
ar
X

iv
:0

70
6.

38
15

v2
  [

m
at

h.
G

N
] 

 3
 M

ar
 2

00
8

INVERSE SYSTEMS AND I-FAVORABLE SPACESANDRZEJ KUCHARSKI AND SZYMON PLEWIKAbstra
t. We show that a 
ompa
t spa
e is I-favorable if, andonly if it 
an be represented as the limit of a σ-
omplete inversesystem of 
ompa
t metrizable spa
es with skeletal bonding maps.We also show that any 
ompletely regular I-favorable spa
e 
an beembedded as a dense subset of the limit of a σ-
omplete inversesystem of separable metrizable spa
es with skeletal bonding maps.
1. Introdu
tionWe investigate the 
lass of all limits of σ-
omplete inverse systemsof 
ompa
t metrizable spa
es with skeletal bonding maps. Notationsare used the same as in the monograph [5℄. For example, a 
ompa
tspa
e is Hausdor�, and a regular spa
e is T1. A dire
ted set Σ is saidto be σ-
omplete if any 
ountable 
hain of its elements has least upperbound in Σ. An inverse system {Xσ, π

σ
̺ , Σ} is said to be a σ-
omplete,whenever Σ is σ-
omplete and for every 
hain {σn : n ∈ ω} ⊆ Σ, su
hthat σ = sup{σn : n ∈ ω} ∈ Σ, there holds

Xσ = lim
←−
{Xσn

, πσn+1
σn
},
ompare [15℄. However, we will 
onsider inverse systems where bondingmaps are surje
tions. Another details about inverse systems one 
an�nd in [5℄ pages 135 - 144. For basi
 fa
ts about I-favorable spa
es werefer to [4℄, 
ompare also [10℄.Through the 
ourse of this note we modify quotient topologies andquotient maps, introdu
ing QP -topologies and QP -maps, where P is afamily of subsets of X. Next, we assign the family Pseq (of all sets withsome properties of 
ozero sets) to a given family P. Frink's theoremis used to show that the QP-topology is 
ompletely regular, whenever

P ⊆ Pseq is a ring of subsets of X, see Theorem 5. Afterwards, some2000 Mathemati
s Subje
t Classi�
ation. Primary: 54B35, 90D44; Se
ondary:54B15, 90D05.Key words and phrases. Inverse system, Open-open game, skeletal map.1
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spe
ial 
lub �lters are des
ribed as systems of 
ountable skeletal fam-ilies. This yields that ea
h family whi
h belongs to a su
h 
lub �lteris a 
ountable skeletal family, whi
h produ
es a skeletal map onto a
ompa
t metrizable spa
e. Theorem 12 is the main result: I-favorable
ompa
t spa
es 
oin
ides with limits of σ-
omplete inverse systems of
ompa
t metrizable spa
es with skeletal bonding maps.E.V. Sh
hepin has 
onsidered several 
lasses of 
ompa
t spa
es ina few papers, for example [13℄, [14℄ and [15℄. He introdu
ed the 
lassof 
ompa
t openly generated spa
es. A 
ompa
t spa
e X is 
alledopenly generated, whenever X is the limit of a σ-
omplete inverse sys-tem of 
ompa
t metrizable spa
es with open bonding maps. Originally,Sh
hepin used another name: open-generated spa
es; see [15℄. A. V.Ivanov showed that a 
ompa
t spa
e X is openly generated if, andonly if its superextension is a Dugundji spa
e, see [9℄. Then Sh
hepinestablished that the 
lasses of openly generated 
ompa
t spa
es and of
κ-metrizable spa
es are the same, see Theorem 21 in [15℄. Somethinglikewise is established for 
ompa
t I-favorable spa
es in Theorem 12.A Boolean algebra B is semi-Cohen (regularly �ltered) if, and onlyif [B]ω has a 
losed unbounded set of 
ountable regular subalgebras,in other words [B]ω 
ontains a 
lub �lter. Hen
e, the Stone spa
e ofa semi-Cohen algebras is I-favorable. Translating Corollary 5.5.5 of L.Heindorf and L. B. Shapiro [7℄ on topologi
al notions, one 
an obtainour's main result in zero-dimensional 
ases, 
ompare also Theorem 4.3of B. Bal
ar, T. Je
h and J. Zapletal [2℄. We get Theorem 11 whi
hsays that ea
h 
ompletely regular I-favorable spa
e is homeomorphi
to a dense subspa
e of the limit of an inverse system {X/R, qRP , C},where spa
es X/R are metrizable and separable, bonding maps qRP areskeletal and the dire
ted set C is σ-
omplete.2. QP-topologiesLet P be a family of subsets of X. We say that y ∈ [x]P , whenever
x ∈ V if, and only if y ∈ V , for ea
h V ∈ P. The family of all 
lasses
[x]P is denoted X/P. Note that [x]P ⊆ V if, and only if [x]P ∩ V 6= ∅,for ea
h V ∈ P. Put q(x) = [x]P . The fun
tion q : X → X/P is
alled an QP -map. The 
oarser topology on X/P whi
h 
ontains allimages q[V ] = {[x]P : x ∈ V }, where V ∈ P, is 
alled an QP -topology.If V ∈ P, then q−1(q[V ]) = V . Indeed, we have V ⊆ q−1(q[V ]),sin
e q : X → X/P is a surje
tion. Suppose x ∈ q−1(q[V ]). Then
q(x) ∈ q[V ], and [x]P ∩ V 6= ∅. We get [x]P ⊆ V , sin
e V ∈ P.Therefore x ∈ V . 2



