open sets $V_{n_k}(A_k)$, $k = 1, 2, \ldots$, such that $U \supseteq V_{n_1}(A_1) \supseteq V_{n_2}(A_2) \supseteq \ldots$, $n_1 < n_2 < \ldots$, and $V_{n_k}(A_k) \cap Z_k = \emptyset$. By Lemma 4, $U \setminus \bigcup \{Z_k : k = 1, 2, \ldots\} \neq \emptyset$.

PROPOSITION 7. If A_n , $A \in \exp(N)$, then $A = \lim_{n \to \infty} A_n$ if and only if for each $n \in N$ all but finitely many elements of the sequence $\{A_k\}$ are subsets of A and they have the same first n elements as those of the set A.

Proof. Suppose that $A = \lim_{n \to \infty} A_n$ and let $n \in N$. There exists a $k \ge n$ such that $A_m \in V_n(A)$ for each $m \ge k$. Then for each $m \ge k$, $A_m \subseteq A$ and the first *n* elements of A_m are the same as the first *n* elements of the set *A*.

To prove the converse statement, let U be an arbitrary open neighborhood of A. There exists n such that $V_n(A) \subseteq U$. Since all but finitely many elements of the sequenc $\{A_k\}$ are subsets of A and they have the same first n elements as those of the set A, all but finitely many elements of the sequence $\{A_k\}$ are elements of $V_n(A) \subseteq U$. Thus $A = \lim_{n \to \infty} A_n$. \Box

PROPOSITION 8. If the set differences $N \setminus B$, $N \setminus A_1$, $N \setminus A_2$,... are infinite and $B \in V_n(A_n)$ for each $n \in N$, then $N \setminus B = \lim_{n \to \infty} (N \setminus A_n)$.

Proof. Since $B \in \bigcap\{V_k(A_k) : k = 1, 2, ...\}$, by Lemma 3, $B = \bigcap\{A_k : k = 1, 2, ...\}$. Thus $N \setminus B = \bigcup\{N \setminus A_k : k = 1, 2, ...\}$. Let $n \in N$ and let m be the *n*th element of $N \setminus B$. Then the first m - n elements of the set B are contained in the set $\{1, 2, ..., m\}$. Since the set B and every set A_k have the same first m - n elements for each $k \ge m - n$, the set $N \setminus B$ and every set $N \setminus A_k$ have the same first n elements for each $k \ge m - n$. Hence, by Proposition 7, $N \setminus B = \lim_{n \to \infty} (N \setminus A_n)$.

LEMMA 9. If $B \in \cap \{V_k(A_k) : k = 1, 2, ...\}$ and the sequence $\{A_k\}$ is convergent in $[N]^{\omega}$, then $B = A_n$ for all but finitely many $n \in N$.

Proof. Suppose that $A \in [N]^{\omega}$ and that $A = \lim_{k \to \infty} A_k$.

Claim. B = A.

Indeed, let *m* be an arbitrary member of *B*. Suppose it is the *ith* element of the set *B*. Let n_k be such that $n_k \ge i$ and $A_{n_k} \subseteq A$. Since $B \in V_{n_k}(A_{n_k})$, $m \in A_{n_k} \subseteq A$. Thus $B \subseteq A$. To prove the converse inclusion, take an arbitrary element *m* of *A*. By Proposition 6, there exists *k* such that $m \in A_{n_k}$ and $n_k \ge m$. Since $B \in V_{n_k}(A_{n_k})$, $m \in B$. Thus $A \subseteq B$ and the Claim is proved.

Let *m* be such that $A_n \subseteq A$ for each $n \ge m$. Since $B \in V_n(A_n)$, $B \subseteq A_n \subseteq A = B$. Hence $B = A_n$ for each $n \ge m$.

THEOREM 10. (V. Popov) Every countably compact subset of the space $\exp(N)$ is countable.

Proof. Let *Y* be the set $\exp(N)$ endowed with the Cantor set topology. The idnetity map $i : \exp(N) \to Y$ is continuous. Hence the function *i* restricted to any countably compact subspace of $\exp(N)$ is a homeomorphism. Since any countably compact subspace of the Cantor set *Y* is compact, any countably compact subspace of $\exp(N)$ is also compact. Thus the theorem will be shown if we prove that any compact subspace of $\exp(N)$ is countable.

