HAUSDORFF GAPS RECONSTRUCTED FROM LUZIN GAPS

PIOTR KALEMBA AND SZYMON PLEWIK

Abstract

We consider a question: Can a given AD-family be ADR for two orthogonal uncountable towers? If $b>\omega_{1}$, then we rebuilt any AD-family of the cardinality ω_{1} onto a Hausdorff pregap. Moreover, if a such AD-family is a Luzin gap, then we obtain a Hausdorff gap. Under $b=\omega_{1}$, a similar rebuilding is impossible.

1. Introduction

A family \mathcal{Q} is called almost disjoint, briefly AD-family, whenever any two members of \mathcal{Q} are almost disjoint, i.e. their intersection is finite. A set C separates a family \mathcal{Q} from a family \mathcal{H}, whenever each member of \mathcal{Q} is almost contained in C, i.e. $B \backslash C$ is finite for any $B \in \mathcal{Q}$, and each member of \mathcal{H} is almost disjoint with C. Whenever sets A and B are almost disjoint for any $A \in \mathcal{Q}$ and $B \in \mathcal{H}$, then families \mathcal{Q} and \mathcal{H} are called orthogonal. If no set C separates \mathcal{Q} from \mathcal{H}, then families \mathcal{Q} and \mathcal{H} are called non-separated. Below, $A \subset^{*} B$ means that A is almost contained in B, but not conversely. A pair of indexed families [$\left.\left\{A_{\alpha}: \alpha<\omega_{1}\right\} ;\left\{B_{\alpha}: \alpha<\omega_{1}\right\}\right]$ is called Hausdorff pre-gap, whenever $\alpha<\beta<\omega_{1}$ implies $A_{\alpha} \subset^{*} A_{\beta} \subset^{*} B_{\beta} \subset^{*} B_{\alpha}$. A Hausdorff pre-gap [\{A $\left.\left.A_{\alpha}: \alpha<\omega_{1}\right\} ;\left\{B_{\alpha}: \alpha<\omega_{1}\right\}\right]$ is called Hausdorff gap, whenever orthogonal towers $\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$ and $\left\{\omega \backslash B_{\alpha}: \alpha<\omega_{1}\right\}$ are nonseparated. Establish that, a family $\left\{A_{\alpha}: \alpha<\lambda\right\}$ is a tower, whenever $\alpha<\beta$ implies $A_{\alpha} \subset^{*} A_{\beta}$. An AD-family \mathcal{Q} of the cardinality ω_{1} is called Luzin gap, whenever no two disjoint uncountable subfamilies of \mathcal{Q} are separated. An AD-family \mathcal{Q} is almost disjoint refinement of a family \mathcal{P} (briefly \mathcal{Q} is ADR of \mathcal{P}), whenever there exists a bijection $f: \mathcal{Q} \rightarrow \mathcal{P}$ such that X is almost contained in $f(X)$ for every $X \in$ \mathcal{Q}. Our definition of ADR is equivalent to the one considered in [14],

[^0]where one can find a comprehensive discussion about almost disjoint refinements.

We are going to compare constructions of Hausdorff and Luzin gaps. If $b>\omega_{1}$, then we describe how one can rebuilt a AD-family of the cardinality ω_{1} onto a Hausdorff pre-gap. If a such AD-family is a Luzin gap, then we obtain a Hausdorff gap. Under $b=\omega_{1}$, a similar rebuilding is impossible. For the sake of completeness, we enclose a construction of a Hausdorff gap which use no form of so called the second interpolation theorem, compare [12], and needs the hypothesis $b=\omega_{1}$.
P. Simon indicated to us that Hausdorff gaps and Luzin gaps do not look compatible, September 2008 in Katowice. M. Scheepers discerned something similar in [12]. Albeit, he wrote that Luzin gaps are reminiscent of Hausdorff gaps. In [8], K. Kunen declared that "The easiest to construct are Luzin gaps" and that constructions of Hausdorff gaps need some stronger inductive hypotheses. Constructions of Hausdorff gaps and Luzin gaps are considered apart, usually. Hausdorff gaps have been examined via topological manner, through gap spaces associated with them, for example [2], [3] or [9]. Forcing methods yield other treads to examine variety of Hausdorff gaps, for example [1], 6], 4], [12] or [15].

