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INVERSE SYSTEMS AND I-FAVORABLE SPACESANDRZEJ KUCHARSKI AND SZYMON PLEWIKAbstrat. We show that a ompat spae is I-favorable if, andonly if it an be represented as the limit of a σ-omplete inversesystem of ompat metrizable spaes with skeletal bonding maps.We also show that any ompletely regular I-favorable spae an beembedded as a dense subset of the limit of a σ-omplete inversesystem of separable metrizable spaes with skeletal bonding maps.
1. IntrodutionWe investigate the lass of all limits of σ-omplete inverse systemsof ompat metrizable spaes with skeletal bonding maps. Notationsare used the same as in the monograph [5℄. For example, a ompatspae is Hausdor�, and a regular spae is T1. A direted set Σ is saidto be σ-omplete if any ountable hain of its elements has least upperbound in Σ. An inverse system {Xσ, π

σ
̺ , Σ} is said to be a σ-omplete,whenever Σ is σ-omplete and for every hain {σn : n ∈ ω} ⊆ Σ, suhthat σ = sup{σn : n ∈ ω} ∈ Σ, there holds

Xσ = lim
←−
{Xσn

, πσn+1
σn
},ompare [15℄. However, we will onsider inverse systems where bondingmaps are surjetions. Another details about inverse systems one an�nd in [5℄ pages 135 - 144. For basi fats about I-favorable spaes werefer to [4℄, ompare also [10℄.Through the ourse of this note we modify quotient topologies andquotient maps, introduing QP -topologies and QP -maps, where P is afamily of subsets of X. Next, we assign the family Pseq (of all sets withsome properties of ozero sets) to a given family P. Frink's theoremis used to show that the QP-topology is ompletely regular, whenever

P ⊆ Pseq is a ring of subsets of X, see Theorem 5. Afterwards, some2000 Mathematis Subjet Classi�ation. Primary: 54B35, 90D44; Seondary:54B15, 90D05.Key words and phrases. Inverse system, Open-open game, skeletal map.1
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speial lub �lters are desribed as systems of ountable skeletal fam-ilies. This yields that eah family whih belongs to a suh lub �lteris a ountable skeletal family, whih produes a skeletal map onto aompat metrizable spae. Theorem 12 is the main result: I-favorableompat spaes oinides with limits of σ-omplete inverse systems ofompat metrizable spaes with skeletal bonding maps.E.V. Shhepin has onsidered several lasses of ompat spaes ina few papers, for example [13℄, [14℄ and [15℄. He introdued the lassof ompat openly generated spaes. A ompat spae X is alledopenly generated, whenever X is the limit of a σ-omplete inverse sys-tem of ompat metrizable spaes with open bonding maps. Originally,Shhepin used another name: open-generated spaes; see [15℄. A. V.Ivanov showed that a ompat spae X is openly generated if, andonly if its superextension is a Dugundji spae, see [9℄. Then Shhepinestablished that the lasses of openly generated ompat spaes and of
κ-metrizable spaes are the same, see Theorem 21 in [15℄. Somethinglikewise is established for ompat I-favorable spaes in Theorem 12.A Boolean algebra B is semi-Cohen (regularly �ltered) if, and onlyif [B]ω has a losed unbounded set of ountable regular subalgebras,in other words [B]ω ontains a lub �lter. Hene, the Stone spae ofa semi-Cohen algebras is I-favorable. Translating Corollary 5.5.5 of L.Heindorf and L. B. Shapiro [7℄ on topologial notions, one an obtainour's main result in zero-dimensional ases, ompare also Theorem 4.3of B. Balar, T. Jeh and J. Zapletal [2℄. We get Theorem 11 whihsays that eah ompletely regular I-favorable spae is homeomorphito a dense subspae of the limit of an inverse system {X/R, qRP , C},where spaes X/R are metrizable and separable, bonding maps qRP areskeletal and the direted set C is σ-omplete.2. QP-topologiesLet P be a family of subsets of X. We say that y ∈ [x]P , whenever
x ∈ V if, and only if y ∈ V , for eah V ∈ P. The family of all lasses
[x]P is denoted X/P. Note that [x]P ⊆ V if, and only if [x]P ∩ V 6= ∅,for eah V ∈ P. Put q(x) = [x]P . The funtion q : X → X/P isalled an QP -map. The oarser topology on X/P whih ontains allimages q[V ] = {[x]P : x ∈ V }, where V ∈ P, is alled an QP -topology.If V ∈ P, then q−1(q[V ]) = V . Indeed, we have V ⊆ q−1(q[V ]),sine q : X → X/P is a surjetion. Suppose x ∈ q−1(q[V ]). Then
q(x) ∈ q[V ], and [x]P ∩ V 6= ∅. We get [x]P ⊆ V , sine V ∈ P.Therefore x ∈ V . 2