Let Z be a compact subspace of the space $\exp(N)$. For each $n \in N$, the family $\{W_n(A) : A \in Z\}$ is an open cover of Z. Hence for each $n \in N$, there is a finite subset F_n of Z such that $Z \subseteq \bigcup \{W_n(A) : A \in F_n\}$. We shall show that $Z \subseteq \bigcup \{F_n : n \in N\}$.

Let $B \in Z$. Then for each $n \in N$ there exists $A_n \in F_n$ such that $B \in W_n(A_n)$. Since Z (being compact and first countable) is sequentially compact, the sequence $\{A_n\}$ has a subsequence that converges to a point of Z. Thus B is one of the sets A_n by virtue of Lemma 9.

A family D of subsets of N is almost disjoint if for each $A, B \in D$, $A \neq B$, the intersection $A \cap B$ is a finit set.

LEMMA 11. The cellularity of $[N]^{\omega}$, $c([N]^{\omega})$, equals 2^{ω} .

Proof. Let $D \subset [N]^{\omega}$ be an almost disjoint family of cardinality 2^{ω} . Then $\{\langle \emptyset, A \rangle \cap [N]^{\omega} : A \in D\}$ is a disjoint family of open subsets of the space $[N]^{\omega}$ and the cardinality of this family equals 2^{ω} .

LEMMA 12. Let $A, B \in [N]^{\omega}$ and let $F \in [N]^{\omega}$ be such that $F \subseteq A \cap B$. If $\langle F, A \rangle \cap \langle F, B \rangle \cap [N]^{\omega} = \emptyset$, then A and B are almost disjoint.

Proof. If $A \cap B$ were infinite, then $A \cap B$ would belong to $\langle F, A \rangle \cap \langle F, B \rangle \cap [N]^{\omega}$.

THEOREM 13. Every subspace of $[N]^{\omega}$ of cellularity $< 2^{\omega}$ is nowthere dense in $[N]^{\omega}$.

Proof. Let Z be a subspace of $[N]^{\omega}$ and $c(Z) < 2^{\omega}$. Assume that Z is not nowhere dense in $[N]^{\omega}$. Then there exists a basic open set V such that $Z \cap V$ is dense in V. Then $c(Z \cap V) < 2^{\omega}$ and therefore $c(V) < 2^{\omega}$. Since V is homeomorphic to $[N]^{\omega}$, this contradicts Lemma 11.

DEFINITION 14. Let h be the smallest cardinal κ for which there exists a collection $\mathscr{H} = \{D_{\alpha} : \alpha < \kappa\}$ such that the following conditions are satisfied:

- 1. Each D_{α} is a maximal almost disjoint family contained in $[N]^{\omega}$;
- 2. For each $A \in [N]^{\omega}$ there exists $B \in \bigcup \mathcal{H}$ such that B is almost contained in A.

The cardinal *h* was introduced by Balcar, Pelant and Simon [1]. Therein it was shown that there exists a family $\mathcal{H} = \{D_{\alpha} : \alpha < h\}$ that, in addition to (1) and (2), also satisfies

(3). If $\alpha < \beta < h$, then each element of the family D_{β} is almost contained in some element of the family D_{α} .

It was also shown that $\omega_1 \le h \le 2^{\omega}$ and that it is consistent with ZFC that $h < 2^{\omega}$.

THEOREM 15. The space $[N]^{\omega}$ contains a π -base which can be represented as a union of h many disjoint families.

Proof. Let $\mathscr{H} = \{D_{\alpha} : \alpha < h\}$ be a collection satisfying conditions (1) and (2), above. For any pair x, y of finite subsets of N and for each $\alpha < h$, let $D_{\alpha}(x, y) = \{\langle x, A(x, y) \rangle \cap [N]^{\omega} : A \in D_{\alpha} \}$. Then each $D_{\alpha}(x, y)$ is a disjoint family of basic open subsets of $[N]^{\omega}$. Let us show that

$$\mathscr{D} = \bigcup \{ D_{\alpha}(x, y) : \alpha < h \text{ and } x, y \in [N]^{<\omega} \}$$

is a π -base in $[N]^{\omega}$.

Let $B \in [N]^{\omega}$ and consider a basic neighborhood $V_n(B)$ of B. There exist $\alpha, \alpha < h$, and $A \in D_{\alpha}$ such that $A \setminus B$ is finite. Let x be the set of first n elements of B and let $y = A \setminus B$. Then $\langle x, A(x, y) \rangle \subseteq V_n(B)$. Thus \mathscr{D} is a required π -base in the space $[N]^{\omega}$.