2. AD-Families of the cardinality b.

Recall that, b is the least cardinality of unbounded families of functions $f: \omega \rightarrow \omega$ with respect to the partial order \leq^{*}, where $f \leq^{*} g$ whenever $f(n) \leq g(n)$ for all but finitely many $n \in \omega$. A function h dominates a restriction $\left.f\right|_{D}$, whenever $f(n) \leq h(n)$ for all but finitely many $n \in D$. If $D=\omega$, then h dominates f. It is well known that each of hypotheses $b=\omega_{1}$ or $b>\omega_{1}$ is consistent with ZFC. The hypothesis $b>\omega_{1}$ is equivalent with Proposition (1): The family of all sets of n.n. does not contain any $\left(\Omega, \omega^{*}\right)$ gaps; by Rothberger [11]. Consider the following question.

Question. Could a given almost disjoint family be an almost disjoint refinement for the union of some two uncountable and orthogonal towers?

To answer the question, we start with a ZFC result. Then a Rothberger lemma is adapted in order to conclude some consistent results.

Theorem 1. There exists an almost disjoint family of the cardinality b, which is not almost disjoint refinement for any union of two orthogonal towers, where both towers have the cardinality b.

Proof. Let $\mathcal{Q}=\mathcal{F} \cup\left\{B_{n}: n<\omega\right\}$ be an AD-family such that always $B_{n}=\{(n, k): k<\omega\}$ and $\mathcal{F}=\left\{f_{\alpha}: \alpha<b\right\}$ consists of almost disjoint and increasing functions $f_{\alpha}: \omega \rightarrow \omega$. Assume that, \mathcal{F} is unbounded and increasing. So, \mathcal{Q} consists of subsets of $\omega \times \omega$ and every $\mathcal{H} \subseteq \mathcal{F}$ of the cardinality b is an unbounded family with respect to \leq^{*}.

Suppose that \mathcal{Q} is ADR of the union of orthogonal towers $\left\{A_{\alpha}: \alpha<\right.$ $b\}$ and $\left\{C_{\alpha}: \alpha<b\right\}$. Without loss of generality, one can fix α such that C_{α} almost contains infinitely many B_{n}. Thus the family

$$
\mathcal{H}=\left\{f_{\beta} \in \mathcal{F}: f_{\beta} \subset^{*} \omega \times \omega \backslash C_{\alpha}\right\}
$$

contains a subfamily \mathcal{P} of the cardinality b such that \mathcal{P} is an ADR of some subfamily of $\left\{A_{\alpha}: \alpha<b\right\}$. So, the family \mathcal{H} is unbounded. On the other hand, put $h(n)=\max \left\{k:(n, k) \notin C_{\alpha}\right\}$ whenever $B_{n} \subset^{*} C_{\alpha}$. Thus the function h dominates each restriction $f_{\beta} \mid D$, where $f_{\beta} \in \mathcal{H}$ and $D=\left\{n: B_{n} \subset^{*} C_{\alpha}\right\}$. Let k_{0}, k_{1}, \ldots be an increasing enumeration of all elements of D. Put $g(i)=h\left(k_{n}\right)$ whenever $k_{n-1}<i \leq k_{n}$. Because of \mathcal{H} consists of increasing functions, one can check that g dominates any function from \mathcal{H}; a contradiction.

The following lemma can be derived from Rothberger's Lemma 5 stated in 11.

Lemma 2. Suppose a countable family \mathcal{Q} consists of almost disjoint infinite subsets of natural numbers, and let \mathcal{H} consists of sets almost disjoint with members of \mathcal{Q}. If $|\mathcal{H}|<b$, then families \mathcal{Q} and \mathcal{H} are separated.