Lemma 1. Let P be a family of open subsets of a topologi
al spa
e
X. If P is a 
losed under �nite interse
tions, then the QP-map q :
X → X/P is 
ontinuous. Moreover, if X =

⋃
P, then the family

{q[V ] : V ∈ P} is a base for the QP-topology.Proof. We have q[V ∩U ] = q[V ]∩ q[U ], for every U, V ∈ P. Hen
e, thefamily {q[V ] : V ∈ P} is 
losed under �nite interse
tions. This familyis a base for the QP -topology, sin
e X =
⋃
P implies that X/P is anunion of basi
 sets. Obviously, the QP-map q is 
ontinuous. �Additionally, if X is a 
ompa
t spa
e and X/P is Hausdor�, thenthe QP- map q : X → X/P is a quotient map. Also, the QP-topology
oin
ides with the quotient topology, 
ompare [5℄ p. 124.Let R be a family of subsets of X. Denote by Rseq the family ofall sets W whi
h satisfy the following 
ondition: There exist sequen
es

{Un : n ∈ ω} ⊆ R and {Vn : n ∈ ω} ⊆ R su
h that Uk ⊆ (X \ Vk) ⊆
Uk+1, for any k ∈ ω, and ⋃

{Un : n ∈ ω} = W .If Rseq 6= ∅, then ⋃
R = X. Indeed, take W ∈ Rseq. Whenever Unand Vn are elements of sequen
es witnessing W ∈ Rseq, then X \ Vk ⊆

Uk+1 ⊆ W implies Uk+1 ∪ Vk = X.If X is a 
ompletely regular spa
e and T 
onsists of all 
ozero sets of
X, then T = Tseq. Indeed, for ea
h W ∈ T , �x a 
ontinuous fun
tion
f : X → [0, 1] su
h that W = f−1((0, 1]). Put Un = f−1(( 1

n
, 1]) and

X \ Vn = f−1([ 1
n
, 1]).Re
all that, a family of sets is 
alled a ring of sets whenever it is
losed under �nite interse
tions and �nite unions.Lemma 2. If a ring of sets R is 
ontained in Rseq, then any 
ountableunion ⋃

{Un ∈ R : n ∈ ω} belongs to Rseq.Proof. Suppose that sequen
es {Un
k : k ∈ ω} ⊆ R and {V n

k : k ∈ ω} ⊆
R witnessing Un ∈ Rseq, respe
tively. Then sets U0

n ∪U1
n ∪ . . .∪Un

n and
V 0

n ∩V 1
n ∩. . .∩V n

n are su

essive elements of sequen
es whi
h witnessing⋃
{Un ∈ R : n ∈ ω} ∈ Rseq. �Lemma 3. If a family of sets P is 
ontained in Pseq, then the
QP -topology is Hausdor�.Proof. Take [x]P 6= [y]P and W ∈ P su
h that x ∈W and y 6∈ W . Fixsequen
es {Un : n ∈ ω} and {Vn : n ∈ ω} witnessing W ∈ Pseq. Choose