Also, \mathcal{D} is a union of $h \cdot \omega = h$ many disjoint families.

THEOREM 16. Let κ be a cardinal and let Z be a subspace of $[N]^{\omega}$ such that Z has a π -base which can be represented as a union of κ many disjoint subfamilies. If $\kappa < h$, then Z is a nowhere dense subset of $[N]^{\omega}$.

Proof. Assume the contrary and suppose that there exists a basic open set V such that $Z \cap V$ is dense in V. Then $Z \cap V$ also has a π -base which can be represented as a union of κ many disjoint subfamilies. Since V is homeomorphic to $[N]^{\omega}$, we can assume, without loss of generality, that Z is dense in $[N]^{\omega}$. Thus there exists a π -base \mathscr{P} of $[N]^{\omega}$ such that $\mathscr{P} = \bigcup \{P_{\alpha} : \alpha < \kappa\}$, where each P_{α} is a disjoint family. Moreover, we may assume that \mathscr{P} consists of basic open sets.

For each $\alpha < \kappa$ and for each $F \in [N]^{<\omega}$, let

$$P(\alpha, F) = \{A \in [N]^{\omega} : \langle F, A \rangle \cap [N]^{\omega} \in P_{\alpha} \}.$$

By Lemma 12, each $P(\alpha, F)$ is an almost disjoint family. We may assume, without loss of generality, that each $P(\alpha, F)$ is even a maximal almost disjoint family. Since \mathscr{P} is a π -base of $[N]^{\omega}$, given $B \in [N]^{\omega}$, there exist $a < \kappa, F \in [N]^{<\omega}$ and $A \in P(\alpha, F)$ such that $\langle F, A \rangle \cap [N]^{\omega} \subseteq \langle \emptyset, B \rangle$. Then A is almost contained in B. Hence $\mathscr{H} = \{P(\alpha, F) : \alpha < \kappa \text{ and} F \in [N]^{<\omega}\}$ satisfies conditions (1) and (2) of Definition 14. Since $\kappa \cdot \omega < h$, we have a contradiction.

If one assumes that $h < 2^{\omega}$, then by Theorem 15, the space $[N]^{\omega}$ may contain a π -base which can be represented as a union of less that 2^{ω}

many disjoint families. However this is not true for any base of $[N]^{\omega}$ as the following proposition shows.

PROPOSITION 17. No base of the space $[N]^{\omega}$ can be represented as a union of less than 2^{ω} many disjoint families.

Proof. It is known that the space $[N]^{\omega}$ contains a subspace, say Z, that is separable and of weight 2^{ω} (cf. [11]). Since the space Z is separable, any disjoint family of open subsets of the space Z must be countable. Since $w(Z) = 2^{\omega}$, no base of the space Z can be represented as a union of less than 2^{ω} many disjoint families. Thus the same conclusion holds for $[N]^{\omega}$. \Box

Remark 1. In connection with the above proposition, let us remark that the space $[N]^{\omega}$ contains a dense subspace Z such that Z has a base that can be represented as a union of h many disjoint families. To show this, let \mathscr{P} be a π -base of $[N]^{\omega}$ such that $\mathscr{P} = \bigcup \{P_{\alpha} : \alpha < h\}$, where each P_{α} is a disjoint family. For each $\alpha < h$ and for each $U \in P_{\alpha}$ fix $A(U) \in U$ and fix a countable base $\mathscr{B}(U)$ of A(U) in U. Let $Z = \{A(U) : U \in P_{\alpha}, \alpha < h\}$, and let $\mathscr{B} = \{V \cap Z : V \in \mathscr{B}(U), U \in P_{\alpha}, \alpha < h\}$. Then Z is dense in $[N]^{\omega}$ and \mathscr{B} is a base of Z that can be represented as a union of h many disjoint families. \Box

4. Metrizable subspaces of $[N]^{\omega}$.

THEOREM 18. Every subspace of $[N]^{\omega}$ with a σ -disjoint π -base (in particular, every metrizable subspace of $[N]^{\omega}$) is nowhere dense in $[N]^{\omega}$.

Proof. This fact follows immediately from Theorem 16. \Box

A topological space is called a σ -space if it has a σ -discrete network.

THEOREM 19. Every subspace of $\exp(N)$ which is a σ -space is σ -discrete.

