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ON THE IDEAL (v0)PIOTR KALEMBA, SZYMON PLEWIK, AND ANNA WOJCIECHOWSKAAbstrat. The σ-ideal (v0) is assoiated with the Silver foring,see [5℄. Also, it onstitutes the family of all ompletely doughnutnull sets, see [9℄. We introdue segment topologies to state someresemblanes of (v0) to the family of Ramsey null sets. To desribe
add(v0) we adopt a proof of Base Matrix Lemma. Consistent re-sults are stated, too. Halbeisen's onjeture cov(v0) = add(v0) ison�rmed under the hypothesis t = min{cf(c), r}. The hypothesis
cov(v0) = ω1 implies that (v0) has the ideal type (c, ω1, c).

1. IntrodutionOur disussion fouses around the family [ω]ω of all in�nite subsets ofnatural numbers. We are interested in some strutures on [ω]ω whihorrespond to the inlusion ⊆ and to the partial order ⊆∗. Reallthat, A ⊆∗ X means that the set A \ X is �nite. We assume that thereaders are familiar with some properties of the partial order ([ω]ω,⊆∗).For instane, gaps of type (ω, ω∗) and ω-limits do not exist, see F.Hausdor� [10℄ or ompare F. Rothberger [23℄. We refer to books [8℄and [12℄ for the mathematis used in this note. In partiular, onean �nd basi fats about ompletely Ramsey sets and its appliationsto the desriptive set theory in [12℄ p. 129 - 136. Let us add, thatE. Ellentuk (1974) was not the �rst one who onsidered propertiesof the topology whih is alled by his name. Non normality of thistopology was established by V. M. Ivanowa (1955) and J. Keesling(1970), ompare [8℄ p. 162 -163. We refer the readers to papers [3℄,[5℄, [11℄, [14℄, [15℄ and [19℄ for other appliations of ompletely Ramseysets, not disussed in [12℄.2000 Mathematis Subjet Classi�ation. Primary: 03E35, 28A05; Seondary:03E50, 26A03, 54A10.Key words and phrases. Base v-matrix; Doughnut; Ideal type; Ideal (v0) .1
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Let W be a family of sets suh that ∪W /∈ W. Reall that,
add(W) = min{|F| : F ⊆ W and ∪ F /∈ W}is alled the additivity number of W. But
cov(W) = min{|F| : F ⊆ W and ∪ F = ∪W}is alled the overing number of W. Thus, add(v0) and add(v) denotethe additivity number of the ideal (v0) and of the σ-�eld (v), respe-tively. But cov(v0) denotes the overing the ideal (v0). For de�nitionsof the tower number t and the reaping number r we refer to [4℄. Onean �nd there a thorough disussion of onsistent properties of t and

r, too.J. Brendle [5℄ onsidered a few tree-like forings with σ-ideals asso-iated to them. The onept of these ideals is modeled on s0-sets ofMarzewski [25℄ and Morgan's ategory base [18℄. One of these idealsis the ideal (v0). It is assoiated with the Silver foring. The ideal
(v0) is examined in papers [6℄, [9℄ and [13℄, too. L. Halbeisen [9℄ foundsome analogy with ompletely Ramsey sets and introdued so alledompletely doughnut sets, i.e. v-sets in our terminology. He introdueda pseudo topology - and alled it the doughnut topology - suh that
X is a v-set i� X has the Baire property with respet to the dough-nut topology. Using the method of B. Aniszzyk [1℄ and K. Shilling[24℄ we introdue segments topologies, eah one orresponds to v-setssimilarly as Halbeisen's pseudo topology. To desribe add(v) we adopta proof of Base Matrix Lemma, ompare [2℄ and [3℄. The height κ(v)of a base v-matrix equals to add(v) = add(v0). With a base v-matrixit is assoiated the inreasing family of v0-sets with the union outsidethe ideal (v0). We an not on�rm (in ZFC) that this union is [ω]ω.Therefore, we get a few onsistent results. For example, cov(v0) = ω1implies that (v0) has the ideal type (c, ω1, c). The onjeture of Hal-beisen cov(v0) = add(v0) is on�rmed under t = min{cf(c), r}.On the other hand, eah maximal hain ontained in a base v-matrixgives a (κ(v), κ(v)∗)-gap or a κ(v)-limit. If cov(v0) = add(v0), thenone an improve any base v-matrix suh that eah maximal hain,ontained in a new one, gives a (κ(v), κ(v)∗)-gap, only. But, whenever
cov(v0) 6= add(v0), then there exist κ(v)-limits. Thus our's researhontinue Hausdor� [10℄ and Rothberger [23℄, too.2