k ∈ ω su
h that x ∈ Uk and y ∈ Vk. Hen
e [x]P ⊆ Uk and [y]P ⊆ Vk.3



Therefore, sets q[Uk] and q[Vk] are disjoint neighbourhoods of [x]P and
[y]P , respe
tively. �Lemma 4. If a non-empty family of sets P ⊆ Pseq is 
losed under�nite interse
tions, then QP-topology is regular.Proof. We have q[A] ∩ q[B] = q[A ∩ B] for ea
h A, B ∈ P. The family
{q[A] : A ∈ P} is a base of open sets for the QP-topology. Fix x ∈
W ∈ P and sequen
es {Un : n ∈ ω} ⊆ P and {Vn : n ∈ ω} ⊆ Pwitnessing W ∈ Pseq. Take any Uk ⊆W su
h that [x]P ⊆ Uk ∈ P. Weget q(x) ∈ q[Uk] ⊆ cl q[Uk] ⊆ q[X \ Vk] = X/P \ q[Vk] ⊆ q[W ], where
∪P = X. �To show whi
h QP -topologies are 
ompletely regular, we apply theFrink's theorem, 
ompare [6℄ or [5℄ p. 72.Theorem [O. Frink (1964)℄. A T1-spa
e X is 
ompletely regular if,and only if there exists a base B satisfying :(1) If x ∈ U ∈ B, then there exists V ∈ B su
h that x 6∈ V and
U ∪ V = X;(2) If U, V ∈ B and U ∪ V = X, then there exists disjoint sets
M, N ∈ B su
h that X \ U ⊆M and X \ V ⊆ N . �Theorem 5. If P is a ring of subsets of X and P ⊆ Pseq, then the
QP-topology is 
ompletely regular.Proof. The QP -topology is Hausdor� by Lemma 3. Let B be the mini-mal family whi
h 
ontains {q[V ] : V ∈ P} and is 
losed under 
ountableunions. This family is a base for the QP-topology, by Lemma 1. Weshould show that B ful�lls 
onditions (1) and (2) in Frink's theorem.Let [x]P ∈ q[W ] ∈ B. Fix sequen
es {Uk : k ∈ ω} and {Vk : k ∈ ω}witnessing W ∈ Pseq and k ∈ ω su
h that x ∈ X \ Vk ⊆ W . We have
W ∪ Vk = X. Therefore [x]P 6∈ q[Vk] and q[W ]∪ q[Vk] = X/P. Thus Bful�lls (1).Fix sets ⋃

{Un : n ∈ ω} ∈ B and ⋃
{Vn : n ∈ ω} ∈ B su
h that

X/P =
⋃
{q[Un] : n ∈ ω} ∪

⋃
{q[Vn] : n ∈ ω},where Un and Vn belong to P. Thus, U =

⋃
{Un : n ∈ ω} ∈ Pseqand V =

⋃
{Vn : n ∈ ω} ∈ Pseq by Lemma 2. Next, �x sequen
es

{An : n ∈ ω}, {Bn : n ∈ ω}, {Cn : n ∈ ω} and {Dn : n ∈ ω} witnessing
U ∈ Pseq and V ∈ Pseq, respe
tively. Therefore

Ak ⊆ (X \Bk) ⊆ Ak+1 ⊆ U and Ck ⊆ (X \Dk) ⊆ Ck+1 ⊆ V,4



for every k ∈ ω. Put Nn = An ∩Dn and Mn = Cn ∩ Bn. Let
M =

⋃
{Mn : n ∈ ω} and N =

⋃
{Nn : n ∈ ω}.Sets q[M ] and q[N ] ful�ll (2) in Frink's theorem. Indeed, if k ≤ n, then

