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Abstract. We answer a question which was stated by R. E. Svetic in [11].
The Bergelson-Hindman-Weiss lemma, which was placed in [1], is improved.

1. On Svetic’s question. In [11] on the page 537 there was stated the
following question: Is it true that if a measurable set contains a copy of each
finite set, then the set has positive measure?

If one means that a copy [a similar copy of a subset of real numbers] of a
subset X it is a set of the form = +tX = {z +ty : y € X}, where x and t # 0
are some real numbers, then the question had been stated by E. Marczewski
in [6] or [7] and was answered negatively by P. Erdés and S. Kakutani in [3].
More subtle examples which answered the question negatively one can find in
2], too. If one assumes that a copy means a similar copy but with ¢t = 1: a set
x4+ X ={r+y:y € X}, where z is a real number; then the answer is negative,
also. We present an answer which improves the P. Erdos and S. Kakutani result
[3]. In [3] it was noted the followings.

> -1 1
Since for each n there holds m = —, then every real x € [0,1) is
may ! n!
[e%S) bn
uniquely of the form x = Z 5 where always b, € {0,1,...,n —2,n— 1} and
-

infinitely many times there is b,, # n — 1.

The subset

o0 bn
S = {Z|:bn€ {0,1,...,n—3,n—2}} C [0,1)
= n!
has Lebesgue measure zero. It is perfect and meager, too.

And some modification of the following lemma.

1



Lemma 1. Letn >m >3 and {a,,b,} € {0,1,...,n—2,n—1}. If always,
an +b, #n—2 and a, + b, #n —1 and a, + b, # 2n — 2, then

- R
n=m+1 n! n=m n!

where ¢, € {0,1,...,n—3,n—2}.

> n bn > n
Proof. Suppose > a4 +' =y C—|, where ¢, € {0,1,...,n—2,n—1}.
n! n!

n=m+1 n=m

For the digit c3 there holds

> a, + b, n—1 2
— =

i.

C3 e
= < <2
3! — nl = ;::4 n!

n=4
Since for infinitely many n there holds a,,+b,, # 2n—2, then the second inequality
is sharp. Therefore c3 < 2.

Again use this that for infinitely many n there holds a,, + b, # 2n — 2. So,
m > 3 implies ¢,, = @y, + by, (mod m) or ¢, = a,, + by, + 1 (mod m). But we
assume that always holds ¢,,, < m. Therefore a,,+0b,, # m—2 and a,,+b,, # m—1
implies that ¢,, <m — 1. O

To answer Svetic’s question we present the following theorem.

Theorem 2. The subset of real numbers
o0 o0 bn
Uk-S= kZ—':bnE {0,1,....n—3,n—2}and k € {1,2,...}
k=1 n=2 ¥

has Lebesque measure zero and contains a copy of any finite subsets of real num-
bers.

Proof. Since Lebesgue measure of S is zero, then any set k-5 = {kz : z € S}
is of Lebesgue measure zero. Also the union U k- S is of Lebesgue measure zero,

k=1
since it is an union of countably many sets of Lebesgue measure zero.

Let d be a natural number such that {1, xs,...,2,} C (0,d). Choose natural

numbers a and m such that m!z; < ad, for any i € {1,2,...,q}, and m+1 > 2q.
Hence "

— = Z —= where b, € {0,1,...,k—1}.
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If n > m, then n > 2¢ and one can find natural numbers 2 € {0,1,...,n—2,n—
1} such that b, + 8% # n — 1 and b, + % # n — 2 and b, + 8% # 2n — 2, for each
i€ {l,2,...,q}. By Lemma 1 there holds

D D

n=m-+1 n. n=m-+1 n: n=m

where ¢!, € {0,1,...,n — 3,n — 2}. Therefore

00 bO o) Ci
r; + ad Z —":adz - ecad-S.
n=m+1 n! n=m n!
This shows that ad - S C Up2, k- S contains a copy of {z1,za,..., 2} a

Note that the set ad - S C UpZ, k- S is an union of countably many perfect
and meager sets. From the result of F. Galvin, J. Mycielski R. M. Solovay [4] it
follows the following.

Theorem. If a set of real numbers X is countable, then for any meager set
G there ezists a real © such that (x + X) NG = 0.

A proof of the above fact one can deduce from 3.5 Theorem which was placed
in A. W. Miller [8] p. 209. Since a meager set can have the complement of
Lebesgue measure zero, then any such complement has to contains a similar copy
of any countable set. In other words, any dense (G5 set of Lebesgue measure zero
contains a similar copy of each countable set. We have an other answer onto
Svetic’s question since a finite set is countable, too. But, no dense Gs set of
real munbers is an union of countably many perfect and meager sets. By this
meaning, our’s theorem 2 gives a more subtle answer onto Svetic’s question.

