arXiv:0706.3815v2 [math.GN] 3 Mar 2008

INVERSE SYSTEMS AND I-FAVORABLE SPACES

ANDRZEJ KUCHARSKI AND SZYMON PLEWIK

ABSTRACT. We show that a compact space is I-favorable if, and
only if it can be represented as the limit of a o-complete inverse
system of compact metrizable spaces with skeletal bonding maps.
We also show that any completely regular I-favorable space can be
embedded as a dense subset of the limit of a o-complete inverse
system of separable metrizable spaces with skeletal bonding maps.

1. INTRODUCTION

We investigate the class of all limits of o-complete inverse systems
of compact metrizable spaces with skeletal bonding maps. Notations
are used the same as in the monograph [5]. For example, a compact
space is Hausdorff, and a regular space is 77. A directed set X is said
to be o-complete if any countable chain of its elements has least upper
bound in ¥. An inverse system {X,, 77, %} is said to be a o-complete,
whenever ¥ is o-complete and for every chain {0, : n € w} C ¥, such
that 0 = sup{o, : n € w} € ¥, there holds

XU = @{X0n7 Wg;ﬁl }’

compare [15]. However, we will consider inverse systems where bonding
maps are surjections. Another details about inverse systems one can
find in [5] pages 135 - 144. For basic facts about I-favorable spaces we
refer to [4], compare also [10].

Through the course of this note we modify quotient topologies and
quotient maps, introducing Op-topologies and OQp-maps, where P is a
family of subsets of X. Next, we assign the family Ps., (of all sets with
some properties of cozero sets) to a given family P. Frink’s theorem
is used to show that the Qp-topology is completely regular, whenever
P C Py, is a ring of subsets of X, see Theorem Bl Afterwards, some
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special club filters are described as systems of countable skeletal fam-
ilies. This yields that each family which belongs to a such club filter
is a countable skeletal family, which produces a skeletal map onto a
compact metrizable space. Theorem [12]is the main result: [-favorable
compact spaces coincides with limits of o-complete inverse systems of
compact metrizable spaces with skeletal bonding maps.

E.V. Shchepin has considered several classes of compact spaces in
a few papers, for example [13|, [I4] and [15]. He introduced the class
of compact openly generated spaces. A compact space X is called
openly generated, whenever X is the limit of a o-complete inverse sys-
tem of compact metrizable spaces with open bonding maps. Originally,
Shchepin used another name: open-generated spaces; see [15]. A. V.
Ivanov showed that a compact space X is openly generated if, and
only if its superextension is a Dugundji space, see [9]. Then Shchepin
established that the classes of openly generated compact spaces and of
k-metrizable spaces are the same, see Theorem 21 in [I5]. Something
likewise is established for compact I-favorable spaces in Theorem

A Boolean algebra B is semi-Cohen (regularly filtered) if, and only
if [B]* has a closed unbounded set of countable regular subalgebras,
in other words [B]* contains a club filter. Hence, the Stone space of
a semi-Cohen algebras is I-favorable. Translating Corollary 5.5.5 of L.
Heindorf and L. B. Shapiro [7] on topological notions, one can obtain
our’s main result in zero-dimensional cases, compare also Theorem 4.3
of B. Balcar, T. Jech and J. Zapletal |2]. We get Theorem [II] which
says that each completely regular I-favorable space is homeomorphic
to a dense subspace of the limit of an inverse system {X/R, qg,C},
where spaces X/R are metrizable and separable, bonding maps qg are
skeletal and the directed set C is o-complete.

2. Op-TOPOLOGIES

Let P be a family of subsets of X. We say that y € [z]p, whenever
x € Vif, and only if y € V, for each V € P. The family of all classes
[z]p is denoted X /P. Note that [x]p C V if, and only if [z]p NV # (),
for each V'€ P. Put ¢(x) = [z]p. The function ¢ : X — X/P is
called an Qp-map. The coarser topology on X /P which contains all
images q[V] = {[z]p : x € V'}, where V' € P, is called an Qp-topology.
If Ve P, then ¢7'(¢[V]) = V. Indeed, we have V' C ¢ '(q[V]),
since ¢ : X — X /P is a surjection. Suppose z € ¢ '(¢[V]). Then
q(z) € ¢[V], and [z]p NV # (. We get [z]p C V, since V € P.
Therefore x € V.
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Lemma 1. Let P be a family of open subsets of a topological space
X. If P is a closed under finite intersections, then the Qp-map q :
X — X/P is continuous. Moreover, if X = |JP, then the family
{q[V] : V € P} is a base for the Qp-topology.