2. Segments and ∗-segmentsIn this setion we onsider segments and ∗-segments. The fatsquoted here immediately arise from well known ones. A set
< A, B >= {X ∈ [ω]ω : A ⊆ X ⊆ B}is alled a segment, whenever A ⊆ B ⊆ ω and B \ A ∈ [ω]ω. By thede�nition any segment has the ardinality ontinuum. If < A, B > and

< C, D > are segments, then the intersetion
< A, B > ∩ < C, D >=< A ∪ C, B ∩ D >is �nite or is a segment. It is a segment, whenever A∪C ⊂ B ∩D and

B ∩ D \ A ∪ C ∈ [ω]ω. Thus, the family of all segments is not losedunder �nite intersetions.Fat 1. Any segment ontains ontinuum many disjoint segments.Proof. Let < A, B > be a segment. Consider a family R of almostdisjoint subsets of B \A of the ardinality ontinuum. Divide eah set
C ∈ R into two in�nite subsets DC and C \ DC . The family

{< A ∪ DC , A ∪ C >: C ∈ R}is a desired one. �For any set S ⊆ [ω]ω we put
S∗ = {Y : X ⊆∗ Y ⊆∗ X and X ∈ S}.Thus, S∗ is a ountable union of opies of S, i.e. the union of sets

{(X \ y) ∪ (y \ X) : X ∈ S}, where y ⊂ ω runs over �nite subsets. If
< A, B > is a segment, then the set

{X : A ⊆∗ X ⊆∗ B} =< A, B >∗is alled ∗-segment.Fat 2. If {< An, Bn >: n ∈ ω} is a sequene of segments dereasingwith respet to the inlusion, then there exists a segment < C, D > suhthat < C, D >⊆< An, Bn >∗ for eah n ∈ ω.Proof. Let {< An, Bn >: n ∈ ω} be a dereasing sequene of segments.We have
A0 ⊆ A1 ⊆ A2 ⊆ . . . ⊆ B2 ⊆ B1 ⊆ B0.3



Choose a set C ∈ [ω]ω suh that An ⊆∗ C ⊆∗ Bn for eah n ∈ ω.Additionally, we an assume that sets C \ An and Bn \ C are in�nite,sine there are no ω-limits and (ω, ω∗)-gaps. Then, hoose a set D ∈
[ω]ω suh that D \ C is in�nite and C ⊆ D ⊆∗ Bn for eah n ∈ ω. �Oasionally segments show up in the desriptive set theory. Forexample, the work of G. Moran and D. Strauss [17℄ implies that anysubset of [ω]ω having the property of Baire and of seond ategoryontains a segment. In other words, it has the doughnut property.One an prove this adopting the proof of Proposition 2.2 in [7℄, also.The work [17℄ implies that any subsets of [ω]ω with positive Lebesguemeasure ontains a segment, ompare [22℄ and [13℄.3. Segment topologiesC. Di Priso and J. Henle [7℄ introdued so alled doughnut prop-erty. Namely, a subset S ⊆ [ω]ω has the doughnut property, whenever
S ontains a segment or is disjoint with a segment. Afterwards, Hal-beisen [9℄ generalized this property, onsidering so alled ompletelydoughnut sets and ompletely doughnut null sets. We feel that the useof "doughnut" is not appropriate. We swap it onto notations similar tothat, whih were used in [5℄ or [13℄. A subset S ⊆ [ω]ω is alled a v-set, iffor eah segment < A, B > there exists a segment < C, D >⊆< A, B >suh that

< C, D >⊆ S or < C, D > ∩S = ∅.If always holds < C, D > ∩S = ∅, then S is alled a v0-set. Any subsetof a v0-set is a v-set and a v0-set, too. Also, the omplement of a v-setis a v-set. Aording to fats 1.3, 1.5 and 1.6 in Halbeisen [9℄, thefamily of all v-sets is a σ-�eld and we denote this �eld (v). The familyof all v0-sets is a σ-ideal and we denote this ideal (v0). One an �ndmany interesting results about (v0) in papers [5℄, [6℄ and [13℄.We amplify the method of Aniszzyk [1℄ and Shilling [24℄ to intro-due some topologies, whih orrespond to (v). These topologies havethe same features as the pseudo topology, whih was onsidered byHalbeisen [9℄. Fix a trans�nite sequene {Cα : α < c} onsisting of allsegments. Put V0 = C0. For every ordinal number α < c, let Mα bethe union of all intersetions Cβ1
∩ Cβ2