Proof. Let Z be a subspace of exp(N) and let Z be a σ -space. Let $\mathscr{S} = \bigcup \{S_i : i \in N\}$ be a network of Z, where each S_i is a discrete family

of subsets of Z. For each $i \in N$, let

 $Z_i = \{A \in Z : \text{ there exists } U \in S_i \text{ such that } A \in U \subseteq \langle \emptyset, A \rangle \}.$

Since \mathscr{S} is a network of Z, $Z = \bigcup \{Z_i : i \in N\}$. Let us show that each Z_i is discrete (and closed) in Z. For each $A \in Z_i$, fix $U_A \in S_i$ such that $A \in U_A \subseteq \langle \emptyset, A \rangle$. Then for $A, B \in Z_i, A \neq B, U_A \neq U_B$ (for otherwise, $A \in \langle \emptyset, B \rangle$ and $B \in \langle \emptyset, A \rangle$ which would imply that A = B). Since $\{U_A : A \in Z_i\}$ is a discrete family in Z, Z_i is a closed discrete subset of Z.

A topological space *Z* is said to be *developable* if there exists a collection $\{\mathscr{B}_i : i = 1, 2, ...\}$, called a *development* for *Z*, possessing the following properties:

- 1. For each *i*, \mathscr{B}_i is an open cover of *Z*;
- 2. For each $p \in Z$, if $U_i \in \mathscr{B}_i$ is such that $p \in U_i$ for each $i \in N$, then the family $\{U_i : i \in N\}$ is a base at p.

An extensive discussion of developable spaces can be found, for example, in [3] or [4].

Metrizable spaces are developable and every regular developable space is a σ -space [4]. We therefore have the following corollary.

COROLLARY 20. Every developable subspace of $\exp(N)$ is σ -discrete.

THEOREM 21. Every subspace of $\exp(N)$ possessing a σ -point - finite base is σ -discrete.

Proof. Let Z be a subspace of $\exp(N)$ and let $\mathscr{B} = \bigcup \{B_i : i \in N\}$ be a base of Z, where each B_i is point-finite. For each $i \in N$, let

 $Z_i = \{A \in Z : \text{ there exists } U \in B_i \text{ such that } A \in U \subseteq \langle \emptyset, A \rangle \}.$

Since \mathscr{B} is a base of Z, $Z = \bigcup \{Z_i : i \in N\}$. Let us show that each Z_i is σ -discrete.

For each $n \in N$, let

 $Z_i(n) = \{A \in Z_i : A \text{ belongs to exactly } n \text{ elements of } B_i\}.$

Since B_i is point-finite, $Z_i = \bigcup \{Z_i(n) : n \in N\}$. It is enough to show that each $Z_i(n)$ is a discrete subset of Z.

For each $A \in Z_i(n)$, let $W_1, W_2, \ldots, W_n \in B_i$ be such that $A \in W_j$, for each $j = 1, 2, \ldots, n$. We set $W_A = W_1 \cap W_2 \cap \ldots \cap W_n$. Thus W_A is an open neighborhood of A. Notice also that $W_A \subseteq \langle \emptyset, A \rangle$. It follows that $W_A \cap Z_i(n) = \{A\}$. indeed, if $B \in W_A \cap Z_i(n)$, then $W_A = W_B$ for W_1, W_2, \ldots, W_n are also the only elements of B_i such that $B \in W_j$, for each $j = 1, 2, \ldots, n$. Hence $A \in \langle \emptyset, B \rangle$ and $B \in \langle \emptyset, A \rangle$ which implies that A = B.

THEOREM 22. If Z is a developable subspace of $[N]^{\omega}$, then |Z| = w(Z).

Proof. The theorem is trivial in the case Z is finite. So suppose Z is infinite. Let $\kappa = w(Z)$ and let $\{\mathscr{B}_i : i = 1, 2, ...\}$ be a development for Z. One may assume that the development has the following additional properties:

- (a) For each i, $|\mathscr{B}_i| \leq \kappa$;
- (b) For each i, ℬ_i consists of basic open sets of the form V_n(A) ∩ Z, where A ∈ Z.
 We shall show that
 - $Z \subseteq \{A : V_n(A) \cap Z \in \mathscr{B}_i \text{ for some } i \text{ and for some } n\}.$

To this end, let *B* be a point of *Z*. For each *i*, chose $V_{n_i}(A_i) \cap Z \in \mathcal{B}_i$ such that $B \in V_{n_i}(A_i) \cap Z$. Since the family $\{\mathcal{B}_i : i = 1, 2, ...\}$ is a development for *Z*, the family $\{V_{n_i}(A_i) \cap Z : i \in N\}$ is a base at the point *B* in the subspace *Z*. If *B* is an isolated point of *Z*, then $\{B\} = V_{n_i}(A_i) \cap Z$ for some *i*; Hence $B = A_i$. Otherwise, the sequence $\{A_i : i \in N\}$ contains a subsequence converging to *B*. Hence, by virtue of Lemma 9, $B = A_i$ for some *i* and the inclusion is shown.