Lemma 1. Let P be a family of open subsets of a topologial spae
X. If P is a losed under �nite intersetions, then the QP-map q :
X → X/P is ontinuous. Moreover, if X =

⋃
P, then the family

{q[V ] : V ∈ P} is a base for the QP-topology.Proof. We have q[V ∩U ] = q[V ]∩ q[U ], for every U, V ∈ P. Hene, thefamily {q[V ] : V ∈ P} is losed under �nite intersetions. This familyis a base for the QP -topology, sine X =
⋃
P implies that X/P is anunion of basi sets. Obviously, the QP-map q is ontinuous. �Additionally, if X is a ompat spae and X/P is Hausdor�, thenthe QP- map q : X → X/P is a quotient map. Also, the QP-topologyoinides with the quotient topology, ompare [5℄ p. 124.Let R be a family of subsets of X. Denote by Rseq the family ofall sets W whih satisfy the following ondition: There exist sequenes

{Un : n ∈ ω} ⊆ R and {Vn : n ∈ ω} ⊆ R suh that Uk ⊆ (X \ Vk) ⊆
Uk+1, for any k ∈ ω, and ⋃

{Un : n ∈ ω} = W .If Rseq 6= ∅, then ⋃
R = X. Indeed, take W ∈ Rseq. Whenever Unand Vn are elements of sequenes witnessing W ∈ Rseq, then X \ Vk ⊆

Uk+1 ⊆ W implies Uk+1 ∪ Vk = X.If X is a ompletely regular spae and T onsists of all ozero sets of
X, then T = Tseq. Indeed, for eah W ∈ T , �x a ontinuous funtion
f : X → [0, 1] suh that W = f−1((0, 1]). Put Un = f−1(( 1

n
, 1]) and

X \ Vn = f−1([ 1
n
, 1]).Reall that, a family of sets is alled a ring of sets whenever it islosed under �nite intersetions and �nite unions.Lemma 2. If a ring of sets R is ontained in Rseq, then any ountableunion ⋃

{Un ∈ R : n ∈ ω} belongs to Rseq.Proof. Suppose that sequenes {Un
k : k ∈ ω} ⊆ R and {V n

k : k ∈ ω} ⊆
R witnessing Un ∈ Rseq, respetively. Then sets U0

n ∪U1
n ∪ . . .∪Un

n and
V 0

n ∩V 1
n ∩. . .∩V n

n are suessive elements of sequenes whih witnessing⋃
{Un ∈ R : n ∈ ω} ∈ Rseq. �Lemma 3. If a family of sets P is ontained in Pseq, then the
QP -topology is Hausdor�.Proof. Take [x]P 6= [y]P and W ∈ P suh that x ∈W and y 6∈ W . Fixsequenes {Un : n ∈ ω} and {Vn : n ∈ ω} witnessing W ∈ Pseq. Choose