Ak ∩Dk ∩ Cn ∩ Bn ⊆ An ∩Bn = ∅and
An ∩Dn ∩ Ck ∩ Bk ⊆ Cn ∩Dn = ∅.Consequently Mk ∩ Nn = ∅, for any k, n ∈ ω. Hen
e sets q[M ] and

q[N ] are disjoint. Also, it is q[V ] ∪ q[N ] = X/P. Indeed, suppose that
x 6∈ V , then x ∈ U and there is k su
h that x ∈ Ak. Sin
e x 6∈ V , then
x ∈ Dk for all k ∈ ω. We have x ∈ Ak ∩ Dk = Nk ⊆ N . Therefore
[x]P ∈ q[N ]. Similarly, one gets q[U ] ∪ q[M ] = X/P. Thus B ful�lls
(2). �If P ⊆ Pseq is �nite, then X/P is dis
rete, being a �nite Hausdor�spa
e. Whenever P ⊆ Pseq is 
ountable and 
losed under �nite inter-se
tions, then X/P is a regular spa
e with a 
ountable base. Therefore,
X/P is metrizable and separable.3. Skeletal families and skeletal fun
tionsA 
ontinuous surje
tion is 
alled skeletal whenever for any non-emptyopen sets U ⊆ X the 
losure of f [U ] has non-empty interior. If X is a
ompa
t spa
e and Y Hausdor�, then a 
ontinuous surje
tion f : X →
Y is skeletal if, and only if Int f [U ] 6= ∅, for every non-empty and open
U ⊆ X. One 
an �nd equivalent notions almost-open or semi-open inthe literature, see [1℄ and [8℄. Following J. Mioduszewski and L. Rudolf[11℄ we 
all su
h maps skeletal, 
ompare [14℄ p. 413. In a fa
t, one 
anuse the next proposition as a de�nition for skeletal fun
tions.Proposition 6. Let f : X → Y be a skeletal fun
tion. If an open set
V ⊆ Y is dense, then the preimage f−1(V ) ⊆ X is dense, too.Proof. Suppose that a non-empty open set W ⊆ X is disjoint with
f−1(V ). Then the image cl f [W ] has non-empty interior and cl f [W ]∩
V = ∅, a 
ontradi
tion. �There are topologi
al spa
es with no skeletal map onto a dense initself metrizable spa
e. For example, the remainder of the �e
h-Stone
ompa
ti�
ation βN . Also, if I is a 
ompa
t segment of 
onne
tedSouslin line and X is metrizable, then ea
h skeletal map f : I → X is
onstant. Indeed, let Q be a 
ountable and dense subset of f [I] ⊆ X.5



Suppose a skeletal map f : I → X is non 
onstant. Then the preim-age f−1(Q) is nowhere dense in I as 
ountable union of nowhere densesubset of a Souslin line. So, for ea
h open set V ⊆ I \ f−1(Q) thereholds Int f [V ] = ∅, a 
ontradi
tion. Regular Baire spa
e X with a 
at-egory measure µ, for a de�nition of this spa
e see [12, pp. 86 - 91℄,gives an another example of a spa
e with no skeletal map onto a densein itself, separable and metrizable spa
e. In [3℄ A. Bªasz
zyk and S.Shelah are 
onsidered separable extremally dis
onne
ted spa
es withno skeletal map onto a dense in itself, separable and metrizable spa
e.They formulated the result in terms of Boolean algebra: There is anowhere dense ultra�lter on ω if, and only if there is a 
omplete, atom-less, σ-
entered Boolean algebra whi
h 
ontains no regular, atomless,
ountable subalgebra.A family P of open subsets of a spa
e X is 
alled a skeletal family,whenever for every non-empty open set V ⊆ X there exists W ∈
P su
h that U ⊆ W and ∅ 6= U ∈ P implies U ∩ V 6= ∅. Thefollowing proposition explains 
onne
tion between skeletal maps andskeletal families.Proposition 7. Let f : X → Y be a 
ontinuous fun
tion and let B bea π-base for Y . The family {f−1(V ) : V ∈ B} is skeletal if, and only if
f is a skeletal map.Proof. Assume, that f is a skeletal map. Fix a non-empty open set
V ⊆ X. There exists W ∈ B su
h that W 6= ∅ and W ⊆ Int cl f [V ].Also, for any U ∈ B su
h that ∅ 6= U ⊆W there holds f−1(U)∩V 6= ∅.Indeed, if f−1(U)∩V = ∅, then U ∩ cl f [V ] = ∅, a 
ontradi
tion. Thusthe family {f−1(V ) : V ∈ B} is skeletal.Assume, that fun
tion f : X → Y is not skeletal. Then there existsa non-empty open set U ⊆ X su
h that Int cl f [U ] = ∅. Sin
e B is a
π-base for Y , then for ea
h W ∈ B there exists V ∈ B su
h that V ⊆Wand V ∩ f [U ] = ∅. The family {f−1(V ) : V ∈ B} is not skeletal. �It is well know - 
ompare a 
omment following the de�nition of 
om-pa
t open-generated spa
es in [15℄ - that all limit proje
tions are openin any inverse system with open bonding maps. And 
onversely, if alllimit proje
tions of an inverse system are open, then so are all bondingmaps. Similar fa
t holds for skeletal maps.Proposition 8. If {Xσ, π

