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On completely Ramsey sets
by

Szymon Plewik (Katowice)

Abstract. We consider completely Ramsey sets. Our main result says that the union of less
than #(N*) of completely Ramsey. sets is completely Ramsey and the union of %(N*) of completely
Ramsey sets can be a set which is not completely Ramsey.

1. Introduction, The Ramsey theorem says that if the set of all k-element sub-
sets of natural numbers, N, is partitioned into two parts, then there is an infinite
subset of N such that all its k-element subsets are contained in one of those parts.
The infinite version of Ramsey theorem is false. This permits us to define Ramsey
sets. )

A family S of infinite subsets of natural numbers is called Ramsey if there is
an infinite subset of natural numbers such that either all its infinite subsets are con-
tained in S or all its infinite subsets are contained in the complement of S.

A family S of infinite subsets of natural numbers is called completely Ramsey,
a CR set, if for every infinite subset ¥ < N and every finite subset x = N there is an
infinite subset W< ¥ such that

yWux)e§S o {x,WuxdnS=69,

where {(x, Wu x> denotes the set of all infinite subsets AN such that
xcdcWux

If we take the empty set instead of a finite set x and the set of natural numbers
instead of an infinite set ¥ in the above definition, then we conclude that any CR set
is Ramsey.

Identifying subsets of natural numbers with theirs characteristic functions, one
can see that infinite subsets of natural numbers form a G; dense subset of the Cantor
set 2V which is nowhere compact, thus being the same as irrationals with the order
topology. We call this topology the natural topology. From this point of view it
turns out that analytic sets are Ramsey. This result is due to Mathias [3] and Sil-
ver [6]. It has a few application in functional analysis, for instance in Farahat’s
proof of Rosenthal’s Dichotomy. For this and other applications see Diestel [2].
Galvin and Prikey [4] showed that Borel sets are completely Ramsey.
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The Ellentuck topology is the coarsest topology on the set of all infinite sub-
set of natural numbers such that all sets of the form {x, ¥, where x is a finite subset
of N and ¥ is an infinite subset of N, are open. Since a family {{x, N\y>: x,ye H 1
(we denote the set of finite subsets of N by H and the set of all infinite subscts of N
by T) is a base for the natural topology, the Ellentuck topology is finer than the
natural topology. It turns out, Ellentuck [3], that CR sets coincide with sets having
the Baire property in the Ellentuck topology. We call this fact the Ellentuck theorem.
Thus CR sets form a o-field which contains all analytic subsets, because a o-field
of sets having the Baire property is invariant under the Souslin operation [3].

An almost-disjoint partition of natural numbers is a maximal family consisting
of infinite pairwise almost-disjoint subsets of natural numbers. A family of almost-
disjoint partitions of natural numbers is called a matrix. A matrix U is called
shattering if for each infinite subset ¥ = N there is a family B e U such that ¥ meets
at least two members of B'in an infinite set. Let 5 (N *) be the least cardinal of cardi-
nalities of shattering matrixes. This cardinal was introduced and studied by Balcar,
Pelant and Simon [I]. They showed that »x(N*) is an uncountable regular cardinal
not greater than the continuum and that the value of %(IN*) depends on the axioms
of set theory. For other details about %(IN*) see [1].

‘We consider coverings of the set of all infinite subsets of N by nowhere dense
sets in the sense of the Ellentuck topology. The estimation on the size of such families
allows us to show that the union of less than »(N*) completely Ramsey sets is com-
pletely Ramsey and the union of x(IN*) completely Ramsey sets may be a set which
is not completely Ramsey. To date the following result is known: the union of
countable many CR sets is completely Ramsey, Galvin and Prikry [4], see also
Lemma 3 in’ Silver [6].

Our definition of a CR set is different from the definitions in Ellentuck [3],
Galvin and Prikry [4] or Silver [6]. In Ellentuck [3] sets of the form (for xe H
and VeT)

(x,V)° = {MeT: xcMcVux and if t€ M, supx =1, then tex}
were used instead of sets of the form {x, V). However, the two definitions of CR
sets are obviously equivalent.

The Ellentuck topology is an important tool in the investigations of CR sets.
Accordingly, we describe some facts about this topology in the last section.

2. Additivity of the o-field of CR sets.

Lemva 1. If S =T is a dense and open subset in the Ellentuck topology, then for
each infinite subset V of natural numbers and for all, finite subsets x, y of natural numbers
there is an infinite set Melx, Vuxy such that {y, MU y>=S.