k ∈ ω suh that x ∈ Uk and y ∈ Vk. Hene [x]P ⊆ Uk and [y]P ⊆ Vk.3



Therefore, sets q[Uk] and q[Vk] are disjoint neighbourhoods of [x]P and
[y]P , respetively. �Lemma 4. If a non-empty family of sets P ⊆ Pseq is losed under�nite intersetions, then QP-topology is regular.Proof. We have q[A] ∩ q[B] = q[A ∩ B] for eah A, B ∈ P. The family
{q[A] : A ∈ P} is a base of open sets for the QP-topology. Fix x ∈
W ∈ P and sequenes {Un : n ∈ ω} ⊆ P and {Vn : n ∈ ω} ⊆ Pwitnessing W ∈ Pseq. Take any Uk ⊆W suh that [x]P ⊆ Uk ∈ P. Weget q(x) ∈ q[Uk] ⊆ cl q[Uk] ⊆ q[X \ Vk] = X/P \ q[Vk] ⊆ q[W ], where
∪P = X. �To show whih QP -topologies are ompletely regular, we apply theFrink's theorem, ompare [6℄ or [5℄ p. 72.Theorem [O. Frink (1964)℄. A T1-spae X is ompletely regular if,and only if there exists a base B satisfying :(1) If x ∈ U ∈ B, then there exists V ∈ B suh that x 6∈ V and
U ∪ V = X;(2) If U, V ∈ B and U ∪ V = X, then there exists disjoint sets
M, N ∈ B suh that X \ U ⊆M and X \ V ⊆ N . �Theorem 5. If P is a ring of subsets of X and P ⊆ Pseq, then the
QP-topology is ompletely regular.Proof. The QP -topology is Hausdor� by Lemma 3. Let B be the mini-mal family whih ontains {q[V ] : V ∈ P} and is losed under ountableunions. This family is a base for the QP-topology, by Lemma 1. Weshould show that B ful�lls onditions (1) and (2) in Frink's theorem.Let [x]P ∈ q[W ] ∈ B. Fix sequenes {Uk : k ∈ ω} and {Vk : k ∈ ω}witnessing W ∈ Pseq and k ∈ ω suh that x ∈ X \ Vk ⊆ W . We have
W ∪ Vk = X. Therefore [x]P 6∈ q[Vk] and q[W ]∪ q[Vk] = X/P. Thus Bful�lls (1).Fix sets ⋃

{Un : n ∈ ω} ∈ B and ⋃
{Vn : n ∈ ω} ∈ B suh that

X/P =
⋃
{q[Un] : n ∈ ω} ∪

⋃
{q[Vn] : n ∈ ω},where Un and Vn belong to P. Thus, U =

⋃
{Un : n ∈ ω} ∈ Pseqand V =

⋃
{Vn : n ∈ ω} ∈ Pseq by Lemma 2. Next, �x sequenes

{An : n ∈ ω}, {Bn : n ∈ ω}, {Cn : n ∈ ω} and {Dn : n ∈ ω} witnessing
U ∈ Pseq and V ∈ Pseq, respetively. Therefore

Ak ⊆ (X \Bk) ⊆ Ak+1 ⊆ U and Ck ⊆ (X \Dk) ⊆ Ck+1 ⊆ V,4



for every k ∈ ω. Put Nn = An ∩Dn and Mn = Cn ∩ Bn. Let
M =

⋃
{Mn : n ∈ ω} and N =

⋃
{Nn : n ∈ ω}.Sets q[M ] and q[N ] ful�ll (2) in Frink's theorem. Indeed, if k ≤ n, then