Proof. We have ¢[V NU| = q[V]|Nq[U], for every U,V € P. Hence, the
family {q[V] : V € P} is closed under finite intersections. This family
is a base for the Qp-topology, since X = [ JP implies that X /P is an
union of basic sets. Obviously, the Qp-map ¢ is continuous. U

Additionally, if X is a compact space and X /P is Hausdorff, then
the Qp- map ¢ : X — X /P is a quotient map. Also, the Qp-topology
coincides with the quotient topology, compare [5] p. 124.

Let R be a family of subsets of X. Denote by R, the family of
all sets W which satisfy the following condition: There ezist sequences
{Up:newt CR and {V,, : n € w} CR such that Uy, C (X \ V) C
Uks1, for any k € w, and \J{U,, : n € w} =W.

If Reeq # 0, then JR = X. Indeed, take W € R.,. Whenever U,
and V,, are elements of sequences witnessing W € R, then X \ Vj, C
Uk+1 Q %74 implies Uk—i—l U Vk =X.

If X is a completely regular space and 7 consists of all cozero sets of
X, then 7 = 7,,. Indeed, for each W € 7, fix a continuous function
f+ X —[0,1] such that W = f~*((0,1]). Put U, = f~*((+,1]) and
X\ Vo= 151D

Recall that, a family of sets is called a ring of sets whenever it is
closed under finite intersections and finite unions.

Lemma 2. If a ring of sets R is contained in Req, then any countable
union |J{U, € R :n € w} belongs to Req-

Proof. Suppose that sequences {U}' 1 k € w} C R and {V;" : k € w} C
R witnessing U,, € R, respectively. Then sets U UU}U...JU? and
VINVIN...NV™ are successive elements of sequences which witnessing

U{Un, € R:n €w} € Ry O

Lemma 3. If a family of sets P is contained in Py, then the
Op-topology is Hausdorff.

Proof. Take [z]p # [y]p and W € P such that v € W and y ¢ W. Fix

sequences {U, : n € w} and {V}, : n € w} witnessing W € Py.,. Choose

k € w such that z € U, and y € Vj. Hence [z]p C Uy and [y]p C V.
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Therefore, sets q[Ug] and ¢[Vj] are disjoint neighbourhoods of [z]p and
[y]p, respectively. d

Lemma 4. If a non-empty family of sets P C Py ts closed under
finite intersections, then Qp-topology is reqular.

Proof. We have q[A] N q[B] = q|AN B] for each A, B € P. The family
{q|A] : A € P} is a base of open sets for the Qp-topology. Fix = €
W € P and sequences {U, : n € w} C Pand {V,, : n € w} C P
witnessing W € Py,. Take any Uy, C W such that [z]p C U, € P. We
get q(z) € q[Ux] C clq[Us] € ¢[X \ Vi] = X/P\ q[Vi] € q[W], where
UP = X. U

To show which Op-topologies are completely regular, we apply the
Frink’s theorem, compare [6] or [5] p. 72.

Theorem [O. Frink (1964)|. A Ti-space X is completely regular if,
and only if there exists a base B satisfying:

(1) If x € U € B, then there exists V € B such that © ¢ V and
UvuV =X,

(2) IfU,V € Band UUV = X, then there exists disjoint sets
M,N € B such that X \U C M and X \V C N. O

Theorem 5. If P is a ring of subsets of X and P C Pseq, then the
Op-topology is completely reqular.

Proof. The Qp-topology is Hausdorff by Lemma[3l Let 5 be the mini-
mal family which contains {¢[V] : V' € P} and is closed under countable

unions. This family is a base for the Qp-topology, by Lemma [Il We
should show that B fulfills conditions (1) and (2) in Frink’s theorem.

Let [z]p € q[W] € B. Fix sequences {Uy : k € w} and {Vj : k € w}
witnessing W € Py, and k € w such that x € X \ Vj, C W. We have
W UV, = X. Therefore [x]p & q[Vi] and ¢[W]U¢[Vi] = X/P. Thus B
fulfills (1),

Fix sets (J{U, : n € w} € Band |J{V,, : n € w} € B such that

X/P = U{q[Un] ‘nE€wllU U{q[Vn] tn € w},

where U,, and V,, belong to P. Thus, U = |J{U, : n € w} € Py
and V = (J{V,, : n € w} € Py by Lemma 2l Next, fix sequences
{4, new},{B,:necw} {C,:nc€w}and {D, : n € w} witnessing
U € Pseqg and V' € Py, respectively. Therefore

A C(X\Br) CApy1 CU and Cp, C (X \ Dg) C Cr1 CV,
4



for every k € w. Put N, = A, N D,, and M,, = C,, N B,,. Let
M:U{Mn:new}andN:U{Nn:new}.
Sets g[M] and ¢[N] fulfill (2) in Frink’s theorem. Indeed, if & < n, then
AcND,NC,NB, CANB, =0

and
A,ND,NCyNB, CC,ND,=0.