σ
̺ , Σ} is a inverse system su
h that all bondingmaps πσ

̺ are skeletal and all proje
tions πσ are onto, then any proje
tion
πσ is skeletal. 6



Proof. Fix σ ∈ Σ. Consider a non-empty basi
 set π−1
ζ (V ) for thelimit lim←−{Xσ, π

σ
̺ , Σ}. Take τ ∈ Σ su
h that ζ ≤ τ and σ ≤ τ. We get

π−1
ζ (V ) = π−1

τ ((πτ
ζ )−1(V )). Hen
e

πτ [π
−1
ζ (V )] = πτ [π

−1
τ ((πτ

ζ )−1(V ))] = (πτ
ζ )−1(V ),the set πτ [π

−1
ζ (V )] is open and non-empty. We have

πσ[π−1
ζ (V )] = πτ

σ[πτ [π
−1
ζ (V )]],sin
e πτ

σ ◦ πτ = πσ. The bonding map πτ
σ is skeletal, hen
e the 
losureof πσ[π−1

ζ (V )] has non-empty interior. �4. The open-open gamePlayers are playing at a topologi
al spa
e X in the open-open game.Player I 
hooses a non-empty open subset A0 ⊆ X at the beginning.Then Player II 
hooses a non-empty open subsets B0 ⊆ A0. PlayerI 
hooses a non-empty open subset An ⊆ X at the n-th inning, andthen Player II 
hooses a non-empty open subset Bn ⊆ An. Player Iwins, whenever the union B0 ∪B1 ∪ . . . ⊆ X is dense. One 
an assumethat Player II wins for other 
ases. The spa
e X is 
alled I-favorablewhenever Player I 
an be insured that he wins no matter how PlayerII plays. In other words, Player I has a winning strategy. A strategyfor Player I 
ould be de�ned as a fun
tion
σ :

⋃
{T n : n ≥ 0} → T ,where T is a family of non-empty and open subsets of X. Player I hasa winning strategy, whenever he knows how to de�ne A0 = σ(∅) andsu

eeding An+1 = σ(B0, B1, . . . , Bn) su
h that for ea
h game

(σ(∅), B0, σ(B0), B1, σ(B0, B1), B2, . . . , Bn, σ(B0, B1, . . . , Bn), Bn+1, . . .)the union B0 ∪B1 ∪B2 ∪ . . . ⊆ X is dense. For more details about theopen-open game see P. Daniels, K. Kunen and H. Zhou [4℄.Consider a 
ountable sequen
e σ0, σ1, . . . of strategies for Player I. Fora familyQ ⊆ T let P(Q) be the minimal family su
h thatQ ⊆ P(Q) ⊆
T , and if {B0, B1, . . . , Bn} ⊆ P(Q), then σk(B0, B1, . . . , Bn) ∈ P(Q),and σk(∅) ∈ P(Q), for all σk. We say that P(Q) is the 
losure of
Q under strategies σk. In parti
ular, if σ is a winning strategy andthe 
losure of Q under σ equals Q, then Q is 
losed under a winningstrategy. 7



Lemma 9. If P is 
losed under a winning strategy for Player I, thenfor any open set V 6= ∅ there is W ∈ P su
h that whenever U ∈ P and
U ⊆W then U ∩ V 6= ∅.Proof. Let σ be a winning strategy for Player I. Consider an open set
V 6= ∅. Suppose that for any W ∈ P there is UW ∈ P su
h that
UW ⊆ W and UW ∩ V = ∅. Then Player II wins any game wheneverhe always 
hooses sets UW ∈ P, only. In parti
ular, the game

