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Abstract. E. Helly’s theorem asserts that any bounded sequence of monotone
real functions contains a pointwise convergent subsequence. We reprove this
theorem in a generalized version in terms of monotone functions on linearly
ordered sets. We show that the cardinal number responsible for this general-
ization is exactly the splitting number. We also show that a positive answer to
a problem of S. Saks is obtained under the assumption of the splitting number
being strictly greater than the first uncountable cardinal.

0. Introduction

E. Helly’s theorem ([3]) asserts that any bounded sequence of monotone real func-
tions contains a pointwise convergent subsequence. In the present paper, we prove
the following generalization of the theorem: for linearly ordered sets X and Y , if
Y is sequentially compact with density less than the splitting number s, then any
sequence of monotone functions from X to Y contains a pointwise convergent sub-
sequence (Theorem 7). We also show that this theorem characterizes the splitting
number (Theorem 9).

We begin with reviewing some definitions and elementary facts needed for our
results.

1. Preliminaries: Linearly ordered sets

A linearly ordered set X is said to be dense linear order, if, for any x, y ∈ X ,
x < y implies that there exists z ∈ X such that x < z < y. A subset D of a linearly
ordered set X is said to be dense in X , if, for any x, y ∈ X , x < y implies that
there exists z ∈ D such that x ≤ z ≤ y. The density of X is defined by

d(X) = min{ |D| : D ⊆ X andD is dense in X },
where |D| denotes the cardinality of the set D.

Let X and Y be linearly ordered sets. A function f : X → Y is said to be
increasing, if, for any x, y ∈ X , x < y implies f(x) ≤ f(y); decreasing, if x < y
implies f(y) ≤ f(x). A function is monotone if it is either increasing or decreasing.
A sequence (xn)n∈N of elements of X is called increasing, decreasing or monotone
respectively, if it is increasing, decreasing or monotone respectively as a function
from the set of all natural numbers N into X .
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For a linearly ordered set X , the notion of convergence can be introduced in a
canonical way: an increasing sequence (xn)n∈N in X converges to a point x, if x
is the supremum of the set of all elements of this sequence; a decreasing sequence
converges to x, if x is the infimum of the set of all elements of this sequence; in
general, a sequence (xn)n∈N converges to x, if every monotone subsequence of this
sequence converges to x. We say also that a sequence is convergent if it converges to
some x. A linearly ordered set is said to be sequentially compact if each monotone
sequence of its elements converges to some point in it. If a sequence (xn)n∈N
converges to x, we denote this as usual by limn→∞ xn = x. For a sequence (xn)n∈I

indexed by an infinite subset I of N, its convergence to a point x is defined similarly
and denoted by limn∈I xn = x. For an infinite I ⊆ N and a sequence (fn)n∈I of
functions from a set X to a linearly ordered set Y , we say that (fn)n∈I converges
pointwise to f : X → Y , if limn∈I fn(x) = f(x) holds for every x ∈ X . We shall
also say that a sequence (fn)n∈I is pointwise convergent if there is some function
f to which the sequence converges pointwise.

Since any sequence in a linearly ordered set has a monotone subsequence, every
sequence in a sequentially compact linearly ordered set has a convergent subse-
quence. Using this fact, we can see easily the following.

Lemma 1. If (xn)n∈N is a non-convergent sequence of elements of a sequentially
compact linearly ordered set X, then there exist infinite subsets of natural numbers
I and J such that subsequences (xn)n∈I and (xn)n∈J converge to different points
of X.

Lemma 2. Any infinite linearly ordered set X can be embedded into a dense linear
order X̃ such that d(X̃) = d(X). If X is sequentially compact, then X̃ can be also
chosen to be so. Also, convergent sequences in X remain convergent in X̃ with the
same limit.

Proof. Let D be a dense subset of X of cardinality d(X). For points x, y ∈ X , let
us call (x, y) a jump in X if x < y and there is no z ∈ X such that x < z < y.
By definition of dense subsets, for each jump (x, y) one of the points x or y must
be in D. Hence there are at most d(X) jumps. Let X̃ be the linearly ordered set
constructed from X by inserting a copy of the reals into each of the jumps in X .
Noting that the density of the reals R, with respect to the canonical ordering, is
countable and R ∪ {−∞, +∞} is sequentially compact, it is easy to see that X̃ is
as desired.

Lemma 3. Suppose that X and Y are linearly ordered sets and (fn)n∈I is a se-
quence of increasing functions from X to Y . If (fn)n∈I converges pointwise to a
function f : X → Y, then f is also increasing.