Since $|\{A : V_n(A) \cap Z \in \mathscr{B}_i \text{ for some } i \text{ and for some } n\}|$

 $\leq \kappa \cdot \omega, |Z| \leq \kappa \cdot \omega = \kappa$. Since Z has countable base at every point, $\kappa = w(Z) \leq |Z|$. Thus $|Z| = \kappa$.

COROLLARY 23. The weight of any uncountable subspace of the space $[N]^{\omega}$ is uncountable.

The following fact was discovered by V. Popov (cf. [13], Example 5) in 1978. We provide a slightly different proof for the sake of completeness.

THEOREM 24. The space $[N]^{\omega}$ contains a subspace homeomorphic to the Sorgenfrey line.

Proof. Let Q denote the set of rational numbers with the discrete topology. Then $\exp(Q)$ is homeomorphic to $\exp(N)$. Let $X = \{C \in \exp(Q) : C \text{ is a cut}\}$. Recall that a proper subset C of Q is a cut if C has no largest element and for each $p \in C$, $(-\infty, p] \cap Q \subseteq C$. Also, if C and D are cuts and C is a proper subset of D, then we write C < D.

Let us show that the subspace X of $[N]^{\omega}$ is homeomorphic to the Sorgenfrey line whose basic neighborhoods point to the left.

Let *C* and *D* be cuts such that C < D, and let $E \in (C, D]$. Then for any $q \in E \setminus C$, $E \in \langle \{q\}, E \rangle \cap X \subseteq (C, D]$. This shows that (C, D] is open in *X*. Conversely, let $W = \langle F, A \rangle \cap X$, where *F* is a finite subset of *Q*, and let $D \in W$. Let *p* be the largest element of *F* and let $C = \{r \in Q : r < p\}$. Then C < D and $(C, D] \subseteq W$. This shows that *W* is open in the topology generated by sets of the form (C, D].

COROLLARY 25. $m(\exp(N)) = 2^{\omega}$.

Proof. Let X be a subspace of $[N]^{\omega}$ which is homeomorphic to the Sorgenfrey line. Then X is hereditarily separable and the netweight of X is 2^{ω} . Hence $m(X) = 2^{\omega}$ and in consequence, $m(\exp(N)) = 2^{\omega}$.

COROLLARY 26. Let X be a T_1 space such that $m(\exp(X)) < 2^{\omega}$. Then X is countably compact.

Proof. Assume X is not countably compact. Then X contains a closed subspace homeomorphic to N. Therefore $\exp(N)$ is embedded into $\exp(X)$. Hence $m(\exp(X)) \ge m(\exp(N)) = 2^{\omega}$. This is a contradiction.

COROLLARY 27. Let X be a T_1 space such that $m(\exp(X)) \le \omega$. Then X (hence $\exp(X)$) is compact and $m(X) = m(\exp(X)) = 1$.

Proof. By the previous corollary, X is countably compact. Also, since $m(X) \le \omega$, X is ω -refinable in the sense of [6]. Therefore, by [6]; Theorem

1, X is compact. Hence, by [5]; Corollary 5.3, $m(X) = m(\exp(X)) = 1.\Box$

Given a partition $\mathscr{P} = \{N_j : j \in J\}$ of N into pairwise disjoint infinite sets, let us define a mapping

$$\eta_{\mathscr{P}}: \prod\{[N_j]^{\omega}: j \in J\} \to [N]^{\omega}$$

by

$$\eta_{\mathscr{P}}((A_j : j \in J)) = \bigcup \{A_j : j \in J\}.$$

Let

$$Y_{\mathscr{P}} = \eta_{\mathscr{P}} \left(\prod \{ [N_j]^{\omega} : j \in J \} \right).$$

LEMMA 28. The mapping $\eta_{\mathscr{P}}$ is one-to-one.

Proof. Let $(A_j : j \in J)$, $(B_j : j \in J) \in \prod \{ [N_j]^{\omega} : j \in J \}$ be such that $(A_j : j \in J) \neq (B_j : j \in J)$. Then $A_j \neq B_j$, for some $j \in J$. Since \mathscr{P} is a partition of N, $\cup \{A_j : j \in J\} \neq \cup \{B_j : j \in J\}$.