σ(∅), Uσ(∅), σ(Uσ(∅)), Uσ(Uσ(∅)), σ(Uσ(∅), Uσ(Uσ(∅))), Uσ(Uσ(∅),Uσ(U
σ(∅))

), . . .would be winning for him, sin
e all sets 
hosen by Player II:
Uσ(∅), Uσ(Uσ(∅)), Uσ(Uσ(∅),Uσ(U

σ(∅))
), . . . ;are disjoint with V , a 
ontradi
tion. �Theorem 10. If a ring P of open subsets of X is 
losed under awinning strategy and P ⊆ Pseq, then X/P is a 
ompletely regular spa
eand the QP-map q : X → X/P is skeletal.Proof. Take a nonempty open subset V ⊆ X. Sin
e P is 
losed under awinning strategy, there exists W ∈ P su
h that if U ∈ P and U ⊆ W ,then U ∩ V 6= ∅, by Lemma 9. This follows q[U ] ∩ q[V ] 6= ∅, for anybasi
 set q[U ] su
h that U ⊆ W and U ∈ P. Therefore q[W ] ⊆ cl q[V ],sin
e {q[U ] : U ∈ P} is a base for the QP-topology. The QP -map

q : X → X/P is 
ontinuous by Lemma 1. By Theorem 5, the spa
e
X/P is 
ompletely regular. �Fix a π-base Q for a spa
e X. Following [4℄, 
ompare [10℄, any family
C ⊂ [Q]ω is 
alled a 
lub �lter whenever:The family C is 
losed under ω-
hains with respe
t to in
lusion, i.e.if P1 ⊆ P2 ⊆ . . . is an ω-
hain whi
h 
onsists of elements of C, then
P1 ∪P2 ∪ . . . ∈ C; For any 
ountable subfamily A ⊆ Q, where Q is the
π−base �xed above, there exists P ∈ C su
h that A ⊆ P; and

(S). For any non-empty open set V and ea
h P ∈ C there is W ∈ Psu
h that if U ∈ P and U ⊆ W , then U meets V , i.e. U ∩ V 6= ∅.In fa
t, the 
ondition (S) gives reasons to look into I-favorable spa
eswith respe
t to skeletal families. Any P 
losed under a winning strategyfor Player I ful�lls (S), by Lemma 9. There holds, see [4℄ Theorem 1.6,
ompare [10℄ Lemmas 3 and 4: A topologi
al spa
e has a 
lub �lter if,and only if it is I-favorable. In the next part we modify a little thede�nition of 
lub �lters. We introdu
e T -
lubs, i.e. 
lub �lters withsome additional properties. 8



Suppose a 
ompletely regular spa
e X is I-favorable. Let T be thefamily of all 
ozero subsets of X. For ea
h W ∈ T �x sequen
es
{UW

n : n ∈ ω} and {V W
n : n ∈ ω} witnessing W ∈ Tseq. First, for ea
h k
hoose σ∗

k(∅) ∈ T . Next, put σ∗
2n(W ) = UW

n and σ∗
2n+1(W ) = V W

n , and
σ∗

k(S) = σ∗
k(∅) for other S ∈ ⋃

{T n : n ≥ 0}. Then, a family P ⊆ T is
losed under strategies σ∗
k, whenever P ⊆ Pseq. Also, P is 
losed under�nite unions, whenever it is 
losed under the strategy whi
h assignsthe union A0 ∪ A1 ∪ . . . ∪ An to ea
h sequen
e (A0, A1, . . . , An). Andalso, P is 
losed under �nite interse
tions, whenever it is 
losed underthe strategy whi
h assigns the interse
tion A0 ∩ A1 ∩ . . . ∩ An to ea
h