Proof. By Lemma 2, we may assume that Y is a dense linear order. The rest of
the proof can be done just like the usual proof of the corresponding assertion on
increasing real functions.

Any linearly ordered set X can be densely embedded into a sequentially compact
linearly ordered set X . E.g. we can take the Dedekind completion of X as X . Note
that we have d(X) = d(X) since X is dense in X. In general, the Dedekind comple-
tion of X is not the minimal sequentially compact linearly ordered set containing a
dense copy of X since there can be an unfilled Dedekind cut (D, E) of X such that
D has uncountable cofinality and E uncountable coinitiality. Let us call a sequence
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(xn)n∈N in a linearly ordered set X potentially convergent if it converges to some
point in some X as above. By virtue of Lemma 1, this is equivalent to saying that
there are no x, y ∈ X and no infinite I, J ⊆ N such that xn ≤ x < y ≤ xm for
every n ∈ I and m ∈ J .

2. The splitting number

A family S of infinite subsets of N is said to be splitting if, for every infinite
subset I ⊆ N, there exists a set J ∈ S such that I ∩ J and I \ J are both infinite.
The splitting number s is defined by

s = min{ |S| : S is a splitting family }.
In particular, if S is a family of infinite subsets of N of cardinality less than s, then
there exists an infinite subset I ⊆ N such that I is almost included either in J or
in N \ J for every J ∈ S. It is readily seen that s is uncountable and less than or
equal to the cardinality of the reals. On the other hand, it is known that the value
of s cannot be decided from the axioms of set theory alone. A splitting family
was considered first by Sierpiński in [5]. He showed that under the Continuum
Hypothesis there is a splitting family S with the property that every uncountable
subfamily of S is still splitting. For more about the cardinal s and its relation to
other cardinal invariants of reals the reader may consult [1], [2] or [7]. The role of
splitting number in connection with convergence was also studied in [8].

The following lemma is the set-theoretic core of the generalization of Helly’s
theorem.

Lemma 4. If X is a set of cardinality less than s and Y is a sequentially compact
linearly ordered set of density less than s, then for any sequence (fn)n∈N of functions
from X to Y there exists an infinite subset I ⊆ N such that the sequence of functions
(fn)n∈I converges pointwise.

Proof. By Lemma 2 we may assume that Y is a dense linear order. Let D be a
dense subset of Y of cardinality less than s. For x ∈ X and y ∈ D, let

Cy
x = {n ∈ N : fn(x) < y }.

Since |X ×D| < s, there exists an infinite I ⊆ N such that I is almost included
either in Cy

x or in N \ Cy
x for any x ∈ X and y ∈ D.

We shall show that the set I is as desired. Otherwise there would be some point
a ∈ X such that the sequence (fn(a))n∈I of points in Y is not convergent. Then,
by Lemma 1, there are infinite subsets J and K of I and a point d ∈ D such that
sequences (fn(a))n∈J and (fn(a))n∈K of points in Y are convergent and we have

lim
n∈J

fn(a) < d < lim
n∈K

fn(a).

Hence we have fn(a) < d for all but finitely many n ∈ J and d < fn(a) for all but
finitely many n ∈ K. It follows that the sets I ∩ Cd

a and I \ Cd
a are both infinite;

but this contradicts the choice of I.

Lemma 4 gives the consistency of a positive answer to the following question of
S. Saks studied in [5]:

For arbitrary sequence (fn)n∈N of real functions, do there exist an infinite I ⊆ N
and an uncountable X ⊂ R such that, for each x ∈ X, the sequence of real numbers
(fn(x))n∈I has a finite or infinite limit?
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Under the Continuum Hypothesis, Sierpiński gave a negative answer to the ques-
tion in [5]. By applying Lemma 4 for the sequentially compact linearly ordered set
R ∪ {−∞, +∞}, we see that, under s > ℵ1, a positive answer to the question is
obtained.

Since every linearly ordered set can be embedded densely into a sequentially
compact linearly ordered set, the next lemma follows immediately from Lemma 4.

Lemma 5. If X is a set of cardinality less than s and Y is a linearly ordered set of
density less than s, then for any sequence (fn)n∈N of functions from X to Y there
exists an infinite subset I ⊆ N such that the sequence (fn(x))n∈I is potentially
convergent for every x ∈ X.