Proof. Without loss of generality, assume that members of \mathcal{H} and \mathcal{Q} are subsets of $\omega \times \omega$ such that

$$
\mathcal{Q}=\{\{(n, i): i \in \omega\}: n \in \omega\} .
$$

Put $f_{B}(n)=\max \{i:(n, i) \in B\}$ for each $B \in \mathcal{H}($ here $\max \emptyset=0)$. Functions $f_{B}: \omega \rightarrow \omega$ are well defined since members of \mathcal{H} are almost disjoint with elements of \mathcal{Q}. The family of all functions f_{B} has the
cardinality less than b, so there exits a function h which dominates each f_{B}. The set

$$
\{(n, i): i>h(n) \text { and } n \in \omega\}
$$

separates \mathcal{Q} from \mathcal{H}.

Below, $A \subseteq^{*} B$ means that A is almost contained in B.
Theorem 3. Assume that $b>\omega_{1}$. If $\left\{E_{\alpha}: \alpha<\omega_{1}\right\} \cup\left\{F_{\alpha}: \alpha<\omega_{1}\right\}$ is an AD-family, then there exists a Hausdorff pre-gap

$$
\left[\left\{A_{\alpha}: \alpha<\omega_{1}\right\} ;\left\{B_{\alpha}: \alpha<\omega_{1}\right\}\right]
$$

such that $E_{\alpha} \subseteq^{*} A_{\alpha+1} \backslash A_{\alpha} \subseteq^{*} E_{\alpha}$ and $F_{\alpha} \subseteq^{*} B_{\alpha} \backslash B_{\alpha+1} \subseteq^{*} F_{\alpha}$, whenever $\alpha<\omega_{1}$.

Proof. We shall construct a desired Hausdorff pre-gap, defining by induction sets A_{α} and B_{α} such that
(1) If $\beta<\alpha$, then $A_{\beta} \subset^{*} A_{\alpha} \subset^{*} B_{\alpha} \subset^{*} B_{\beta}$;
(2) If $\alpha=\beta+1$, then $E_{\beta} \cup A_{\beta}=A_{\alpha}$ and $B_{\alpha}=B_{\beta} \backslash F_{\beta}$;
(3) Each member of the union $\left\{E_{\beta}: \alpha \leq \beta\right\} \cup\left\{F_{\beta}: \alpha \leq \beta\right\}$ is almost disjoint with A_{α};
(4) Each member of $\left\{E_{\beta}: \alpha \leq \beta\right\} \cup\left\{F_{\beta}: \alpha \leq \beta\right\}$ is almost contained in B_{α}.

Put $A_{0}=\emptyset$ and $B_{0}=\omega$ and $A_{\alpha+1}=E_{\alpha} \cup A_{\alpha}$ and $B_{\alpha+1}=B_{\alpha} \backslash F_{\alpha}$. It remains to define sets A_{α} and B_{α} for limit ordinals α. Take a sequence of ordinals $\gamma_{0}, \gamma_{1}, \ldots$ which is increasing and has the limit α. Assume that $\gamma_{0}=0$.