LEMMA 29. Let X_j be a closed subspace of $[N_j]^{\omega}$ for each $j \in J$. Then $\eta_{\mathscr{P}}(\prod \{X_j : j \in J\})$ is a closed subspace of $[N]^{\omega}$.

Proof. Let $A \in [N]^{\omega} \setminus \eta_{\mathscr{P}} \left(\prod \{X_j : j \in J\} \right)$. Then $A \cap N_j \notin X_j$ for some $j \in J$. There exists a finite set $F \subseteq A \cap N_j$ such that $\langle F, A \cap N_j \rangle \cap X_j = \emptyset$. Hence $\langle F, A \rangle \cap \eta_{\mathscr{P}} \left(\prod \{X_j : j \in J\} \right) = \emptyset$.

LEMMA 30. The mapping $\eta_{\mathscr{P}}$ is continuous when $\prod \{ [N_j]^{\omega} : j \in J \}$ is equipped with the box product topology.

Proof. Let $(A_j : j \in J) \in \prod\{[N_j]^{\omega} : j \in J\}$, let $A = \eta_{\mathscr{P}}((A_j : j \in J))$, and let $\langle F, A \rangle$ be a basic neighborhood of A. For each $j \in J$, let $F_j = F \cap N_j$ and let $U = \prod\{\langle F_j, A_j \rangle : j \in J\}$. Then U is a neighborhood of $(A_j : j \in J)$ and $\eta_{\mathscr{P}}(U) \subseteq \langle F, A \rangle$.

LEMMA 31. If $\mathscr{P} = \{N_j : j \in J\}$ is a finite partition of N, then the mapping $\eta_{\mathscr{P}}$ is a homeomorphism onto $Y_{\mathscr{P}}$.

Proof. By virtue of the preceding lemmas, it is enough to show that the mapping $\eta_{\mathscr{P}}^{-1}$ is continuous.

It is easy to verify that for any basic open set $U = \prod \{\langle F_j, A_j \rangle : j \in J\}$ of the space $\prod \{[N_j]^{\omega} : j \in J\}$, $\eta_{\mathscr{P}}(U) = \langle F, A\} \cap Y_{\mathscr{P}}$, where $A = \cup \{A_j : j \in J\}$ and $F = \cup \{F_j : j \in J\}$. Thus $\eta_{\mathscr{P}}$ is an open mapping and therefore $\eta_{\mathscr{P}}^{-1}$ is continuous.

THEOREM 32. (1) Any finite power $([N]^{\omega})^n$ of the space $[N]^{\omega}$ is embedded into $[N]^{\omega}$ as a closed subspace. (2) Any finite power of the Sorgenfrey line is embedded into $[N]^{\omega}$.

Proof. If follows imemdiately from the preceding lemmas and Theorem 24. \Box

The space $[N]^{\omega}$ contains an uncountable subspace which is hereditarily Lindelöf and hereditarily separable: the Sorgenfrey line is an instance of such a subspace. The following theorems give characterizations of hereditarily Lindelöf and hereditarily separable subspaces of the space $\exp(N)$.

THEOREM 33. A subspace X of exp(N) is hereditarily Lindelöf if and only if for each $Y \subseteq X$ there exists a countable subset Z of Y such that for each $A \in Y$ there exists $B \in Z$ such that $A \subseteq B$.

Proof. Suppose that $X \subseteq \exp(N)$ is hereditarily Lindelöf and let $Y \subseteq X$. Since the family $\{\langle \emptyset, A \rangle \cap Y : A \in Y\}$ is an open cover of Y, there exists a countable subset Z of Y such that $\{\langle \emptyset, A \rangle \cap Y : A \in Z\}$ covers Y Thus for each $A \in Y$ there exists $B \in Z$ such that $A \subseteq B$.