∩ . . . ∩ Cβn
suh that

|Cβ1
∩ Cβ2

∩ . . . ∩ Cβn
| < ω,4



where βi ≤ α and 1 ≤ i ≤ n. Put Vα = Cα \ Mα. The topology gen-erated by all (just de�ned) sets Vα is alled a segment topology. Thereare many segment topologies, sine any one depends on an ordering
{Cα : α < c}. We get |Mα| < c, for any α < c. Also, eah Vα ontainsa segment. Therefore, if S ⊂ [ω]ω and |S| < c, then S is nowhere densewith respet to any segment topology. Moreover, we have.Lemma 3. Any family {Vα : α < c} is a π-base and subbase for thesegment topology (whih it generates).Proof. The family {Vα : α < c} is a subbase by the de�nition. Thus,the family of all intersetions Vβ1

∩ Vβ2
∩ . . . ∩ Vβn

onstitutes a base.If a base set Vβ1
∩ Vβ2

∩ . . . ∩ Vβn
is non-empty, then it has the formof a segment minus a set of the ardinality less than the ontinuum,exatly

Cβ1
∩ Cβ2

∩ . . . ∩ Cβn
\ (Mβ1

∪ Mβ2
∪ . . . ∪ Mβn

).By Fat 1, it ontains some segment Cα. Hene Vβ1
∩ Vβ2

∩ . . . ∩ Vβnontains some Vα ⊆ Cα. �Immediately, one obtains that any two segment topologies determinethe same family of nowhere dense sets. As a matter of fat, everyelement of the base ontains a segment and vie versa. Consequently,the nowhere dense sets with respet to any segment topology are the
v0-sets. The next lemma ampli�es the fat that there are no (ω, ω∗)-gaps. It orresponds to the result of Moran and Strauss [17℄, ompareProposition 2.2 in [7℄. We need the following abbreviation

< A, B >n=< A, B \ ({0, 1, . . . , n} \ A) > .Lemma 4. Let S0, S1, . . . be a sequene of nowhere dense subsets. Forany segment < A, B > there exists a segment < E, F >⊆< A, B >suh that Sn∩ < E, F >= ∅ for eah n ∈ ω.Proof. Assume that the sequene S0, S1, . . . is inreasing. We shallde�ne points e0, e1, . . . , en and sets
A ⊆ A0 ⊆ A1 ⊆ . . . ⊆ An ⊆ Bn ⊆ . . . ⊆ B1 ⊆ B0 ⊆ B,where Bn \ An is in�nite, {e0, e1, . . . , en} ⊂ Bn \ An and

en = min(Bn \ (An ∪ {e0, e1, . . . , en−1});and suh that < An ∪ x, Bn >en
∩Sn = ∅, for eah x ⊆ {e0, e1, . . . , en}and any n < ω. 5



We proeed indutively with respet to n. Let e0 = min(B \ A).Choose a segment < A0
0, B

0
0 >⊆< A, B >e0

\S0. Then, hoose sets
A0 ⊇ A0

0 and B0 ⊆ B0
0 ∪ {e0} suh that e0 ∈ B0 \ A0 and the segment

< A0 ∪ {e0}, B0 >e0
is disjoint with S0. We get

(< A0 ∪ {e0}, B0 >e0
∪ < A0, B0 >e0

) ∩ S0 = ∅.Assume that sets An and Bn are de�ned. Let
en = min(Bn \ (An ∪ {e0, e1, . . . , en−1})).Enumerate all subsets of {e0, e1, . . . , en} into a sequene

x1, x2, . . . , x2n+1 . Choose a segment
< A1

n, B
1

n >⊆< An ∪ x1, Bn >en
\Sn.If a segment < Ak−1

n , Bk−1
n > has been already de�ned, then hoose sets

Ak
n ⊇ Ak−1

n and Bk
n ⊆ Bk−1

n ∪{e0, e1, . . . , en} suh that {e0, e1, . . . , en} ⊂
Bk

n \ Ak
n and the segment < Ak

n ∪ xk, B
k
n >en

is disjoint with Sn. Let
Bn+1 be the last Bk

n and An+1 be the last Ak
n. By the de�nition, we get

{ek : k < ω} ⊂ Bn \ An and
∪{< Ak

n ∪ xk, B
k
n >en

: 0 < k ≤ 2n+1} ∩ Sn = ∅,for any n < ω. Finally, the segment
< E, F >=< ∪{An : n ∈ ω},∪{An : n ∈ ω} ∪ {en : n ∈ ω} >is disjoint with eah Sk. Indeed, suppose C ∈< E, F > ∩Sk. Let x =

