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Abstract. We answer a question which was stated by R. E. Svetic in [11].
The Bergelson-Hindman-Weiss lemma, which was placed in [1], is improved.

1. On Svetic’s question. In [11] on the page 537 there was stated the
following question: Is it true that if a measurable set contains a copy of each
finite set, then the set has positive measure?

If one means that a copy [a similar copy of a subset of real numbers] of a
subset X it is a set of the form x + tX = {x + ty : y ∈ X}, where x and t 6= 0
are some real numbers, then the question had been stated by E. Marczewski
in [6] or [7] and was answered negatively by P. Erdös and S. Kakutani in [3].
More subtle examples which answered the question negatively one can find in
[2], too. If one assumes that a copy means a similar copy but with t = 1: a set
x + X = {x + y : y ∈ X}, where x is a real number; then the answer is negative,
also. We present an answer which improves the P. Erdös and S. Kakutani result
[3]. In [3] it was noted the followings.

Since for each n there holds
∞∑

m=n+1

m− 1

m!
=

1

n!
, then every real x ∈ [0, 1) is

uniquely of the form x =
∞∑

n=2

bn

n!
, where always bn ∈ {0, 1, . . . , n − 2, n − 1} and

infinitely many times there is bn 6= n− 1.

The subset

S =

{ ∞∑
n=2

bn

n!
: bn ∈ {0, 1, . . . , n− 3, n− 2}

}
⊂ [0, 1)

has Lebesgue measure zero. It is perfect and meager, too.

And some modification of the following lemma.
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Lemma 1. Let n ≥ m ≥ 3 and {an, bn} ∈ {0, 1, . . . , n− 2, n− 1}. If always,
an + bn 6= n− 2 and an + bn 6= n− 1 and an + bn 6= 2n− 2, then

∞∑
n=m+1

an + bn

n!
=

∞∑
n=m

cn

n!
,

where cn ∈ {0, 1, . . . , n− 3, n− 2}.

Proof. Suppose
∞∑

n=m+1

an + bn

n!
=

∞∑
n=m

cn

n!
, where cn ∈ {0, 1, . . . , n− 2, n− 1}.

For the digit c3 there holds

c3

3!
≤

∞∑
n=4

an + bn

n!
≤ 2

∞∑
n=4

n− 1

n!
=

2

3!
.

Since for infinitely many n there holds an+bn 6= 2n−2, then the second inequality
is sharp. Therefore c3 < 2.

Again use this that for infinitely many n there holds an + bn 6= 2n − 2. So,
m > 3 implies cm = am + bm (mod m) or cm = am + bm + 1 (mod m). But we
assume that always holds cm < m. Therefore am+bm 6= m−2 and am+bm 6= m−1
implies that cm < m− 1.

To answer Svetic’s question we present the following theorem.

Theorem 2. The subset of real numbers

∞⋃
k=1

k · S =

{
k
∞∑

n=2

bn

n!
: bn ∈ {0, 1, . . . , n− 3, n− 2} and k ∈ {1, 2, . . .}

}

has Lebesgue measure zero and contains a copy of any finite subsets of real num-
bers.

Proof. Since Lebesgue measure of S is zero, then any set k ·S = {kx : x ∈ S}

is of Lebesgue measure zero. Also the union
∞⋃

k=1

k ·S is of Lebesgue measure zero,

since it is an union of countably many sets of Lebesgue measure zero.

Let d be a natural number such that {x1, x2, . . . , xq} ⊂ (0, d). Choose natural
numbers a and m such that m!xi < ad, for any i ∈ {1, 2, . . . , q}, and m + 1 > 2q.
Hence

xi

ad
=

∞∑
k=m+1

bi
k

k!
, where bi

k ∈ {0, 1, . . . , k − 1}.
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If n > m, then n > 2q and one can find natural numbers b0
n ∈ {0, 1, . . . , n−2, n−

1} such that bi
n + b0

n 6= n− 1 and bi
n + b0

n 6= n− 2 and bi
n + b0

n 6= 2n− 2, for each
i ∈ {1, 2, . . . , q}. By Lemma 1 there holds

∞∑
n=m+1

bi
n

n!
+

∞∑
n=m+1

b0
n

n!
=

∞∑
n=m

ci
n

n!
,

where ci
n ∈ {0, 1, . . . , n− 3, n− 2}. Therefore

xi + ad
∞∑

n=m+1

b0
n

n!
= ad

∞∑
n=m

ci
n

n!
∈ ad · S.

This shows that ad · S ⊂ ⋃∞
k=1 k · S contains a copy of {x1, x2, . . . , xq}. 2

Note that the set ad · S ⊂ ⋃∞
k=1 k · S is an union of countably many perfect

and meager sets. From the result of F. Galvin, J. Mycielski R. M. Solovay [4] it
follows the following.

Theorem. If a set of real numbers X is countable, then for any meager set
G there exists a real x such that (x + X) ∩G = ∅.

A proof of the above fact one can deduce from 3.5 Theorem which was placed
in A. W. Miller [8] p. 209. Since a meager set can have the complement of
Lebesgue measure zero, then any such complement has to contains a similar copy
of any countable set. In other words, any dense Gδ set of Lebesgue measure zero
contains a similar copy of each countable set. We have an other answer onto
Svetic’s question since a finite set is countable, too. But, no dense Gδ set of
real munbers is an union of countably many perfect and meager sets. By this
meaning, our’s theorem 2 gives a more subtle answer onto Svetic’s question.