Ak ∩Dk ∩ Cn ∩ Bn ⊆ An ∩Bn = ∅and
An ∩Dn ∩ Ck ∩ Bk ⊆ Cn ∩Dn = ∅.Consequently Mk ∩ Nn = ∅, for any k, n ∈ ω. Hene sets q[M ] and

q[N ] are disjoint. Also, it is q[V ] ∪ q[N ] = X/P. Indeed, suppose that
x 6∈ V , then x ∈ U and there is k suh that x ∈ Ak. Sine x 6∈ V , then
x ∈ Dk for all k ∈ ω. We have x ∈ Ak ∩ Dk = Nk ⊆ N . Therefore
[x]P ∈ q[N ]. Similarly, one gets q[U ] ∪ q[M ] = X/P. Thus B ful�lls
(2). �If P ⊆ Pseq is �nite, then X/P is disrete, being a �nite Hausdor�spae. Whenever P ⊆ Pseq is ountable and losed under �nite inter-setions, then X/P is a regular spae with a ountable base. Therefore,
X/P is metrizable and separable.3. Skeletal families and skeletal funtionsA ontinuous surjetion is alled skeletal whenever for any non-emptyopen sets U ⊆ X the losure of f [U ] has non-empty interior. If X is aompat spae and Y Hausdor�, then a ontinuous surjetion f : X →
Y is skeletal if, and only if Int f [U ] 6= ∅, for every non-empty and open
U ⊆ X. One an �nd equivalent notions almost-open or semi-open inthe literature, see [1℄ and [8℄. Following J. Mioduszewski and L. Rudolf[11℄ we all suh maps skeletal, ompare [14℄ p. 413. In a fat, one anuse the next proposition as a de�nition for skeletal funtions.Proposition 6. Let f : X → Y be a skeletal funtion. If an open set
V ⊆ Y is dense, then the preimage f−1(V ) ⊆ X is dense, too.Proof. Suppose that a non-empty open set W ⊆ X is disjoint with
f−1(V ). Then the image cl f [W ] has non-empty interior and cl f [W ]∩
V = ∅, a ontradition. �There are topologial spaes with no skeletal map onto a dense initself metrizable spae. For example, the remainder of the �eh-Stoneompati�ation βN . Also, if I is a ompat segment of onnetedSouslin line and X is metrizable, then eah skeletal map f : I → X isonstant. Indeed, let Q be a ountable and dense subset of f [I] ⊆ X.5



Suppose a skeletal map f : I → X is non onstant. Then the preim-age f−1(Q) is nowhere dense in I as ountable union of nowhere densesubset of a Souslin line. So, for eah open set V ⊆ I \ f−1(Q) thereholds Int f [V ] = ∅, a ontradition. Regular Baire spae X with a at-egory measure µ, for a de�nition of this spae see [12, pp. 86 - 91℄,gives an another example of a spae with no skeletal map onto a densein itself, separable and metrizable spae. In [3℄ A. Bªaszzyk and S.Shelah are onsidered separable extremally disonneted spaes withno skeletal map onto a dense in itself, separable and metrizable spae.They formulated the result in terms of Boolean algebra: There is anowhere dense ultra�lter on ω if, and only if there is a omplete, atom-less, σ-entered Boolean algebra whih ontains no regular, atomless,ountable subalgebra.A family P of open subsets of a spae X is alled a skeletal family,whenever for every non-empty open set V ⊆ X there exists W ∈
P suh that U ⊆ W and ∅ 6= U ∈ P implies U ∩ V 6= ∅. Thefollowing proposition explains onnetion between skeletal maps andskeletal families.Proposition 7. Let f : X → Y be a ontinuous funtion and let B bea π-base for Y . The family {f−1(V ) : V ∈ B} is skeletal if, and only if
f is a skeletal map.Proof. Assume, that f is a skeletal map. Fix a non-empty open set
V ⊆ X. There exists W ∈ B suh that W 6= ∅ and W ⊆ Int cl f [V ].Also, for any U ∈ B suh that ∅ 6= U ⊆W there holds f−1(U)∩V 6= ∅.Indeed, if f−1(U)∩V = ∅, then U ∩ cl f [V ] = ∅, a ontradition. Thusthe family {f−1(V ) : V ∈ B} is skeletal.Assume, that funtion f : X → Y is not skeletal. Then there existsa non-empty open set U ⊆ X suh that Int cl f [U ] = ∅. Sine B is a
π-base for Y , then for eah W ∈ B there exists V ∈ B suh that V ⊆Wand V ∩ f [U ] = ∅. The family {f−1(V ) : V ∈ B} is not skeletal. �It is well know - ompare a omment following the de�nition of om-pat open-generated spaes in [15℄ - that all limit projetions are openin any inverse system with open bonding maps. And onversely, if alllimit projetions of an inverse system are open, then so are all bondingmaps. Similar fat holds for skeletal maps.Proposition 8. If {Xσ, π