C ∩ {e0, e1, . . . , ek}. Then C ∈< Ak ∪ x, Bk >ek
. But this ontradits

< Ak ∪ x, Bk >ek
∩Sk = ∅. �Corollary 5. For any segment topology, the intersetion of ountablemany open and dense sets ontains an open and dense subset. �Corollary 6. The ideal (v0) oinides with the family of all sets of the�rst ategory with respet to any segment topology. �Reall that, a subset Y of a topologial spae X has the property ofBaire whenever Y = (G \F )∪H , where G is open and F , H are of the�rst ategory. If X = [ω]ω is equipped with a segment topology, then

Y ⊆ X has the Baire property (i.e. the property of Baire with respetto this segment topology) whenever Y = G ∪ H , where G is open and
H is a v0-set.Theorem 7. The σ-�eld (v) oinides with the family of all sets whihhave the Baire property with respet to a segment topology.6



Proof. Fix a segment topology and a v-set X. Let U = ∪{Vβ : Vβ ⊆ X}and W = ∪{Vβ : Vβ ∩ X = ∅}. The union U ∪ W is open and dense.Thus X = U ∪ F , where F ⊆ [ω]ω \ (U ∪ W ) is nowhere dense.We shall show that any open set is a v-set. Suppose a set X isopen. Take an arbitrary segment < A, B > and hoose a subbaseset Vα ⊆< A, B >. There exists Vβ ⊆ Vα suh that Vβ ⊆ X or
Vβ ⊆ Int([ω]ω \ X). Eah segment < C, D >⊆ Vβ witnesses that X isa v-set. �Every lassial analyti set belongs to (v). This is a ounterpart ofMathias-Silver theorem - ompare (21.9) or (29.8) in [12℄ - whih arisesfrom Halbeisen's paper [9℄. In fat, one ould onlude it similarly likein the paper by Pawlikowski [20℄. This was noted by Brendle, Halbeisenand Löwe in [6℄. We obtain the ounterpart diretly, using Theorem 6and theorems (29.11), (29.13) in [12℄.4. Base v-matrixWe shall adopt a proof of Base Matrix Lemma - see B. Balar J.Pelant and P. Simon, ompare [2℄ and [3℄. There are known somegeneralizations of this theorem for some partial orders, e.g. ompare[16℄. For ompleteness, we prove our's version diretly. If < A, B > and
< C, D > are segments, then the intersetion < A, B >∗ ∩ < C, D >∗is ountable or has the ardinality ontinuum. In the seond ase theintersetion is a ∗-segment.Whenever < A, B >∗ ∩ < C, D >∗ is ountable, then < A, B >∗ and
< C, D >∗ are alled ∗-disjoint.Lemma 8. If S is a v0-set, then for any segment < A, B > there existsa segment < C, D >⊆< A, B > suh that < C, D >∗ ∩S∗ = ∅.Proof. By the de�nition, S∗ is a ountable union of elements of (v0),hene S∗ ∈ (v0). Thus, any segment < C, D >⊆< A, B > disjoint with
S∗ is a desired one. �A family P of ∗-segments is a v-partition, whenever any two distintmembers of P are ∗-disjoint and P is maximal with respet to theinlusion. A olletion of v-partitions is alled v-matrix. A v-partition7



P re�nes a v-partition Q (brie�y P ≺ Q), if for eah < A, B >∗∈ Pthere exists < C, D >∗∈ Q suh that < A, B >∗⊆< C, D >∗. A v-matrix H is alled shattering, if for eah ∗-segment < A, B >∗ thereexists P ∈ H and < A1, B1 >∗, < A2, B2 >∗∈ P suh that < A1, B1 >∗