Proof. Let fo, fi,..., f, be the sequence of all subsets of the union x U y. There
is an infinite set M, < ¥ such. that

<f0a Mo Ufo> cS.
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Assume inductively, that sets

Mc..cM,cV

have been defined. Let M., < M, be an infinite subset such that

{Ser 1 Mir1 Ve e85

this is possible since S is a dense CR set. Let M = M, U x. To finish the proof we
show that

{y,MuydeS.
Let Pe{y, M vy Take f, = P n(x uy). We have

ficPeMuyecM,uxuy.
Therefore
feP=Pn(M,uxu))=PAnM,UPn(xU))=PnM UL,
ie. Pelfy, MyLufipcS. B )

Lemma 2. If S < T is a dense and open subset in the Ellentuck. topology, then for
cach infinite subset V of natural numbers there is an infinite subset M < V such that
for every finite subset x of natural numbers (&, M v x> < S.

Proof. Let f;,fs, ... be the sequence of all finite subsets of natural numbers.
Let M, < V be an infinite subset such that ‘ .

{SuMyuf)es.
Take y, € M,. Assume, inductively, that we have deﬁned sets
{1 e M,c M, = .. CM;C V.

Let M,,,; be an infinite set such that

s e My e M,
and
<fn+1’ Mn+1 Uf;.+1> cS;

this is possible by Lemma 1. Take
Yn+1 € Mrl+ 1\{}’1 ERNE] yn}

and )
M= {p1, 2} -

If xe H and Pe{@, M L x), then setting f, = P\M, we have
Pelf,Mufyelfi, M,ufi>=S.
Since P was chosen arbitrarily, we have (&, M v x> = S. M

A family § < T is called nowhere Ramsey, an NR set, if it is nowhere den‘sc in
the Ellentuck topology. In virtue of the Ellentuck theorem NR sets form a o-ideal

consisting of CR sets.
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LemMMA 3. If S = T'is a NR set, then there is an almost-disjoint partition of natural
numbers U such that

SnU{{g,Vux): xeHand VeU} =0.
Proof. By virtue of Lemma 2 we conclude that the sct
Sg = {VeTl: (B, Vux)nS = for every xe H}
is dense and open in the Ellentuck topology. Assuming U < Sy to be an almost-
disjoint partition of natural numbers, we see that it satisfies the conclusion. M

THEOREM 1. The union of less than s (N *) nowhere Ramsey sets is nowhere Ramsey.

Proof. Let A be a cardinal number less than » (N *) and let {S,: o < A} be a family
of NR sets. In virtue of Lemma 3 for each set S, there is an almost-disjoint partition
of natural numbers R, such that

B=S,nU{D, Vux): VeR, and xe H}.

Since the matrix {R,: & <A} cannot be shattering relative to any infinite subset of
natural numbers, the set

N{U{KB, Vux): VeR, and xe H}: a <A}
is dense and open in the Ellentuck topology. Obviously it is disjoint with each
set S,. B

THEOREM 2. The union of less than %(N*) completely Ramsey sets is completely
Ramsey.

Proof. Let A be a cardinal number less than % (N *) and let {S,: « < 1} be a family
of CR sets. In virtue of the Ellentuck theorem we can assume that each S, is of the

form B, u V,, where ¥, is an open set in the Ellentuck topology and B, is an NR set.
‘We have

UfSe o<t} =U{V:a<A}u U {B,: a<i}.
But | {B,: « <1} is an NR set by Theorem 1 and applying the Elientuck theorem,
we find that | {S,: a<A} is a CR set. W

THEOREM 3. The fumily of all infinite subsets of natural numbers is the union of
#(N*) nowhere Ramsey sets.

Proof. Let {R,: « <x(N*)} be a shattering matrix. Each set
Po=U{{G,Vux>: VeR, and xe H}
is dense and open in the Ellentuck topology. Let us observe that
N{Ps a<x(NN} = 3.
yUsing de Morgan’s law, we are done. M

THEOREM 4. The urion of %#(N*) completely Ramsey sets can be a set which is not
completely Ramsey.
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Proof. Let ST bea non CR set, for instance a Berstein set in the sense of
natural topology. Let {P,: o <#(IN*)} be a covering consisting of NR sets, of T.
Thus P, n S is an NR set and

S=U{P,nS: a<n(N¥}. W

3. The Ellentuck topology.

PROPOSITION 1. The fumily U = {{x,V>: xe H and V €T} forms « base for
the Ellentuck topology which consists of closed-open sets in this topology.