(A0, A1, . . . , An).Consider a 
olle
tion C = {P(Q) : Q ∈ [T ]ω}. Assume that ea
h
P ∈ C is 
ountable and 
losed under a winning strategy for Player I andall strategies σ∗

k, and 
losed under �nite interse
tions and �nite unions.Then, the family C is 
alled T -
lub. By the de�nitions, any T -
lub Cis 
losed under ω-
hains with respe
t to the in
lusion. Ea
h P ∈ C isa 
ountable ring of sets and P ⊆ Pseq and it is 
losed under a winningstrategy for Player I. By Theorem 10, the QP-map q : X → X/P isskeletal and onto a metrizable separable spa
e, for every P ∈ C.Thus, we are ready to build an inverse system with skeletal bondingmaps onto metrizable separable spa
es. Any T -
lub C is dire
ted by thein
lusion. For ea
h P ∈ C it is assigned the spa
e X/P and the skeletalfun
tion qP : X → X/P. If P,R ∈ C and P ⊆ R, then put qRP ([x]R) =
[x]P . Thus, we have de�ned the inverse system {X/R, qRP , C}. Spa
es
X/R are metrizable and separable, bonding maps qRP are skeletal andthe dire
ted set C is σ-
omplete.Theorem 11. Let X be a I-favorable 
ompletely regular spa
e. If C is a
T -
lub, then the limit Y = lim

←−
{X/R, qRP , C} 
ontains a dense subspa
ewhi
h is homeomorphi
 to X.Proof. For any P ∈ C, put f(x)P = qP(x). We have de�ned the fun
-tion f : X → Y su
h that f(x) = {f(x)P}. If R,P ∈ C and P ⊆ R,then qRP (f(x)R) = f(x)P . Thus f(x) is a thread, i.e. f(x) ∈ Y .The fun
tion f is 
ontinuous. Indeed, let πP be the proje
tion of Yto X/P. By [5℄ Proposition 2.5.5, the family {π−1

P (qP [U ]) : U ∈ P ∈ C}is a base for Y . Also,
f−1(π−1

P (qP [U ])) = q−1
P (qP [U ]) = Uholds for any U ∈ P ∈ C. 9



Verify that f is inje
tion. Let x, y ∈ X and x 6= y. Take P ∈ C su
hthat x ∈ U and y ∈ V for some disjoint sets U, V ∈ P. Sets qP [U ]and qP [V ] are disjoint, hen
e π−1
P (qP [U ]) and π−1

P (qP [V ]) are disjointneighbourhoods of f(x) and f(y), respe
tively.There holds f [U ] = f [X] ∩ π−1
P (qP [U ]), whenever U ∈ P ∈ C.Indeed, f [U ] ⊆ π−1

P (qP [U ]) implies f [U ] ⊆ f [X]∩π−1
P (qP [U ]). Suppose,there exists y ∈ π−1

P (qP [U ]) ∩ f [X] su
h that y 6∈ f [U ]). Take x ∈ Xsu
h that f(x) = y and x 6∈ U . We get πP(f(x)) = qP(x) 6∈ qP [U ], butthis follows f(x) 6∈ π−1
P (qP [U ]), a 
ontradi
tion.Thus, f is open, sin
e T =

⋃
C is a base for X. But f [X] ⊆ Y isdense, sin
e the family {π−1

P (qP [U ]) : U ∈ P ∈ C} is a base for Y . �5. Re
onstru
tion of I-favorable spa
esNow, we are ready to prove the announ
e analog of Sh
hepin's openlygenerated spa
es.Theorem 12. If X is a I-favorable 
ompa
t spa
e, then
X = lim←−{Xσ, π

σ
̺ , Σ},where {Xσ, πσ

̺ , Σ} is a σ-
omplete inverse system, all spa
es Xσ are
ompa
t and metrizable, and all bonding maps πσ
̺ are skeletal and onto.Proof. Let C be a T -
lub. Put

{Xσ, πσ
̺ , Σ} = {X/R, qRP , C}.Ea
h spa
e Xσ = X/R has 
ountable base, by the de�nition of T -
lub.Also, ea
h QR-map qR : X → X/R is 
ontinuous, by Lemma 1. Hen
e,any spa
e Xσ is 
ompa
t and metrizable, by Lemma 4. Ea
h QR-map

qR : X → Xσ is skeletal, by Theorem 10. Thus, all bonding maps πσ
̺are skeletal, too. The spa
e X is homeomorphi
 to a dense subspa
eof lim←−{Xσ, π

σ
̺ , Σ}, by Theorem 11. We get X = lim←−{Xσ, π

σ
̺ , Σ}, sin
e

X is 
ompa
t.The inverse system {Xσ, π
σ
̺ , Σ} is σ-
omplete. Indeed, suppose that