∩ < A, B >∗ and < A2, B2 >∗ ∩ < A, B >∗ are di�erent ∗-segments.Denote by κ(v) the least ardinality of a shattering v-matrix.Lemma 9. If a v-matrix H is of the ardinality less than κ(v), thenthere exists a v-partition P whih re�nes any v-partition Q ∈ H.Proof. Fix a segment < A, B >. Let H(A, B) = {P(A, B) : P ∈ H} bethe relative v-matrix suh that eah P(A, B) onsists of all ∗-segments
< C, D >∗ ∩ < A, B >∗, where < C, D >∗∈ P. Any segment < C, D >is isomorphi to [D \ C]6ω and [ω]6ω, hene H(A, B) is not shatteringrelative to < A, B >∗. Choose a segment < C, D >⊆< A, B > suhthat there exists < E, F >∗∈ P with < C, D >∗⊆< E, F >∗ for every
P ∈ H. Any v-partition P onsisting of above de�ned ∗-segments
< C, D >∗ is a desired one. �Let h be the height of the base matrix . See [2℄ and [3℄ for rudimen-tary properties of the ardinal number h.Theorem 10. ω1 ≤ κ(v) ≤ h and κ(v) is a regular ardinal number.Proof. Suppose h < κ(v). Take a base matrix {Hα : α < h} suh asin 2.11 Base Matrix Lemma in [2℄. Let Pα be a v-partition suh thatfor any < A, B >∗∈ Pα there exists V ∈ Hα with B \ A ⊆∗ V . The
v-matrix {Pα : α < h} ontradits Lemma 9.Consider a shattering v-matrix H = {Pα : α < κ(v)}. By Lemma9, we an assume that α < β implies Pβ ≺ Pα. Any o�nal family of
v-partitions from H onstitutes a shattering v-matrix. Hene κ(v) hasto be regular. It is unountable by Fat 2. �Theorem 11. There exists a v-matrix H = {Pα : α < κ(v)} whihis well ordered by the inverse of ≺. Moreover, for eah ∗-segment <
A, B >∗ there is < C, D >∗∈ ∪H suh that < C, D >∗⊆< A, B >∗.Proof. Build a shattering v-matrix H = {Pα : α < κ(v)} suh that
α < β implies Pβ ≺ Pα. Let Jc(Pα) be the family of all ∗-segments
< A, B >∗ for whih there are ontinuum many elements of Pα not
∗-disjoint with < A, B >∗. Let F : Jc(Pα) → Pα be a one-to-one8



funtion suh that F (G) ∩ G is a ∗-segment, for every G ∈ Jc(Pα).Choose a v-partition
Q ⊇ {F (G) ∩ G : G ∈ Jc(Pα)}.Having these, one an improve H to obtain Pα+1 ≺ Q and Pα+1 ≺ Pα.One obtains that, if < A, B >∗∈ Jc(Pα), then there is < C, D >∗∈

Pα+1 with < C, D >∗⊆< A, B >∗.For eah ∗-segment < A, B >∗ there exists α < κ(v) suh that
< A, B >∗∈ Jc(Pα). Indeed, �x a ∗-segment < A, B >∗. Let
B0

α0
and B1

α0
be two di�erent ∗-segments belonging to Pα0

suh that
D0

α0
=< A, B >∗ ∩B0

α0
and D1

α0
=< A, B >∗ ∩B1

α0
are ∗-segments.Thus, Di0

α0
⊆< A, B >∗ for i0 ∈ {0, 1}. Indutively, let Bi0i1...in−10

αnand Bi0i1...in−11
αn

be two di�erent ∗-segments belonging to Pαn
suh that

Di0i1...in−10
αn

=< A, B >∗ ∩Bi0i1...in−10
αn

and Di0i1...in−11
αn

=< A, B >∗

∩Bi0i1...in−11
αn

are ∗-segments. We get
Di0i1...in

αn
⊂ Di0i1...in−1

αn−1
⊂< A, B >∗ .Put β = sup{αn : n ∈ ω}. By the onstrution and Fat 2, we get

< A, B >∗∈ Jc(Pβ+1). Therefore, for eah ∗-segment < A, B >∗ thereexists α < κ(v) and < C, D >∗∈ Pα suh that < C, D >∗⊆< A, B >∗