At the first step, let $\mathcal{Q}=\left\{A_{\gamma_{n+1}} \backslash A_{\gamma_{n}}: n \in \omega\right\}$ and $\mathcal{H}=\left\{B_{\gamma_{n}} \backslash B_{\gamma_{n+1}}\right.$: $n \in \omega\} \cup\left\{E_{\beta}: \alpha \leq \beta\right\} \cup\left\{F_{\beta}: \alpha \leq \beta\right\}$. Families \mathcal{Q} and \mathcal{H} are orthogonal and \mathcal{Q} is a countable AD-family. By Lemma 2, let A_{α} be a set which separates \mathcal{Q} from \mathcal{H}. Observe that $\beta<\alpha$ implies $A_{\beta} \subset^{*} A_{\alpha} \subset^{*} B_{\beta}$. Indeed, $\emptyset=A_{\gamma_{0}} \subset^{*} A_{\alpha} \subset^{*} B_{\gamma_{0}}=\omega$. Inductively, $A_{\gamma_{n}} \subseteq^{*}\left(A_{\gamma_{n}} \backslash A_{\gamma_{n-1}}\right) \cup A_{\gamma_{n-1}} \subset^{*} A_{\alpha}$, since A_{α} separates \mathcal{Q} from \mathcal{H}. There exists $\gamma_{n}>\beta$, hence $A_{\beta} \subset^{*} A_{\gamma_{n}} \subset^{*} A_{\alpha}$. Also, one can assume that $A_{\alpha} \subset^{*} B_{\gamma_{m}}$. But sets A_{α} and $B_{\gamma_{m}} \backslash B_{\gamma_{m+1}}$ are almost disjoint, hence $A_{\alpha} \subset^{*} B_{\gamma_{m+1}}$. This gives that $A_{\alpha} \subset^{*} B_{\beta}$.

At the second step, apply Lemma 2 to families $\mathcal{Q}=\left\{B_{\gamma_{n}} \backslash B_{\gamma_{n+1}}\right.$: $n \in \omega\}$ and $\mathcal{H}=\left\{A_{\alpha}\right\} \cup\left\{E_{\beta}: \alpha \leq \beta\right\} \cup\left\{F_{\beta}: \alpha \leq \beta\right\}$. Let B_{α} be the complement of a set which separates \mathcal{Q} from \mathcal{H}, i.e. B_{α} separates \mathcal{H} from \mathcal{Q}. The union $\left\{B_{\alpha}\right\} \cup\left\{B_{\gamma_{n}} \backslash B_{\gamma_{n+1}}: n \in \omega\right\}$ is an AD-family, hence $\beta<\alpha$ implies $B_{\alpha} \subset^{*} B_{\beta}$.

Thus, one can reconstruct a Hausdorff gap from a Luzin gap, under $b>\omega_{1}$. Indeed, let $\left\{E_{\alpha}: \alpha<\omega_{1}\right\}$ and $\left\{F_{\alpha}: \alpha<\omega_{1}\right\}$ be AD-families which are orthogonal and not separated. Then any Hausdorff pre-gap like in the Theorem 3, i.e. [$\left.\left\{A_{\alpha}: \alpha<\omega_{1}\right\} ;\left\{B_{\alpha}: \alpha<\omega_{1}\right\}\right]$ such that $E_{\alpha} \subseteq^{*} A_{\alpha+1} \backslash A_{\alpha} \subseteq^{*} E_{\alpha}$ and $F_{\alpha} \subseteq^{*} B_{\alpha} \backslash B_{\alpha+1} \subseteq^{*} F_{\alpha}$, has to be a Hausdorff gap. If we assume that $\left\{E_{\alpha}: \alpha<\omega_{1}\right\} \cup\left\{F_{\alpha}: \alpha<\omega_{1}\right\}$ is a Luzin gap, then we have a construction of a Hausdorff gap with some additional properties.

Let us recall Luzin's construction of a gap, see [7]. To convince the readers of Kunen's opinion, which is quoted in Introduction, we run as follows. Start with a family $\left\{A_{n}: n \in \omega\right\}$ which consists of disjoint and infinite subsets of ω. Assume that almost disjoint sets $\left\{A_{\beta}: \beta<\alpha\right\}$ are just defined for a countable ordinal number $\alpha<\omega_{1}$. Enumerate these sets A_{β} into a sequence $\left\{B_{n}: n \in \omega\right\}$. For every n, choose a set

$$
\left\{d_{1}, d_{2}, \ldots d_{n}\right\} \subset B_{n} \backslash\left(B_{0} \cup B_{1} \cup \ldots \cup B_{n-1}\right)
$$