Conversely, suppose that X satisfies the above condition. Let Y be a subspace of X and let \mathscr{G} be a cover of Y by sets of the form $\langle F, A \rangle \cap Y$, where $A \in Y$ and F is a finite subset of A. For each $F \in [N]^{<\omega}$, let $Y(F) = \{A \in Y : \langle F, A \rangle \cap Y \in G\}$. Let Z(F) be a counable subset of Y(F) such that for each $A \in Y(F)$ there exists $B \in Z(F)$ such that $A \subseteq B$. Let $\mathscr{G}(F) = \{\langle F, B \rangle \cap Y : B \in Z(F)\}$ and, finally, let $\mathscr{H} = \cup \{\mathscr{G}(F) : F \in [N]^{<\omega}\}$. Then \mathscr{H} is a countable subfamily of \mathscr{G} . Since for each $F \in [N]^{<\omega}$, $\cup \{\langle F, A \rangle \cap Y : A \in Y(F)\} \subseteq \cup \mathscr{G}(F)$, the family \mathscr{H} is a cover of Y.

THEOREM 34. A subspace X of $\exp(N)$ is hereditarily separable if and only if for each $Y \subseteq X$ there exists a countable subset Z of Y such that for each $A \in Y$ there exists $B \in Z$ such that $B \subseteq A$. *Proof.* Suppose that $X \subseteq \exp(N)$ is hereditarily separable and let $Y \subseteq X$. Let Z be a countable and dense subset of Y. Then for each $A \in Y$, $\langle \emptyset, A \rangle \cap Z \neq \emptyset$. Thus for each $A \in Y$ these exists $B \in Z$ such that $B \subseteq A$.

Conversely, suppose that X satisfies the baove condition. Let Y be a subspace of X. For each $F \in [N]^{<\omega}$, let $Y(F) = \{A \in Y : F \subseteq A\}$. Let Z(F) be a countable subset of Y(F) such that for each $A \in Y(F)$ there exists $B \in Z(F)$ such that $B \subseteq A$. Then $Z = \bigcup \{Z(F) : F \in [N]^{<\omega}\}$ is a countable dense subset of Y.

COROLLARY 35. A subspace X of $\exp(N)$ is hereditarily Lindelöf if and only if the subspace $X^c = \{N \setminus A : A \in X\} \setminus \{\emptyset\}$ is hereditarily separable.

Any non-empty subset of $\exp(N)$ that is linearly ordered by \subseteq is called a chain in $\exp(N)$. The Sorgenfrey line constructed in Theorem 24 is a chain in $\exp(N)$ of cardinality 2^{ω} .

THEOREM 36. Any chain in exp(N) is both hereditarily Lindelöf and hereditarily separable.

Proof. Since the set of all complements of a chain is a chain again, in view of the preceding corollary, it is enough to show that every subspace of $\exp(N)$ that is a chain is hereditarily Lindelöf.

Since every chain of subsets of a countable set contains a countable cofinal subset, every chain of subsets of N satisfies the condition of Theorem 33 and thus it is hereditarily Lindelöf.

For every subspace X of $\exp(N)$, let $X^c = \{N \setminus A : A \in X\} \setminus \{\emptyset\}$. As the above corollary shows, a subspace X of $\exp(N)$ is hereditarily Lindelöf if and only if X^c is hereditarily separable. This duality between X and X^c holds only in one direction if the word "hereditarily" is omitted from the above statement.

PROPOSITION 37. If a subspace X of exp(N) is Lindelöf, then X^c is separable.

Proof. We can assume, without loss of generality, that $N \notin X$. For each $n \in N$, there exists a countable subset Z_n of X such that $X \subseteq \bigcup \{W_n(B) : B \in Z_n\}$. Let $Z = \bigcup \{Z_n : n \in N\}$. Let us show that the set

$$D = Z^c \cup (X^c \cap [N]^{<\omega})$$

is dense in X^c .

Let $N \setminus A \in X^c$. if $N \setminus A$ is finite, then $N \setminus A \in D$. Assume that $N \setminus A$ is infinite and let us consider an arbitrary basic neighborhood $W_m(N \setminus A)$. Suppose that k is the *mth* element of $N \setminus A$. There exists $B \in Z_k$ such that $A \in W_k(B)$. Then $N \setminus B \in D \cap W_m(N \setminus A)$.

EXAMPLE 38. There exists a separable subspace X of $[N]^{\omega}$ such that X^{c} is homeomorphic to the Sorgenfrey plane and hence X^{c} is not Lindelöf.