Lemma 5 can be yet slightly improved. For any infinite I ⊆ N, let us call a
sequence (xn)n∈I in a linearly ordered set X semi-monotone if there is a bijection
ϕ : N → I such that (xϕ(n))n∈N is eventually monotone, i.e. monotone from some
m ∈ N on. It is clear that a semi-monotone sequence is potentially convergent.
If x = limn∈I xn exists, then (xn)n∈I is semi-monotone if and only if (xn)n∈I

approaches to x eventually from one side — i.e. for some m ∈ N either xn ≤ x for
every n ≥ m or x ≤ xn for every n ≥ m.

Lemma 6. If X is a set of cardinality less than s and Y is a linearly ordered set of
density less than s, then for any sequence (fn)n∈N of functions from X to Y there
exists an infinite subset I ⊆ N such that the sequence (fn(x))n∈I is semi-monotone
for every x ∈ X.

Proof. Without loss of generality, we may assume that Y is sequentially compact.
By Lemma 4, there is an infinite I ⊆ N such that (fn)n∈I is pointwise convergent.
For each x ∈ X let yx = limn∈I fn(x). Let Ỹ be the linearly ordered set obtained
from Y by inserting a new point y′x between yx and { y ∈ Y : yx < y } for each
x ∈ X . Ỹ is still sequentially compact and d(Ỹ ) < s since only fewer than s new
points are added. Hence we can apply Lemma 4 again to (fn)n∈I as a sequence of
functions from X to Ỹ to obtain an infinite J ⊆ I such that (fn)n∈J is pointwise
convergent as a sequence of functions from X to Ỹ . For each x ∈ X , as (fn(x))n∈J

should converge to yx or y′x, it follows that, for each x ∈ X , (fn(x))n∈J as a sequence
of points in Y approaches yx eventually from one side. Hence by the remark before
this lemma, (fn(x))n∈J is a quasi-monotone sequence in Y .

3. Generalized Helly’s theorem

Since the density of the reals is countable, Helly’s theorem ([3]) as cited in the
Introduction is just a special case of the following theorem.

Theorem 7 (Generalized Helly’s Theorem). Let X and Y be linearly ordered sets.
If Y is sequentially compact with density less than s, then any sequence of monotone
functions from X to Y contains a pointwise convergent subsequence.

Proof. Without loss of generality, we may assume that the sequence (fn)n∈N con-
sists of increasing functions. By Lemma 2 we may also assume that Y is a dense
linear order. Let D ⊆ Y be a dense subset of cardinality less than s. For b, d ∈ D
and n ∈ N, let xn

b,d be an element of X such that b ≤ fn(xn
b,d) ≤ d if such an element

exists; otherwise let xn
b,d be an arbitrary element of X . Let

Z = { xn
b,d : b, d ∈ D, n ∈ N }.
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Then we have |Z| < s. Hence, by Lemma 4, there exists an infinite subset L ⊆ N
such that the sequence of functions (fn |̀ Z)n∈L converges pointwise where fn |̀ Z
denotes the restriction of the function fn to the set Z. Let

T = { x ∈ X : (fn(x))n∈L is a convergent sequence of points in Y }.
We have Z ⊆ T . Let h : T → Y be the function such that the sequence of functions
(fn |̀ T )n∈L converges pointwise to h. By Lemma 3, h is an increasing function.
Now let

U = {U : U is a maximal interval in X such that U ⊆ X \ T }.
For each interval U ∈ U we choose xU ∈ U . By definition of Z, fn is constant on
each U ∈ U for every n ∈ N. Hence, for any subset M ⊆ L, we have:

(∗) (fn(xU ))n∈M converges if and only if (fn |̀ U)n∈M converges pointwise.

Letting W = { xU : U ∈ U }, we claim that |W | < s. To see this, let x ∈
W . The sequence (fn(x))n∈L is not convergent. Since Y is a dense linear order
and sequentially compact, by Lemma 1, there are infinite subsets J , K ⊆ L and
points bx, cx, dx ∈ D such that sequences of points (fn(x))n∈J and (fn(x))n∈K are
convergent and

lim
n∈J

fn(x) < bx < dx < cx < lim
n∈K

fn(x).

If y ∈ T and y < x, then h(y) ≤ bx, since limn∈L fn(y) = h(y) and fn(y) < bx for
infinitely many n ∈ L. Likewise, for any z ∈ T with x < z we have h(z) ≥ cx. For
x1, x2 ∈ W with x1 < x2, there is y ∈ T such that x1 < y < x2. Hence the mapping
from W to D defined by x 7→ dx is injective. As |D| < s, it follows that |W | < s.

Again by Lemma 4 we can find an infinite I ⊆ L such that (fn |̀ W )n∈I is
pointwise convergent. By definitions and (∗) above, we have that the sequence of
functions (fn)n∈I converges pointwise.