with exactly n elements. Than, put A_{α} to be the union of all already chosen sets $\left\{d_{1}, d_{2}, \ldots d_{n}\right\}$. The family $\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$ forms a Luzin gap. Indeed, consider a partition of $\left\{A_{\alpha}: \alpha<\omega_{1}\right\}$ into two uncountably subfamilies \mathcal{D} and \mathcal{E}. Suppose that a set set C separates \mathcal{D} from \mathcal{E}. Fix a natural number n and uncountable subfamilies $\mathcal{F} \subseteq \mathcal{D}$ and $\mathcal{H} \subseteq \mathcal{E}$ such that $\cup \mathcal{F} \backslash n \subseteq C$ and $\cup \mathcal{H} \cap C \subseteq n$. Take $\alpha<\omega_{1}$ such that the intersection $\left\{A_{\beta}: \beta<\alpha\right\} \cap \mathcal{H}$ is infinite. Finally, for each $\gamma>\alpha$ with $A_{\gamma} \in \mathcal{F}$ there exist $\beta<\alpha$ and $A_{\beta} \in \mathcal{H}$ such that the intersection $A_{\beta} \cap A_{\gamma}$ is a set $\left\{d_{1}, d_{2}, \ldots d_{m}\right\}$, where $m>n$. This is in conflict with $\cup \mathcal{F} \backslash n \subseteq C$ and $\cup \mathcal{H} \cap C \subseteq n$.

If $b>\omega_{1}$ and there exists a Lebesgue non-measurable set of the cardinality ω_{1}, then there exist AD-families of the cardinality ω_{1} which are non-measurable sets with respect to some Borel measures on $[\omega]^{\omega}$. But, any family of sets which consists of a Hausdorff gap has to be universally measure zero, see [10]. Thus, Hausdorff gaps and Luzin gaps could have consistently different measurable properties.

3. On Constructions of Hausdorff gaps under $b=\omega_{1}$

It is consistent that any AD-family of the cardinality ω_{1} is ADR of the union of some two orthogonal towers of the cardinality ω_{1} because of Theorem 3. It is also clear that this statement implies $b>\omega_{1}$, since Theorem 1 points out a suitable AD-family. So, we obtain a characterization of the hypothesis $b=\omega_{1}$.

Corollary 4. $b=\omega_{1}$ is equivalent with the existence of AD-family of the cardinality ω_{1} which is not an $A D R$ of the union of any two orthogonal towers each of the cardinality ω_{1}.

All known to us constructions of a Hausdorff gap use some forms of so called The second interpolation theorem, compare [2], [5], [13], 12] or [15]. In the previous part we do not use this principle in inductive hypotheses. So, we should add constructions which use no form of the second interpolation theorem. We use the following abbreviations: $\Delta=\{(n, k) \in \omega \times \omega: k<n\}$ and $\int f=\{(n, k) \in \omega \times \omega: k \leq f(n)\}$.

Assume that $b=\omega_{1}$. Let $\left\{\omega \backslash T_{\alpha}: \alpha<\omega_{1}\right\}$ be a maximal tower and let $\left\{f_{\alpha}: \alpha<\omega_{1}\right\}$ be a unbounded family of functions, where $f_{\alpha}: \omega \rightarrow \omega$. Let $A_{0}=\emptyset$ and $B_{0}=\omega \times \omega$ and fix a function $g_{0}: \omega \rightarrow \omega$ such that $f_{0} \leq^{*} g_{0}$. Suppose that sets A_{β} and B_{β} and functions g_{β} are defined for $\beta<\alpha$. We should define sets A_{α} and B_{α} and a function g_{α} such that

- $A_{\beta} \subset^{*} A_{\alpha} \subset B_{\alpha} \subset^{*} B_{\beta}$ for each $\beta<\alpha$;
- $g_{\alpha} \subseteq A_{\alpha} \subseteq \int g_{\alpha}$, where a function g_{α} is such that $f_{\alpha} \leq^{*} g_{\alpha}$;
- $B_{\alpha}=A_{\alpha} \cup\left(\omega \times T_{\alpha}\right) \backslash \Delta$.