�Let {Pα : α < κ(v)} be a v-matrix as in the Theorem 11. In general,any two members of the union ∪{Pα : α < κ(v)} are ∗-disjoint or oneis inluded in the other. One ould remove a set MC of ardinality lessthan c from eah ∗-segment C ∈ ∪{Pα : α < κ(v)} suh that any twomembers of the family
Q = {C \ MC : C ∈ ∪{Pα : α < κ(v)}}are disjoint or one is inluded in the other. Any Q as above is alled abase v-matrix. Thus, κ(v) is the height of a base v-matrix. The nexttheorem yields analogy to nowhere Ramsey sets, ompare [21℄ p. 665.Theorem 12. The ideal (v0) oinides with the family of all nowheredense subsets with respet to the topology generated by a base v-matrix.Proof. Let S ⊆ [ω]ω be a v0-set and Q a base v-matrix. Any set

W ∈ Q is a ∗-segment minus a set of ardinality less than c. ByFat 1 and Lemma 8, there is a ∗-segment < A, B >∗⊆ W suh that
< A, B >∗ ∩S = ∅, for eah W ∈ Q. By Theorem 11 there exists9



a ∗-segment V ∈ ∪{Pα : α < κ(v)} suh that V ⊆< A, B >∗. Sets
V \ MV ∈ Q witnesses that S is nowhere dense.Let S be a nowhere dense set. Take a segment < A, B >. Choosea ∗-segment W ∈ ∪{Pα : α < κ(v)} suh that W ⊆< A, B >∗. Thenhoose V ∈ Q suh that V ⊆ W \ S. Any segment < C, D >⊆ Vwitnesses that S is a v0- set. �In ZFC, Hausdor� [10℄ proved that there exists a (ω1, ω

∗

1)-gap. Thissuggests that the height of a base v-matrix ould be ω1. We do notknow: Is it onsistent that ω1 6= κ(v)?Without loss of generality, one an add to the de�nition of a base v-matrix that Pβ ≺ Pα means that for eah < C, D >∗∈ Pβ there exists
< A, B >∗∈ Pα suh that < C, D >⊂< A, B > and sets C \ A, B \ Dare in�nite. This yields that eah maximal hain ontained in a suhbase v-matrix produes a (κ(v), κ(v)∗)-gap or a κ(v)-limit. We need
add(v0) = cov(v0) to obtain a base v-matrix suh that eah maximalhain ontained in it produes a (κ(v), κ(v)∗)-gap, only. So, we onsideradditivity and overing numbers of the ideal (v0).5. Additivity and overing numbersForeseeing a ounterpart of Plewik's result that the additivity num-ber of ompletely Ramsey sets equals to the overing number of Ram-sey null sets - ompare [3℄ p. 352 - 353 - Halbeisen set the followingquestion at the end of [9℄: Does

add(v0) = cov(v0)?The answer is obvious under the Continuum Hypothesis. We add an-other onsistent hypotheses whih on�rm this equality.Lemma 13. If P is a v-partition, then the omplement of the union
∪P is a v0-set.Proof. Take a segment < A, B >. Sine P is maximal, there exists
< C, D >∗∈ P suh that < A ∪ C, B ∩ D >∗ is a ∗-segment ontainedin ∪P. �Lemma 14. If S ⊆ [ω]ω is a v0-set, then there exists a v-partition Psuh that ∪P ∩ S = ∅. 10



Proof. If S is a v0-set, then S∗ is a v0-set, too. Thus, for any segment
< A, B > there exists a segment < C, D >⊆< A, B > suh that
< C, D >∗ ∩S∗ = ∅. Any v-partition P onsisting of a suh < C, D >∗is a desired one. �Theorem 15. κ(v) = add(v0).Proof. Consider a family F of v0-sets suh that |F| < κ(v). UsingLemma 14, �x a v-partition PW suh that ∪PW ∩ W = ∅ for eah
W ∈ F . Let P be a v-partition re�ning any PW , whih exists byLemma 9. The v0-set [ω]ω \ ∪P ontains ∪F .Take a base v-matrix Q = {C \ MC : C ∈ ∪{Pα : α < κ(v)}}.Without loss of generality one an assume that for every C ∈ Pα thedi�erene C \ ∪Pα+1 is not empty. Then, no segment is disjoint withthe union of all sets [ω]ω \ ∪Pα. In other words, this union is not a
v0-set. Therefore, κ(v) ≥ add(v0). �There are σ-�elds with additivity stritly less than additivity of itsnatural σ-ideal. For example, onsider a olletion F of ω1 pairwisedisjoint sets, eah of the ardinality ω2. Let S be the σ-�eld generatedby F and all subsets of ∪F of ardinality at most ω1. Then add(S) = ω1and add({X ∈ S : |X| < ω2}) = ω2. This is not a ase for the �eld (v).Theorem 16. add(v0) = add(v).Proof. Take a family W witnesses add(v) and �x a segment topology.Eah set W ∈ W is a v set, hene has the form W = VW ∪ HW where
VW is open and HW is a v0-set. The union ∪{HW : W ∈ W} witnesses
add(v0).To prove the opposite inequality, take a set B ⊆ [ω]ω whih is denseand o-dense in a segment topology. One an onstrut B analogouslyto the lassial onstrution of a Bernstein set. Let Q = {C \ MC :
C ∈ ∪{Pα : α < κ(v)}} be a base v-matrix . Then, the union of allsets [ω]ω \∪Pα is not a v0-set. If also, it is not a v-set, then it witnesses
κ(v) ≥ add(v0). But if this union is a v-set, then sets B\∪Pα onstitutethe family whih witnesses κ(v) ≥ add(v0). �Brendle observed that cov(v0) ≤ r, see Lemma 3 in [5℄ at page 21.Therefore, we get the following. 11