Consequently M N N,, = (), for any k,n € w. Hence sets ¢[M] and
q|N] are disjoint. Also, it is ¢[V] U ¢[N] = X/P. Indeed, suppose that
x ¢V, then x € U and there is k such that z € A;. Since x € V, then
x € Dy, for all kK € w. We have ¢ € A, N D, = N, C N. Therefore
[z]p € ¢[N]. Similarly, one gets ¢[U] U q[M] = X/P. Thus B fulfills
(2). O

If P C Py, is finite, then X/P is discrete, being a finite Hausdorff
space. Whenever P C P, is countable and closed under finite inter-
sections, then X /P is a regular space with a countable base. Therefore,
X/P is metrizable and separable.

3. SKELETAL FAMILIES AND SKELETAL FUNCTIONS

A continuous surjection is called skeletal whenever for any non-empty
open sets U C X the closure of f[U] has non-empty interior. If X is a
compact space and Y Hausdorff, then a continuous surjection f : X —
Y is skeletal if, and only if Int f[U] # 0, for every non-empty and open
U C X. One can find equivalent notions almost-open or semi-open in
the literature, see [1] and [§]. Following J. Mioduszewski and L. Rudolf
[11] we call such maps skeletal, compare [14] p. 413. In a fact, one can
use the next proposition as a definition for skeletal functions.

Proposition 6. Let f: X — Y be a skeletal function. If an open set
V CY is dense, then the preimage f~1(V) C X is dense, too.

Proof. Suppose that a non-empty open set W C X is disjoint with
f7YV). Then the image cl f[J¥] has non-empty interior and cl f[W]N
V = (), a contradiction. O

There are topological spaces with no skeletal map onto a dense in
itself metrizable space. For example, the remainder of the Cech-Stone
compactification SN. Also, if I is a compact segment of connected
Souslin line and X is metrizable, then each skeletal map f: I — X is

constant. Indeed, let @) be a countable and dense subset of f[I] C X.
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Suppose a skeletal map f : I — X is non constant. Then the preim-
age f~1(Q) is nowhere dense in I as countable union of nowhere dense
subset of a Souslin line. So, for each open set V' C I'\ f~1(Q) there
holds Int f[V] = 0, a contradiction. Regular Baire space X with a cat-
egory measure p, for a definition of this space see [12, pp. 86 - 91],
gives an another example of a space with no skeletal map onto a dense
in itself, separable and metrizable space. In [3] A. Blaszczyk and S.
Shelah are considered separable extremally disconnected spaces with
no skeletal map onto a dense in itself, separable and metrizable space.
They formulated the result in terms of Boolean algebra: There is a
nowhere dense ultrafilter on w if, and only if there is a complete, atom-
less, o-centered Boolean algebra which contains no reqular, atomless,
countable subalgebra.

A family P of open subsets of a space X is called a skeletal family,
whenever for every non-empty open set V' C X there exists W &
P such that U € W and @ # U € P implies UNV # (. The
following proposition explains connection between skeletal maps and
skeletal families.

Proposition 7. Let f: X — Y be a continuous function and let B be
a w-base for Y. The family {f~1(V) : V € B} is skeletal if, and only if

f is a skeletal map.

Proof. Assume, that f is a skeletal map. Fix a non-empty open set
V' C X. There exists W € B such that W # () and W C Intcl f[V].
Also, for any U € B such that @ # U C W there holds f~1(U)NV # 0.
Indeed, if f~1(U)NV =0, then UNcl f[V] = 0, a contradiction. Thus
the family {f~'(V) : V € B} is skeletal.

Assume, that function f: X — Y is not skeletal. Then there exists
a non-empty open set U C X such that Intcl f[U] = 0. Since B is a
m-base for Y, then for each W € B there exists V € B such that V C W
and V N f[U] = 0. The family {f~1(V) : V € B} is not skeletal. [

It is well know - compare a comment following the definition of com-
pact open-generated spaces in [15] - that all limit projections are open
in any inverse system with open bonding maps. And conversely, if all
limit projections of an inverse system are open, then so are all bonding
maps. Similar fact holds for skeletal maps.