4. The splitting number is optimal

For an infinite subset V ⊆ N, let

D(V ) =
∑
n∈V

1
2n+1

.

Note that D is a bijective mapping from infinite subsets of N to the real numbers in
the half-open interval (0, 1]. For a family S of subsets of N, let us denote by D(S)
the set {D(V ) : V ∈ S }. Thus D(S) is a subset of the unit interval of cardinality
|S|.

Assume now that S is a splitting family of cardinality s. Let

H = (D(S) × [0, 1]) ∪ ([0, 1]× {0})
be the linearly ordered set equipped with the lexicographical ordering, i.e. we let
(x, y) < (p, q), whenever x < p, or x = p and y < q. Here, x < p and y < q denote
the canonical ordering on the reals.

Lemma 8. The linearly ordered set H is sequentially compact and its density is
equal to s.
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Proof. Suppose that S = ((xn, yn))n∈N is a monotone sequence of points in H .
Then (xn)n∈N is monotone as well. If (xn)n∈N is eventually constant, say xn = x
for all n > m, then (yn)n>m is a monotone sequence. Hence limn→∞ yn exists
and S converges to (x, limn→∞ yn). Otherwise there are infinitely many distinct
xn’s. If S is increasing, then S converges to (limn→∞ xn, 0). If S is decreasing,
then S converges to (limn→∞ xn, 1) provided that limn→∞ xn ∈ D(S); otherwise it
converges to (limn→∞ xn, 0).

Let Q be the set of rational numbers in the unit interval [0, 1]. Then

H0 = (D(S) ×Q) ∪ (Q× {0})
is dense in H and of cardinality s. This shows that d(H) ≤ s. If H ′ ⊆ H is of
cardinality less than s, then there is some s ∈ D(S) such that {s}× [0, 1] is disjoint
from H ′. Hence H ′ is not dense in H . Thus we also have d(H) ≥ s.

The following theorem is a variation of an example in [6].

Theorem 9. There exists a sequence (fn)n∈N of increasing functions from the sub-
set D(S) of the unit interval to the linearly ordered set H such that (fn)n∈N does
not have any pointwise convergent subsequence.

Proof. For each n ∈ N and V ∈ S, let

fn(D(V )) =

{
(D(V ), 1), if n ∈ V ;
(D(V ), 0), otherwise.

Each function fn is obviously increasing. For any infinite subsequence (fn)n∈I , let
V ∈ S be such that the sets I ∩ V and I \ V are both infinite. Then we have
fn(D(V )) = (D(V ), 1) for every n ∈ I ∩ V , and fn(D(V )) = (D(V ), 0) for every
n ∈ I\V . In particular, the sequence of points (fn(D(V )))n∈I is not convergent.

The theorem above shows that the condition d(Y ) < s in Theorem 7 is optimal.
Using this fact, we obtain the following characterization of the splitting number.

Let τ1 be the supremum of the cardinals κ with the property that for every set
of X of cardinality less than κ and for every sequentially compact linearly ordered
set Y of density less than κ, any sequence of functions from X to Y has a pointwise
convergent subsequence. Likewise, let τ2 be the least cardinal κ such that, for some
set X of cardinality κ, it is not the case that any sequence of functions from X
to {0, 1} has a pointwise convergent subsequence, where we consider {0, 1} as a
linearly ordered set with 0 < 1. Finally, let µ be the supremum of the cardinals κ
with the property that, for any linearly ordered set X and any sequentially compact
linearly ordered set Y with d(Y ) < κ, any sequence of monotone functions from X
to Y has a pointwise convergent subsequence.

Theorem 10. s = τ1 = τ2 = µ.

Proof. By definition we have τ1 ≤ τ2. Lemma 4 implies s ≤ τ1; s ≤ µ follows from
Theorem 7. Theorem 9 implies s ≥ µ.

To see τ2 ≤ s, we use a variant of Rademacher’s functions (see [4]): for each
n ∈ N, the function ϕn on the family of all infinite subsets of N to {0, 1} is defined
by

ϕn(V ) =

{
1, if n ∈ V ;
0, otherwise.
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Let S be a splitting family of cardinality s. For any infinite subset I ⊆ N, let V ∈ S
be such that the sets I ∩ V and I \ V are both infinite. Then the 0-1 sequence
(ϕn(V ))n∈I is not convergent as 0 and 1 both appear infinitely many times in this
sequence. This shows that no subsequence of the sequence (ϕn |̀ S)n∈N of functions
from S to {0, 1} can be pointwise convergent.
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