2. Uniform density theorem. Let E be an Euclidean space with a metric
%. For the Lebesgue measure λ on E and a compact set X ⊂ E consider the
following principle, where B(X, h) = {x ∈ E : inf{%(x, y) : y ∈ X} < h}.

For every ε > 0 there exists h > 0 such that for any t ∈ B({0}, h) there holds

λ(X)− λ(X ∩ (X + t)) < ε

For the first time this principle was used by H. Hadwiger [5], so we call it the
Hadwiger argument. Let report a proof of it. For any ε > 0 let h > 0 be such that
λ(B(X, h)) < λ(X) + ε. So, for any t ∈ B({0}, h) there holds X + t ⊆ B(X, h),
and hence

λ(X)− λ(X ∩ (X + t)) ≤ λ(B(X, h))− λ(X) < ε.

In the literature one can find this principle introduced as the sentence: If a set
X ⊆ E is compact, then limt→0 λ(X ∩ (X + t)) = λ(X).
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A set X ⊆ E is called measurably large if X is measurable, and for every real
number h > 0 there holds λ(X ∩ B({0}, h)) > 0. This notion was introduced by
V. Bergelson, N. Hindman and B. Weiss in [1], p. 63. In fact, one can find it in
Sz. Plewik and B. Voigt [9] p. 138, where it was putting into the theorem 1.

If X is a Lebesgue measurable set and X∗ denotes its density points, then
there holds the followig. If t ∈ X∗ and t + p ∈ X∗, then for any real number
h > 0 the intersection B({t}, h) ∩ (X − p) ∩ X has positive Lebsgue measure.
Since almost all points of X belong to X∗ one has thefollowing.

(*) For any measurable set X there exists a measurable subset X∗ ⊆ X such
that λ(X) = λ(X∗) and if p ∈ X∗ and t + p ∈ X∗, then the intersection (X − t−
p) ∩ (X − p) is measurably large.

In [1], see Lemma 2.2, there was placed the following lemma.

Let A ⊆ (0, 1] be measurably large. There exist (many) t ∈ A such that
A ∩ (A− t) is measurably large.

We call this fact the Bergelson-Hindman-Weiss lemma. We shall improve
it. The word many is replaced by words for almost all. The next theorem was
announced in Sz. Plewik [10].

Theorem 3. If X is measurably large, then for almost all t ∈ X the inter-
section X ∩ (X − t) is measurably large.

Proof. Fix a measurably large set D ⊆ X∗ such that D1 = {0} ∪D ⊆ X is
a compact set. Let α1, α2, . . . be a sequence of positive real numbers such that∑∞

n=1 αn < λ(D). By the Hadwiger argument there is a real number h1 > 0
such that for any t ∈ B({0}, h1) there holds λ(D1) < λ(D1 ∩ (D1 − t)) + α1. Fix
t1 ∈ D ∩ B({0}, h1) and put D2 = D1 ∩ (D1 − t1). The set D2 is compact and
λ(D1) < λ(D2) + α1.

Suppose there have been defined compact sets D1, D2, . . . , Dn and points
{t1, t2, . . . , tn−1} ⊆ D such that Dk+1 = Dk∩(Dk−tk) and λ(Dk) < λ(Dk+1)+αk,
for 0 < k < n. By the Hadwiger argument there is a positive real number hn > 0
such that for any t ∈ B({0}, hn) there holds λ(Dn) < λ(Dn ∩ (Dn − t)) + αn. Fix
tn ∈ D ∩ B({0}, hn) and put Dn+1 = Dn ∩ (Dn − tn). The set Dn+1 is compact
and λ(Dn) < λ(Dn+1) + αn.
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So, there have been defined compact sets D1, D2, . . . such that

λ(D) < λ(D1 ∩D2 ∩ . . .) +
∞∑

n=1

αn.

We have assumed λ(D) >
∑∞

n=1 αn, thus one infers that there exists a point
p ∈ D1 ∩D2 ∩ . . ., where p 6= 0. Since

p ∈ ∩{Dn : n = 1, 2, . . .} = ∩{Dn ∩ (Dn − tn) : n = 1, 2, . . .}

there always holds p ∈ Dn − tn. So p + tn ∈ Dn ⊆ D ⊆ X∗. By (∗), because of
tn ∈ D ⊆ X∗, the intersection (X− tn)∩ (X−p− tn) is always measurably large.
Therefore (X ∩ (X − p))− tn is always measurably large, too. For a real number
h > 0 take a set A ⊆ B({0}, h

2
) ∩ ((X ∩ (X − p)) − tn) such that λ(A) > 0. If

tn ∈ B({0}, h
2
), then λ(A + tn) > 0 and

A + tn ⊆ X ∩ (X − p) ∩B({0}, h).

Since h > 0 could be arbitrary one infers that X ∩ (X − p) is measurably large.

For every number p ∈ D1 ∩D2 ∩ . . . the above argumentations works. Since
the number

∑∞
n=1 αn < λ(D) could be arbitrarily small and λ(X) = λ(X∗), then

sets Dn could be chosen such that λ(X \ (D1 ∩ D2 ∩ . . .)) is arbitrary small,
whenever λ(X) < ∞. This follows the finish conclusion.
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