ON SOME PROBLEM OF A. ROSLANOWSKI

BY

SYMON PLEWIK (KATOWICE)

We present a negative answer to problem 3.7(b) posed on page 193 of [2], where, in fact, A. Roslanowski asked: *Does every set of Lebesgue measure zero belong to some Mycielski ideal?*

We identify a set \(X \in \omega^\omega \) with its characteristic function, i.e. with the sequence \((X(0), X(1), \ldots) \in 2^\omega\) such that \(X(n) = 1 \) iff \(n \in X \). A set \(X \in \omega^\omega \) has asymptotic density \(d \) whenever

\[
\lim_{n \to \infty} \frac{|X \cap n|}{n} = d,
\]

where \(|X \cap n|\) denotes the number of natural numbers from \(X \) less than \(n \).

We consider the family of all sets of asymptotic density not equal to \(1/2 \), i.e. the set

\[
A = 2^\omega \setminus \{ X \in \omega^\omega : X \text{ is of asymptotic density } 1/2 \}.
\]

An old result of E. Borel [1] says: *The set \(A \) has Lebesgue measure zero.* A direct consequence of this result is

Theorem. The set \(A \) does not belong to any Mycielski ideal.

Proof. Our notation follows [2]. If \(K \) is a normal system, i.e. for each \(X \in K \) there exist two disjoint subsets of \(X \) which belong to \(K \), then \(K \) contains three disjoint sets \(X, Y \) and \(Z \). Since

\[
|X \cap n| + |Y \cap n| + |Z \cap n| \leq n,
\]

one of the sets: \(X, Y \) or \(Z \) does not contain any subset of asymptotic density \(1/2 \). Suppose \(X \) is such a set. If Player I always chooses zero, then he wins the game \(\Gamma(X, A) \), because any set (sequence) which can be the result of that game is not of asymptotic density \(1/2 \) and thus belongs to \(A \). This means that the set \(A \) does not belong to the Mycielski ideal generated by \(K \).

If one considers Mycielski ideals on \(k^\omega \), where \(k > 2 \) is a natural number, then our theorem can be slightly modified. The Lebesgue measure and

1991 Mathematics Subject Classification: 03E05, 04A20, 28A05.
Mycielski ideals can also be considered on k^ω because of the definition of the Lebesgue measure given in [2], p. 188. Similarly to the asymptotic density, one can define the asymptotic frequency of functions from k^ω. Again, it is a result of E. Borel [1] that: The set of all sequences from k^ω in which every natural number n occurs asymptotically with frequency $1/k$ has full measure. Its complement A^* has Lebesgue measure zero and does not belong to any Mycielski ideal, since Player I wins the game $\Gamma(\omega \setminus X, A^*)$ whenever he always chooses the same number and X does not contain any subset with asymptotic frequency $(k - 1)/k$.

REFERENCES