σ
̺ , Σ} is a inverse system suh that all bondingmaps πσ

̺ are skeletal and all projetions πσ are onto, then any projetion
πσ is skeletal. 6



Proof. Fix σ ∈ Σ. Consider a non-empty basi set π−1
ζ (V ) for thelimit lim←−{Xσ, π

σ
̺ , Σ}. Take τ ∈ Σ suh that ζ ≤ τ and σ ≤ τ. We get

π−1
ζ (V ) = π−1

τ ((πτ
ζ )−1(V )). Hene

πτ [π
−1
ζ (V )] = πτ [π

−1
τ ((πτ

ζ )−1(V ))] = (πτ
ζ )−1(V ),the set πτ [π

−1
ζ (V )] is open and non-empty. We have

πσ[π−1
ζ (V )] = πτ

σ[πτ [π
−1
ζ (V )]],sine πτ

σ ◦ πτ = πσ. The bonding map πτ
σ is skeletal, hene the losureof πσ[π−1

ζ (V )] has non-empty interior. �4. The open-open gamePlayers are playing at a topologial spae X in the open-open game.Player I hooses a non-empty open subset A0 ⊆ X at the beginning.Then Player II hooses a non-empty open subsets B0 ⊆ A0. PlayerI hooses a non-empty open subset An ⊆ X at the n-th inning, andthen Player II hooses a non-empty open subset Bn ⊆ An. Player Iwins, whenever the union B0 ∪B1 ∪ . . . ⊆ X is dense. One an assumethat Player II wins for other ases. The spae X is alled I-favorablewhenever Player I an be insured that he wins no matter how PlayerII plays. In other words, Player I has a winning strategy. A strategyfor Player I ould be de�ned as a funtion
σ :

⋃
{T n : n ≥ 0} → T ,where T is a family of non-empty and open subsets of X. Player I hasa winning strategy, whenever he knows how to de�ne A0 = σ(∅) andsueeding An+1 = σ(B0, B1, . . . , Bn) suh that for eah game

(σ(∅), B0, σ(B0), B1, σ(B0, B1), B2, . . . , Bn, σ(B0, B1, . . . , Bn), Bn+1, . . .)the union B0 ∪B1 ∪B2 ∪ . . . ⊆ X is dense. For more details about theopen-open game see P. Daniels, K. Kunen and H. Zhou [4℄.Consider a ountable sequene σ0, σ1, . . . of strategies for Player I. Fora familyQ ⊆ T let P(Q) be the minimal family suh thatQ ⊆ P(Q) ⊆
T , and if {B0, B1, . . . , Bn} ⊆ P(Q), then σk(B0, B1, . . . , Bn) ∈ P(Q),and σk(∅) ∈ P(Q), for all σk. We say that P(Q) is the losure of
Q under strategies σk. In partiular, if σ is a winning strategy andthe losure of Q under σ equals Q, then Q is losed under a winningstrategy. 7



Lemma 9. If P is losed under a winning strategy for Player I, thenfor any open set V 6= ∅ there is W ∈ P suh that whenever U ∈ P and
U ⊆W then U ∩ V 6= ∅.Proof. Let σ be a winning strategy for Player I. Consider an open set
V 6= ∅. Suppose that for any W ∈ P there is UW ∈ P suh that
UW ⊆ W and UW ∩ V = ∅. Then Player II wins any game wheneverhe always hooses sets UW ∈ P, only. In partiular, the game