2. Uniform density theorem. Let £ be an Euclidean space with a metric
0. For the Lebesgue measure A on F and a compact set X C F consider the
following principle, where B(X,h) ={z € E: inf{o(z,y) :y € X} < h}.

For every € > 0 there exists h > 0 such that for any t € B({0}, h) there holds
AMX)=AMXN(X+1t)<e

For the first time this principle was used by H. Hadwiger [5], so we call it the
Hadwiger argument. Let report a proof of it. For any € > 0 let A > 0 be such that
AMB(X,h)) < MX) +e. So, for any t € B({0}, h) there holds X + ¢ C B(X, h),
and hence

AMX) = AMXN(X+1) <AB(X,h) = AX) <e.

In the literature one can find this principle introduced as the sentence: If a set
X C FE'is compact, then lim; o A(X N (X +1)) = A(X).
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A set X C FE is called measurably large if X is measurable, and for every real
number h > 0 there holds A(X N B({0}, h)) > 0. This notion was introduced by
V. Bergelson, N. Hindman and B. Weiss in [1], p. 63. In fact, one can find it in
Sz. Plewik and B. Voigt [9] p. 138, where it was putting into the theorem 1.

If X is a Lebesgue measurable set and X* denotes its density points, then
there holds the followig. If t € X* and t + p € X*, then for any real number
h > 0 the intersection B({t}, h) N (X — p) N X has positive Lebsgue measure.
Since almost all points of X belong to X* one has thefollowing.

(*) For any measurable set X there exists a measurable subset X* C X such
that A(X) = M X*) and if p € X* and t +p € X*, then the intersection (X —t —
p) N (X —p) is measurably large.

In [1], see Lemma 2.2, there was placed the following lemma.

Let A C (0,1] be measurably large. There exist (many) t € A such that
AN (A —1t) is measurably large. O

We call this fact the Bergelson-Hindman-Weiss lemma. We shall improve
it. The word many is replaced by words for almost all. The next theorem was
announced in Sz. Plewik [10].

Theorem 3. If X is measurably large, then for almost all t € X the inter-
section X N (X —t) is measurably large.

Proof. Fix a measurably large set D C X* such that D; = {0} UD C X is
a compact set. Let aq,as,... be a sequence of positive real numbers such that
Y an < A(D). By the Hadwiger argument there is a real number hy > 0
such that for any t € B({0}, hy) there holds A\(D1) < A(D; N (Dy —t)) + ;. Fix
t1 € DN B({0},hy) and put Dy = Dy N (Dy — t1). The set Dy is compact and
A(D1) < AM(Dsg) + .

Suppose there have been defined compact sets Dq, Dy, ..., D, and points
{tl, tQ, ce ’tn—l} Q D such that Dk:—H = Dkﬂ(Dk—tk) and )\(Dk) < /\(DkH)—i—ozk,
for 0 < k < n. By the Hadwiger argument there is a positive real number h,, > 0
such that for any ¢t € B({0}, h,,) there holds \(D,,) < A(D,,N(D,, —t)) + a,. Fix
t, € DN B({0}, hy,) and put D,y = D,, N (D,, —t,). The set D, is compact
and A(D,,) < A(Dn41) + o



So, there have been defined compact sets Dy, D>, ... such that
AD) <MDiNDyN..)+ > a.
n=1

We have assumed A(D) > >°°, «a,, thus one infers that there exists a point
p€ DiNDyN... where p# 0. Since
pe{D,:n=12...}y=n{D,N (D, —t,) :n=12...}

there always holds p € D,, — t,. Sop+1t, € D, C D C X*. By (%), because of
t, € D C X* the intersection (X —t,) N (X —p—t,) is always measurably large.
Therefore (X N (X — p)) —t,, is always measurably large, too. For a real number
h > 0 take a set A C B({0},2) N ((X N (X —p)) — t,) such that A(A) > 0. If
tn € B({0},2), then A\(A+1¢,) > 0 and

A+t, CXN(X —p) NB{0},h).
Since h > 0 could be arbitrary one infers that X N (X — p) is measurably large.
For every number p € D; N Dy N ... the above argumentations works. Since
the number > 7, a;, < A(D) could be arbitrarily small and A(X) = A(X™), then

sets D,, could be chosen such that \(X \ (D; N Dy N ...)) is arbitrary small,
whenever \(X) < oo. This follows the finish conclusion. O
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