Theorem 17. ω1 ≤ κ(v) = add(v0) = add(v) ≤ cov(v0) ≤
min{cf(c), r}.Proof. Suppose [ω]ω = ∪{Aα : α < cf(c)}, where always |Aα| < c. So,
cov(v0) ≤ cf(c), sine eah Aα is a v0-set. Theorems 10, 15, 16 andBrendle's observation imply the rest inequalities. �Immediately, we infer the following: If κ(v) = min{cf(c), r}, then

κ(v) = add(v) = cov(v0) = add(v0).But, if κ(v) < t, then there are no κ-limits, see [23℄, and for any base
v-matrix Q = {C \ MC : C ∈ ∪{Pα : α < κ(v)}} the intersetion
∩{∪Pα : α < κ(v)} is empty. This yields add(v) = cov(v0). Therefore,
t = min{cf(c), r} implies add(v) = cov(v0), too.6. Ideal type of (v0)The notion of an ideal type (λ, τ, γ) was introdued in [21℄, whereit was obtained some onsistent isomorphisms, applying the ideal type
(c, h, c) to families of Ramsey null sets. Reall the notion of idealtypes at two steps. To present it in a organized manner we enumerateonditions whih are used in the de�nition.Firstly, we adapt Base Matrix Lemma [3℄. Suppose I is a properideal on ∪I. A olletion of families H = {Pα : α < κ(I)} is alled abase I-matrix whenever:(1) Eah family Pα onsists of pairwise disjoint subsets of ∪I;(2) If β < α, then Pα re�nes Pβ ;(3) Always ∪I \ ∪Pα belongs to I;(4) I is the ideal of nowhere dense sets with respet to the topologygenerated by ∪H.Seondly, we prepare the notions for appliations with Ramsey nullsets and v0-sets. The ideal I has the ideal type (λ, κ(I), γ) wheneverthere exists a base I-matrix H = {Pα : α < κ(I)} suh that:(5) Eah Pα has the ardinality λ;(6) If β < α and X ∈ Pβ , then X \ ∪Pα has the ardinality γ;(7) If β < α and Y ∈ Pβ, then Y ontains λ many members of Pα;(8) There are no short maximal hains in ∪H, i.e. if C ⊆ ∪H is a12



maximal hain, then C ∩ Pα is nonempty for eah α < κ(I);(9) The intersetion ∩{∪Pα : α < κ(I)} is empty.To desribe the ideal type of (v0) we have to assume that cov(v0) =
ω1. We do not know:Is it onsistent that ω1 6= cov(v0)?If ω1 = min{cf(c), r}, then Theorem 17 yields ω1 = cov(v0).Theorem 18. If ω1 = cov(v0), then (v0) has the ideal type (c, ω1, c).Proof. Let H = {Pα : α < ω1} be a base v-matrix. Sine ω1 = cov(v0)one an indutively hange H suh that ∩{∪Pα : α < κ(v) = ω1} = ∅.If one onsiders families Pα for limit ordinals, the one obtains a base
v-matrix whih witnesses that (v0) has the ideal type (c, ω1, c). �Thus, by [21℄ Theorem 2, if h = ω1 = cov(v0), then the ideal (v0) isisomorphi with the ideal of all Ramsey null sets. This isomorphismlarify resemblanes between de�nitions of ompletely Ramsey sets and
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