P0 ⊆ P1 ⊆ . . . and all Pn ∈ C. Let P =
⋃
{Pn : n ∈ ω} ∈ C. Put

(h([x]P))Pn
= qPPn

([x]P) = [x]Pn
.Sin
e maps qPPn

are 
ontinuous, we have de�ned a 
ontinuous fun
tion
h : X/P → lim←−{X/Pn, q

Pn+1

Pn
}. Whenever {[xn]Pn

} is a thread in theinverse system {X/Pn, q
Pn+1

Pn
}, then there exists x ∈

⋂
{[xn]Pn

: n ∈ ω},sin
e sets [xn]Pn

onsists of a 
entered family of nonempty 
losed sets10



in a 
ompa
t spa
e X. Thus h−1({[xn]Pn
}) = [x]P ∈ X/P, hen
e h isa bije
tion. �To obtain the 
onverse of Theorem 12 one should 
onsider an inversesystem of 
ompa
t metrizable spa
es with all bonding maps skeletal.Su
h assumptions are unne
essary. So, we assume that spa
es Xσ have
ountable π-bases, only.Theorem 13. Let {Xσ, π

σ
̺ , Σ} be a σ-
omplete inverse system su
hthat all bonding maps πσ

̺ are skeletal and all proje
tions πσ are onto.If all spa
es Xσ have 
ountable π-base, then the limit lim←−{Xσ, π
σ
̺ , Σ} isI-favorable.Proof. Let ≤ denotes the relation whi
h dire
ts Σ. Des
ribe the fol-lowing strategy for a mat
h playing at the limit X = lim←−{Xσ, πσ

̺ , Σ}.Assume that Players play with basi
 sets of the form π−1
σ (V ), where Vis non-empty and open in Xσ and σ ∈ Σ.Player I 
hooses an open non-empty set A0 ⊆ X at the beginning.Let B0 = {B0} be a respond of Player II. Take σ0 ∈ Σ su
h that

B0 = π−1
σ0

(V 0
0 ) ⊆ A0. Fix a 
ountable π-base {V 0

0 , V 0
1 , . . .} for Xσ0 .Assume, that we have just settled indexes σ0 ≤ σ1 ≤ . . . ≤ σn and

π-bases {V k
0 , V k

1 , . . .} for Xσk
, where 0 6 k 6 n. Additionally assume,that for any V k

m there exists V k+1
j su
h that π−1

σk+1
(V k+1

j ) = π−1
σk

(V k
m).Now, Player I plays ea
h set from

An+1 = {π−1
σk

(V k
m) : k 6 n and m 6 n}one after the other. Let Bn+1 denote the family of all responds of PlayerII, for innings from An+1. Choose σn+1 ≥ σn and a 
ountable π-base

{V n+1
0 , V n+1

1 , . . .} for Xσn+1 whi
h 
ontains the family
{(πσn+1

σk
)−1(V k

m) : k 6 n and m ∈ ω}and su
h that for any V ∈ Bn+1 there exists V n+1
j su
h that

π−1
σn+1

(V k+1
j ) = V .Let σ = sup{σn : n ∈ ω} ∈ Σ. Any set πσn

[
⋃
{
⋃
Bn : n ∈ ω}]is dense in Xσn

, sin
e it interse
ts any π-basi
 set V n
j ⊆ Xσn

. Theinverse system is σ-
omplete, hen
e the set πσ[
⋃
{
⋃
Bn : n ∈ ω}] isdense in Xσ. The proje
tion πσ is skeletal by Proposition 8. So, theset ⋃

{
⋃
Bn : n ∈ ω} is dense in X by Proposition 6. �A 
ontinuous and open map is skeletal, hen
e every 
ompa
t openlygenerated spa
e is I-favorable. 11



Corollary 14. Any 
ompa
t openly generated spa
e is I-favorable. �The 
onverse is not true. For instan
e, the �e
h-Stone 
ompa
ti�-
ation βN of positive integers with the dis
rete topology is I-favorableand extremally dis
onne
ted. But βN is not openly generated, sin
ea 
ompa
t extremally dis
onne
ted and openly generated spa
e has tobe dis
rete, see Theorem 11 in [13℄.A
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