To do this, take X such that $A_{\beta} \subset^{*} X \subset^{*} B_{\beta}$ for each $\beta<\alpha$. Fix a function $g_{\alpha} \subset \omega \times T_{\alpha} \backslash \Delta$ such that g_{α} dominates every function from $\left\{g_{\beta}: \beta<\alpha\right\} \cup\left\{f_{\alpha}\right\}$. Eventually, put $A_{\alpha}=g_{\alpha} \cup\left(X \cap \int g_{\alpha}\right)$ and $B_{\alpha}=A_{\alpha} \cup\left(\omega \times T_{\alpha}\right) \backslash \Delta$. Above defined sets A_{α} and B_{α} constitute a Hausdorff pre-gap. The tower $\left\{\omega \backslash T_{\alpha}: \alpha<\omega_{1}\right\}$ is maximal. Hence, whenever $A_{\alpha} \subset^{*} C \subset^{*} B_{\alpha}$ for any $\alpha<\omega_{1}$, then there exists a function h such that $C \subset \int h$. But this means that h dominates each f_{α}, a contradiction.

References

[1] U. Abraham, S. Shelah, Ladder gaps over stationary sets, J. Symbolic Logic 69 (2004), 518-532.
[2] A. Błaszczyk, A. Szymański, Hausdorff's gaps versus normality Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 no. 7-8,(1982), 371-378.
[3] E. van Douwen, Hausdorff gaps and a nice countably paracompact nonnormal space, Topol. Proc., Vol. 1 (1976), 239-242.
[4] I. Farah, Luzin gaps, Trans. Am. Math. Soc. 356, No. 6 (2004) 2197-2239.
[5] F. Hausdorff, Summen von \aleph_{1} Mengen, Fund. Math. 26 (1936), 243-247.
[6] J. Hirschorn, On the strenght of Hausdorff's gap condition, arXiv:0806.4732v1.
[7] N. Luzin, On subsets of the series of natural numbers, Isv. Akad. Nauk. SSSR Ser. Mat. 11 (1947), 403-411.
[8] K. Kunen, Where MA first fails, J. Symbolic Logic 53 (1988), no. 2, 429-433.
[9] P. J. Nyikos and J. E. Vaughan, On first countable, countably compact spaces. I. $\left(\omega_{1}, \omega_{1}^{*}\right)$-gaps, Trans. Amer. Math. Soc. 279 (1983), no. 2, 463-469.
[10] Sz. Plewik, Towers are universally measure zero and always of first category, Proc. Amer. Math. Soc. 119 (1993), no. 3, 865-868.
[11] F. Rothberger, On some problems of Hausdorff and of Sierpiński, Fund. Math. 35, (1948), 29-46.
[12] M. Scheepers, Gaps in $\left({ }^{\omega} \omega, \prec\right)$, Set theory of the reals (Ramat Gan, 1991), 439-561, Israel Math. Conf. Proc., 6, Bar-Ilan Univ., Ramat Gan, (1993).
[13] W. Sierpiński, General topology, Translated by C. Cecilia Krieger. Mathematical Expositions, No. 7, University of Toronto Press, Toronto, (1952).
[14] P. Simon, A note on almost disjoint refinement, 24th Winter School on Abstract Analysis (Benešova Hora, 1996). Acta Univ. Carolin. Math. Phys. 37 (1996), no. 2, 89-99.
[15] T. Yorioka, Some results on gaps in $\mathcal{P}(\omega) /$ fin, unpublished?

Piotr Kalemba, Institute of Mathematics, University of Silesia, ul. Bankowa 14, 40-007 Katowice

E-mail address: pkalemba@math.us.edu.pl

Szymon Plewik, Institute of Mathematics, University of Silesia, ul. Bankowa 14, 40-007 Katowice

E-mail address: plewik@math.us.edu.pl

[^0]: 2000 Mathematics Subject Classification. Primary: 03E35; Secondary: 03E05.
 Key words and phrases. Hausdorff gap; Luzin gap; almost disjoint refinement.