Let Q be the set of all rational numbers with discrete topology and let Q_1 and Q_2 be two disjoint dense (with respect to the usual topology) subsets of Q such that $\{Q_1, Q_2\}$ is a partition of Q. Let $Y = \{A \in \exp(Q) : A \cap Q_1 \text{ is a cut in } Q_1 \text{ and } A \cap Q_2 \text{ is a cut in } Q_2\}$. By Theorem 24 and Lemma 31, it follows that the subspace Y of $\exp(Q)$ is homeomorphic to the Sorgenfrey plane, and thus, Y is not Lindelöf. Let $X = Y^c$. For each $(s, t) \in Q_1 \times Q_2$, let $A(s, t) = ([s, \infty) \cap Q_1) \cup ([t, \infty) \cap Q_2)$. Then $\{A(s, t) : (s, t) \in Q_1 \times Q_2\}$ is a countable dense subset of the space X. Therefore X is separable but $X^c = Y$ is not Lindelöf.

EXAMPLE 39. There exists a separable subspace X of exp(N) such that X^c is not separable.

Let \mathscr{D} be an almost disjoint family of infinite subsets of N of cardinality continuum and let Cof be the family of all cofinite subsets of N that are different from N. Then \mathscr{D}^c is an open discrete subset of the space $Y = Cof \cup \mathscr{D}^c$ because for each $N \setminus A \in \mathscr{D}^c$, $\langle \emptyset, N \setminus A \rangle \cap Y = \{N \setminus A\}$. Therefore Y cannot be separable. However the dual of Y contains $[N]^{<\omega}$ and thus it is separable. Setting $X = Y^c$ we get an example of a separable subspace X of exp(N) such that X^c is not separable. \Box

EXAMPLE 40. If no subset of reals of cardinality continuum is concentrated about a countable set, then there exists a metrizable subspace X of exp(N) such that X^c is not metrizable.

Let $Y = Cof \cup \mathscr{D}^c$ be as in the above example. Then, when Y is viewed as a subset of the Cantor set, there exists an open neighborhood U of the countable set Cof such that $\mathscr{D}^c - U$ is uncountable. Let $X = Cof \cup (\mathscr{D}^c - U)$. Then X, being the disjoint sum of two metrizable subspaces of $\exp(N)$, is metrizable. Since X^c contains a countable dense set $[N]^{<\omega}$ and an uncountable discrete subspace $(\mathscr{D}^c - U)^c$, X^c is not metrizable. \Box *Remark* 2. It was shown by Lavre [8] that it is consistent that no uncountable subset of real is concentrated about a countable set.

REFERENCES

- [1] Balcar B., Pelant J., Simon P., *The space of ultrafilters on N covered by nowhere dense sets*, Fundamenta Mathematicae, **110** (1980), 11-24.
- [2] Ellentuck E., A new proof that analytic sets are Ramsey, The Journal of Symbolic Logic, 39 (1974), 163-165.
- [3] Engelking R., General Topology, Heldermann Verlag, Berlin 1989.
- [4] Gruenhage G., *Generalized metric spaces*, in: Handbook of Set Theoretic Topology, (North Holland 1984), 423-501.
- [5] Ismail M., Szymanski A., On the metrizability number and related invariants of spaces, II, Topology and its Applicastions, 71 (1996), 179-191.
- [6] Ismail M., Szymanski A., Compact spaces representable as unions of nice subspace, Topology and its Applications, 59 (1994), 287-294.
- [7] Keesling J., *Normality and properties related to compactness in hyperspaces,* Proceedings of the American Mathematical Society, **24** (1970), 760-766.
- [8] Laver R., On the consistency of Borel's conjecture, Acta Mathematica, 137 (1976), 151-169.
- [9] Louveau A., Une démonstration topologique des théorémes de Silver et Mathias, Bull. Sc. Math. séries, 98 (1974), 97-102.
- [10] Michael E., Topologies on spaces of subsets, Transactions of the American Mathematical Society, 71 (1951), 152-182.
- [11] Plewik Sz., On completely Ramsey sets, Fundamenta Mathematicae, **127** (1986), 127-132.
- [12] Plewik Sz., Ideals of nowhere Ramsey sets are isomorphic, The Journal of Symbolic Logic, **59** (1994), 662-667.
- [13] Popov V., On the subspaces of exp X, Colloquia Mathematica Societatis Janos Bolyai, 23. Topology, Budapest (1978), 977-984.
- [14] Vietoris L., *Bereiche Zweiter Ordnung*, Monatshefte f
 ür Mathematik und Physik, 32 (1922), 258-280.

Pervenuto il 7 gennaio 1999.

M. Ismail - A. Szymanski Department of Mathematics Slippery Rock University of Pennsylvania Slippery Rock, PA 16057, U.S.A.

Sz. Plewik University of Silesia Bankowa 14, 40-007 Katowice, Poland