σ(∅), Uσ(∅), σ(Uσ(∅)), Uσ(Uσ(∅)), σ(Uσ(∅), Uσ(Uσ(∅))), Uσ(Uσ(∅),Uσ(U
σ(∅))

), . . .would be winning for him, sine all sets hosen by Player II:
Uσ(∅), Uσ(Uσ(∅)), Uσ(Uσ(∅),Uσ(U

σ(∅))
), . . . ;are disjoint with V , a ontradition. �Theorem 10. If a ring P of open subsets of X is losed under awinning strategy and P ⊆ Pseq, then X/P is a ompletely regular spaeand the QP-map q : X → X/P is skeletal.Proof. Take a nonempty open subset V ⊆ X. Sine P is losed under awinning strategy, there exists W ∈ P suh that if U ∈ P and U ⊆ W ,then U ∩ V 6= ∅, by Lemma 9. This follows q[U ] ∩ q[V ] 6= ∅, for anybasi set q[U ] suh that U ⊆ W and U ∈ P. Therefore q[W ] ⊆ cl q[V ],sine {q[U ] : U ∈ P} is a base for the QP-topology. The QP -map

q : X → X/P is ontinuous by Lemma 1. By Theorem 5, the spae
X/P is ompletely regular. �Fix a π-base Q for a spae X. Following [4℄, ompare [10℄, any family
C ⊂ [Q]ω is alled a lub �lter whenever:The family C is losed under ω-hains with respet to inlusion, i.e.if P1 ⊆ P2 ⊆ . . . is an ω-hain whih onsists of elements of C, then
P1 ∪P2 ∪ . . . ∈ C; For any ountable subfamily A ⊆ Q, where Q is the
π−base �xed above, there exists P ∈ C suh that A ⊆ P; and

(S). For any non-empty open set V and eah P ∈ C there is W ∈ Psuh that if U ∈ P and U ⊆ W , then U meets V , i.e. U ∩ V 6= ∅.In fat, the ondition (S) gives reasons to look into I-favorable spaeswith respet to skeletal families. Any P losed under a winning strategyfor Player I ful�lls (S), by Lemma 9. There holds, see [4℄ Theorem 1.6,ompare [10℄ Lemmas 3 and 4: A topologial spae has a lub �lter if,and only if it is I-favorable. In the next part we modify a little thede�nition of lub �lters. We introdue T -lubs, i.e. lub �lters withsome additional properties. 8



Suppose a ompletely regular spae X is I-favorable. Let T be thefamily of all ozero subsets of X. For eah W ∈ T �x sequenes
{UW

n : n ∈ ω} and {V W
n : n ∈ ω} witnessing W ∈ Tseq. First, for eah khoose σ∗

k(∅) ∈ T . Next, put σ∗
2n(W ) = UW

n and σ∗
2n+1(W ) = V W

n , and
σ∗

k(S) = σ∗
k(∅) for other S ∈ ⋃

{T n : n ≥ 0}. Then, a family P ⊆ T islosed under strategies σ∗
k, whenever P ⊆ Pseq. Also, P is losed under�nite unions, whenever it is losed under the strategy whih assignsthe union A0 ∪ A1 ∪ . . . ∪ An to eah sequene (A0, A1, . . . , An). Andalso, P is losed under �nite intersetions, whenever it is losed underthe strategy whih assigns the intersetion A0 ∩ A1 ∩ . . . ∩ An to eah