Proof. Sets {x, V) are closed-open in the Ellentuck topology since

e, V> = TNU {¢{1), N te NNV U U {KB, P\{s}): sex}.
The family U is a base for the Ellentuck topology because
x,Vynly, Wy={&xuy, Vaw). B
PROPOSITION 2. There exists a family of infinite subsets of natural numbers which

is dense and open in the Ellentuck topology and of first category in the natural topology.
Proof. Let ¥ be the set of even numbers. The family

U= {B,Vuxy: xeH} vl B, N\V)uU x>: xe H}
is as we desired. M ’
Let P be the set of reals consisting of real numbers of the form
2x,
= T
n=0

where x, = 1 infinitely many times and x, = 0 for other n. The function
f(x) ={neN: x, =1}

is a one-to-one mapping of P onto 7. It is a homeomorphism if P inherits the orde;
topology from reals and T is equipped with the natural topology.
PROPOSITION 3. If' A is an infinite subset of natural numbers, then the image of the
right closed segment (0, f =3 (A)] under the function f is open. in the Ellentuck topology.
Proof. We have
[ ef KB, A) = (0,171 ()]
and therefore

70,574 =7 (0, f7HA)) v <D, 4.

Thus we are done because the set /(0,7 ~*(4))) is open in the natural topology,
whence it is open in the Ellentuck topology; let us recall that the family
{x, N\p>: x,ye H} is a base for the natural topology and therefore sets open
in the natural topology are open in the Ellentuck topology. M
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PROPOSITION 4. The space of all infinite subsets of natural numbers with the Ellen-
tuck topology contains a closed and separcble subspace which contains a closed and
discrete subset of the cardinality continuum.

Proof, Let ¥ be the set of odd numbers and let

F={MeT: VaM}=TU {{B, N\{t}>: teV}.

The subspace F is obviously closed. It is separable becausc the set {V U'x: x e H}
is dense in F. Let A be a one-to-one mapping of the Cartesian product of natural
numbers by itself onto the set of even numbers. We set

A* = {z=h(t,s): te A and s ¢ A}
and
U={Vud* @+AsN}.

The set U has the cardinality continuum and it is contained in F. Since
™NU = U {K{r(t, 8), h(r, )}, N>t 5,1, 2eN} U
vU G, Vudn{z})): AcN and ze 4* U V}
the set U is closed. It is discrete in the Ellentuck topology because
Un{@,Vudy={Fud}. a

Proposition 4 implies Keesling’s result, [S], which says, in our terms, that the
Ellentuck topology is not normal, To see this it is enough to note that the subspace ¥
from the above proposition cannot be normal. Note also that, since there is a closed
discrete subset of the cardinality continuum, there is one of arbitrary cardinality
less than the continuum.
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Squares with diamonds and Souslin trees
with special squares

by

U. Abraham (Beer Sheva), S. Shelah (Jerusalem) and R. M. Solovay (Berkeleyy

Abstract, The squarcs and the diamonds are useful set-theoretic axioms used in construction:
of infinite objects. Here we introduce and study different versions of such combinatorial prin-
ciples on sueccssor of singular cardinals. We prove some implications (in ZFC), inquire the:
situation in L, and give an application.

Tntroduction. One feature of the work of Jensen and Johnsbraten [J&J]is the
construction in L of a Souslin tree T such that its square — minus the diagonal, of
course — is a special trée (that is, embeddable into the rationals). We present in § 4
a generalization of this result to higher cardinals. In L:

For any cardinal x there is a Souslin tree of height »* such that its square —
minus the diagonal — is special.

The proof of [J&J] can be generalized to successors of regular cardinals — but
successor of singulars seem to require a different approach. A new kind of a diamond
sequence is used to construct the trees; it is called a “square sequence with built-in
diamond”. In fact there are several kinds of square sequences with diamonds, Such
a sequence was first presented by C. Gray in his thesis [G]. We present here, essen-
tially three other forms which are discussed in §§ 1-3. The forms in §§ 2 and 3 hold
in I and require the fine structure for their proof (the proof of §2 is simpler than
that of § 3); the form in § 1 seems weaker than that of § 2 but it holds in a very
general selting — in fact it is a consequence of GCH + usual kind of squares. (So
reading of § 1 does not require knowledge of fine structure.) Each section can be
read independently of the others (the construction in § 4 uses the square sequence
of § 1 but the reader can see that the form of § 2 yields a slightly simpler proof).

In § 1 ideas of K. Kunen (the proof that O*—¢), and of J. Gregory [Gr]
and [S] are used.

We would like to thank L. Marrington and M. Stanley who raised in conversa-
tion the question about the Souslin trees settled here.
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