NO b-CONCENTRATED MEASURES WHENEVER $b^{n k}\left(b^{n}-1\right)=1$

Sz . PLEWIK (Katowice)*

Introduction

In this note μ is a non-trivial, finite and continuous Borel measure on the reals, and

$$
f(x, h)=\mu((x-h, x+h))
$$

for every real number x and every positive real number h.
Directly from definitions we infer that supp (μ), i.e. the reals minus the union of all open sets with μ-measure null, is a perfect set and for any real numbers a, b, c the set

$$
\left\{x \in \operatorname{supp}(\mu): \frac{f(x, b h)}{f(x, h)} \leqq a \text { for each } 0<h<c\right\}
$$

is closed in view of continuity of μ.
A measure μ is b-concentrated if for any real number x, which belongs to $\operatorname{supp}(\mu)$, there holds

$$
\limsup _{h \rightarrow 0^{+}} \frac{f(x, b h)}{f(x, h)}<b .
$$

The concept of b-concentrated measures was introduced and examined in [1] and [2]. In these two papers Z. Buczolich and M. Laczkovich verified that for $b<1.01$ and $b=\sqrt[n]{2}$, where $n=1,2, \ldots$, there are no b-concentrated measures, while for $b>2$ there are such ones. We prove that if a positive real number b satisfies the equality $1=b^{n k}\left(b^{n}-1\right)$, where k and n are natural numbers, then there does not exist any b-concentrated measure. Thus, we answer a problem stated in [1] on page 349 - whether b-concentrated measures exist for $b \in(1,2)$ - in some cases. For $k=0$ we reprove the result of Z. Buczolich and M. Laczkovich that there are no b-concentrated measures whenever $b=2$.

[^0]
Results

Lemma 1. If μ is ab-concentrated measure, then there is a set H, which is homeomorphic to the Cantor set and is open relative to $\operatorname{supp}(\mu)$, such that

$$
H \subseteq\left\{x \in \operatorname{supp}(\mu): f(x, b h)<b f(x, h) \text { for each } 0<h<\frac{1}{n}\right\}
$$

for some natural number n.
Proof. For every natural number n the set

$$
H_{n}=\left\{x \in \operatorname{supp}(\mu): f(x, b h) \leqq\left(b-\frac{1}{n}\right) f(x, h) \text { for each } 0<h<\frac{1}{n}\right\}
$$

is closed and

$$
H_{0} \cup H_{1} \cup \ldots=\operatorname{supp}(\mu) .
$$

Therefore and by the Baire theorem, some H_{n} has non-empty interior relative to $\operatorname{supp}(\mu)$. Since $\operatorname{supp}(\mu)$ does not contain non-degenerate intervals by Corollary 2.5 of [1], there are real numbers a and c, which do not belong to $\operatorname{supp}(\mu)$, such that the set

$$
H=[a, c] \cap \operatorname{supp}(\mu)=[a, c] \cap H_{n}
$$

is not empty. Clearly, the set H is perfect, compact, open relative to supp (μ) and does not contain non-degenerate intervals, i.e. is homeomorphic to the Cantor set and is open relative to $\operatorname{supp}(\mu)$.

Lemma 2. If b is a positive real number such that there does not exist any b-concentrated measure, then there does not exist any $\sqrt[n]{b}$-concentrated measure whenever $n>0$ is a natural number.

Proof. In the proof of 4.2 Theorem of [1] it was shown that if a measure is b-concentrated, then it is b^{n}-concentrated for every natural number $n>0$. The contraposition of this implies the lemma.

Hereinafter we assume that $1<b \leqq 2$ and μ is a b-concentrated measure such that

$$
\operatorname{supp}(\mu)=\left\{x: f(x, b h)<b f(x, h) \text { for each } 0<h<\frac{1}{n}\right\},
$$

for some natural number n. These assumptions do not loose generality, since by Lemma 1 we can consider μ restricted to H and such a restriction is b-concentrated.

Let (x, y) be an interval contiguous to $\operatorname{supp}(\mu)$ such that

$$
h=y-x<\frac{1}{n} .
$$

We put

$$
\begin{aligned}
& D=\mu((x-h, y-b h)), \quad E=\mu((y-b h, x)), \\
& F=\mu((y, x+b h)), \quad G=\mu((x+b h, y+h)) .
\end{aligned}
$$

Lemma 3.

$$
D+G>(E+F) \frac{2-b}{b-1} .
$$

Proof. Directly from the definitions we have

$$
b f(y, h)>f(y, b h) \text { and } \quad b f(x, h)>f(x, b h),
$$

which implies

$$
b(F+G)>F+G+E \quad \text { and } \quad b(E+D)>E+D+F
$$

Therefore

$$
F>\frac{E}{b-1}-G \quad \text { and } \quad E>\frac{F}{b-1}-D .
$$

By adding these inequalities, we obtain the statement of the lemma.
Let us note that if $b=2$, then $D=0=G$ and Lemma 3 says that $0>0$. This is a contradiction, which implies 4.2 Theorem in [1], i.e. that there are no 2-concentrated measures.

Theorem. Let k and n be natural numbers. If a positive real number b satisfies

$$
b^{n k}\left(b^{n}-1\right)=1,
$$

then there does not exist any b-concentrated measure.
Proof. If $k=0$, then $b^{n}=2$. In these cases we are done by 4.2 Theorem in [1]. Because of Lemma 2 we can assume $n=1$.

If $k>0$, then for every natural number $m<k$ we put

$$
X_{m}=\mu\left(\left(y+b^{m}(b-1) h, y+b^{m+1}(b-1) h\right)\right) .
$$

Since μ is a b-concentrated measure there holds

$$
\begin{gathered}
F+X_{0}<b F \\
F+X_{0}+X_{1}<b^{2} F \\
\ldots \\
F+X_{0}+\ldots+X_{k-1}<b^{k} F
\end{gathered}
$$

Because of $G=X_{0}+\ldots+X_{k-1}$ and $b^{k}(b-1)=1$ we obtain

$$
G<\left(b^{k}-1\right) F
$$

If we add to this inequality the similarly obtained inequality

$$
D<\left(b^{k}-1\right) E
$$

then we get

$$
D+G<\left(b^{k}-1\right)(E+F)
$$

Combining this inequality with the inequality from Lemma 3 we get

$$
b^{k}-1>\frac{2-b}{b-1}
$$

This inequality is equivalent to $b^{k}(b-1)>1$, a contradiction, which implies that there are no b-concentrated measures with $b^{k}(b-1)=1$.

References

[1] Z. Buczolich and M. Laczkovich, Concentrated Borel measures, Acta Math. Hungar., 57 (1991), 349-362.
[2] Z. Buczolich, No b-concentrated measures with $b<1.01$, Real Analysis Exchange, 19 (1993-94), 612-615.
(Received September 30, 1994; revised March 27, 1995)

INSTYTUT MATEMATYKI UNIVERSITY OF SILESIA
UL. BANKOWA 14
40007 KATOWICE
POLAND
E-MAIL: PLEWIKOGATE.MATH.US.EDU.PL

[^0]: * Research supported by the Projekt badawery No. 210619110.