(A0, A1, . . . , An).Consider a olletion C = {P(Q) : Q ∈ [T ]ω}. Assume that eah
P ∈ C is ountable and losed under a winning strategy for Player I andall strategies σ∗

k, and losed under �nite intersetions and �nite unions.Then, the family C is alled T -lub. By the de�nitions, any T -lub Cis losed under ω-hains with respet to the inlusion. Eah P ∈ C isa ountable ring of sets and P ⊆ Pseq and it is losed under a winningstrategy for Player I. By Theorem 10, the QP-map q : X → X/P isskeletal and onto a metrizable separable spae, for every P ∈ C.Thus, we are ready to build an inverse system with skeletal bondingmaps onto metrizable separable spaes. Any T -lub C is direted by theinlusion. For eah P ∈ C it is assigned the spae X/P and the skeletalfuntion qP : X → X/P. If P,R ∈ C and P ⊆ R, then put qRP ([x]R) =
[x]P . Thus, we have de�ned the inverse system {X/R, qRP , C}. Spaes
X/R are metrizable and separable, bonding maps qRP are skeletal andthe direted set C is σ-omplete.Theorem 11. Let X be a I-favorable ompletely regular spae. If C is a
T -lub, then the limit Y = lim

←−
{X/R, qRP , C} ontains a dense subspaewhih is homeomorphi to X.Proof. For any P ∈ C, put f(x)P = qP(x). We have de�ned the fun-tion f : X → Y suh that f(x) = {f(x)P}. If R,P ∈ C and P ⊆ R,then qRP (f(x)R) = f(x)P . Thus f(x) is a thread, i.e. f(x) ∈ Y .The funtion f is ontinuous. Indeed, let πP be the projetion of Yto X/P. By [5℄ Proposition 2.5.5, the family {π−1

P (qP [U ]) : U ∈ P ∈ C}is a base for Y . Also,
f−1(π−1

P (qP [U ])) = q−1
P (qP [U ]) = Uholds for any U ∈ P ∈ C. 9



Verify that f is injetion. Let x, y ∈ X and x 6= y. Take P ∈ C suhthat x ∈ U and y ∈ V for some disjoint sets U, V ∈ P. Sets qP [U ]and qP [V ] are disjoint, hene π−1
P (qP [U ]) and π−1

P (qP [V ]) are disjointneighbourhoods of f(x) and f(y), respetively.There holds f [U ] = f [X] ∩ π−1
P (qP [U ]), whenever U ∈ P ∈ C.Indeed, f [U ] ⊆ π−1

P (qP [U ]) implies f [U ] ⊆ f [X]∩π−1
P (qP [U ]). Suppose,there exists y ∈ π−1

P (qP [U ]) ∩ f [X] suh that y 6∈ f [U ]). Take x ∈ Xsuh that f(x) = y and x 6∈ U . We get πP(f(x)) = qP(x) 6∈ qP [U ], butthis follows f(x) 6∈ π−1
P (qP [U ]), a ontradition.Thus, f is open, sine T =

⋃
C is a base for X. But f [X] ⊆ Y isdense, sine the family {π−1

P (qP [U ]) : U ∈ P ∈ C} is a base for Y . �5. Reonstrution of I-favorable spaesNow, we are ready to prove the announe analog of Shhepin's openlygenerated spaes.Theorem 12. If X is a I-favorable ompat spae, then
X = lim←−{Xσ, π

σ
̺ , Σ},where {Xσ, πσ

̺ , Σ} is a σ-omplete inverse system, all spaes Xσ areompat and metrizable, and all bonding maps πσ
̺ are skeletal and onto.Proof. Let C be a T -lub. Put

{Xσ, πσ
̺ , Σ} = {X/R, qRP , C}.Eah spae Xσ = X/R has ountable base, by the de�nition of T -lub.Also, eah QR-map qR : X → X/R is ontinuous, by Lemma 1. Hene,any spae Xσ is ompat and metrizable, by Lemma 4. Eah QR-map

qR : X → Xσ is skeletal, by Theorem 10. Thus, all bonding maps πσ
̺are skeletal, too. The spae X is homeomorphi to a dense subspaeof lim←−{Xσ, π

σ
̺ , Σ}, by Theorem 11. We get X = lim←−{Xσ, π

σ
̺ , Σ}, sine

X is ompat.The inverse system {Xσ, π
σ
̺ , Σ} is σ-omplete. Indeed, suppose that

P0 ⊆ P1 ⊆ . . . and all Pn ∈ C. Let P =
⋃
{Pn : n ∈ ω} ∈ C. Put

(h([x]P))Pn
= qPPn

([x]P) = [x]Pn
.Sine maps qPPn

are ontinuous, we have de�ned a ontinuous funtion
h : X/P → lim←−{X/Pn, q

Pn+1

Pn
}. Whenever {[xn]Pn

} is a thread in theinverse system {X/Pn, q
Pn+1

Pn
}, then there exists x ∈

⋂
{[xn]Pn

: n ∈ ω},sine sets [xn]Pn
onsists of a entered family of nonempty losed sets10



in a ompat spae X. Thus h−1({[xn]Pn
}) = [x]P ∈ X/P, hene h isa bijetion. �To obtain the onverse of Theorem 12 one should onsider an inversesystem of ompat metrizable spaes with all bonding maps skeletal.Suh assumptions are unneessary. So, we assume that spaes Xσ haveountable π-bases, only.Theorem 13. Let {Xσ, π

σ
̺ , Σ} be a σ-omplete inverse system suhthat all bonding maps πσ

̺ are skeletal and all projetions πσ are onto.If all spaes Xσ have ountable π-base, then the limit lim←−{Xσ, π
σ
̺ , Σ} isI-favorable.Proof. Let ≤ denotes the relation whih direts Σ. Desribe the fol-lowing strategy for a math playing at the limit X = lim←−{Xσ, πσ

̺ , Σ}.Assume that Players play with basi sets of the form π−1
σ (V ), where Vis non-empty and open in Xσ and σ ∈ Σ.Player I hooses an open non-empty set A0 ⊆ X at the beginning.Let B0 = {B0} be a respond of Player II. Take σ0 ∈ Σ suh that

B0 = π−1
σ0

(V 0
0 ) ⊆ A0. Fix a ountable π-base {V 0

0 , V 0
1 , . . .} for Xσ0 .Assume, that we have just settled indexes σ0 ≤ σ1 ≤ . . . ≤ σn and

π-bases {V k
0 , V k

1 , . . .} for Xσk
, where 0 6 k 6 n. Additionally assume,that for any V k

m there exists V k+1
j suh that π−1

σk+1
(V k+1

j ) = π−1
σk

(V k
m).Now, Player I plays eah set from

An+1 = {π−1
σk

(V k
m) : k 6 n and m 6 n}one after the other. Let Bn+1 denote the family of all responds of PlayerII, for innings from An+1. Choose σn+1 ≥ σn and a ountable π-base

{V n+1
0 , V n+1

1 , . . .} for Xσn+1 whih ontains the family
{(πσn+1

σk
)−1(V k

m) : k 6 n and m ∈ ω}and suh that for any V ∈ Bn+1 there exists V n+1
j suh that

π−1
σn+1

(V k+1
j ) = V .Let σ = sup{σn : n ∈ ω} ∈ Σ. Any set πσn

[
⋃
{
⋃
Bn : n ∈ ω}]is dense in Xσn

, sine it intersets any π-basi set V n
j ⊆ Xσn

. Theinverse system is σ-omplete, hene the set πσ[
⋃
{
⋃
Bn : n ∈ ω}] isdense in Xσ. The projetion πσ is skeletal by Proposition 8. So, theset ⋃

{
⋃
Bn : n ∈ ω} is dense in X by Proposition 6. �A ontinuous and open map is skeletal, hene every ompat openlygenerated spae is I-favorable. 11



Corollary 14. Any ompat openly generated spae is I-favorable. �The onverse is not true. For instane, the �eh-Stone ompati�-ation βN of positive integers with the disrete topology is I-favorableand extremally disonneted. But βN is not openly generated, sinea ompat extremally disonneted and openly generated spae has tobe disrete, see Theorem 11 in [13℄.AknowledgementThe authors wish to thank to referees for their areful reading of a�rst version of this paper and for omments that have been very usefulto improve the �nal form of the proofs of some results.
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