Proposition 8. If{X,, Ty, Y} is a inverse system such that all bonding
maps m, are skeletal and all projections m, are onto, then any projection
T, 1s skeletal.
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Proof. Fix 0 € ¥. Consider a non-empty basic set wgl(V) for the

limit im{X,, 79, ¥}. Take 7 € ¥ such that ( < 7 and ¢ < 7. We get
— [

7T<_1(V) =7 ((rf)~H(V)). Hence

o[r (V)] = e[ (D) TH(V)] = (70) (V)
the set 7, [71'51(‘/)] is open and non-empty. We have
molmg (V)] = mglme [ (V)]

since 7w} o, = m,. The bonding map 7 is skeletal, hence the closure
of T, 1(V)] has non-empty interior. O

4. THE OPEN-OPEN GAME

Players are playing at a topological space X in the open-open game.
Player I chooses a non-empty open subset Ay C X at the beginning.
Then Player II chooses a non-empty open subsets By C Ajy. Player
I chooses a non-empty open subset A, C X at the n-th inning, and
then Player II chooses a non-empty open subset B, C A,. Player I
wins, whenever the union By U By U... C X is dense. One can assume
that Player II wins for other cases. The space X is called I-favorable
whenever Player I can be insured that he wins no matter how Player
IT plays. In other words, Player I has a winning strategy. A strategy
for Player I could be defined as a function

a:U{’T":nZO}—VT,

where 7 is a family of non-empty and open subsets of X. Player I has
a winning strategy, whenever he knows how to define Ay = o(()) and
succeeding A, 11 = o(By, By, ..., By,) such that for each game

(U((Z))a B()7 U(BO>7 Blu 0(307 Bl)7 BZv E) Bn7 0(307 Blu sty Bn)v Bn+17 o )

the union BoU B U By U... C X is dense. For more details about the
open-open game see P. Daniels, K. Kunen and H. Zhou [4].

Consider a countable sequence oy, 01, . . . of strategies for Player 1. For
a family @ C 7 let P(Q) be the minimal family such that @ C P(Q) C
T, and if {Bo, Bl, ey Bn} - P(Q), then O'k(Bo, Bl, ey Bn) S P(Q),
and oy (0) € P(Q), for all o,. We say that P(Q) is the closure of
Q under strategies op. In particular, if ¢ is a winning strategy and
the closure of Q under o equals Q, then Q is closed under a winning

strategy.
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Lemma 9. If P is closed under a winning strategy for Player I, then
for any open set V # () there is W € P such that whenever U € P and
UCW thenUNV #0.

Proof. Let o be a winning strategy for Player 1. Consider an open set
V' # (. Suppose that for any W € P there is Uy € P such that
Uy C W and Uy NV = (. Then Player II wins any game whenever
he always chooses sets Uy, € P, only. In particular, the game

U(®)7 UU((Z))v U(UU(@))u UU(UU(@))7 U(UU(@)v UO’(UU(@)))7 UU(UU(0)7UU(UO_(®)))’ cee
would be winning for him, since all sets chosen by Player II:
Uo@): Us(Uy0) Voot Vaw, g+
are disjoint with V| a contradiction. U

Theorem 10. If a ring P of open subsets of X 1is closed under a
winning strategy and P C Pseq, then X/P is a completely regular space
and the Qp-map q : X — X/P is skeletal.

Proof. Take a nonempty open subset V' C X. Since P is closed under a
winning strategy, there exists W € P such that if U € P and U C W,
then U NV # 0, by Lemma @l This follows ¢[U] N ¢q[V] # 0, for any
basic set q[U] such that U C W and U € P. Therefore ¢[W] C clq[V],
since {q[U] : U € P} is a base for the Qp-topology. The Qp-map
q : X — X/P is continuous by Lemma [[I By Theorem [ the space
X/P is completely regular. O

Fix a m-base Q for a space X. Following [4], compare [10], any family
C C [Q]“ is called a club filter whenever:

The family C is closed under w-chains with respect to inclusion, i.e.
if P C Py, C ... 1is an w-chain which consists of elements of C, then
P1UP,U. .. €C; For any countable subfamily A C Q, where Q is the
m—base fixed above, there exists P € C such that A C P; and

(S). For any non-empty open set V and each P € C there is W € P
such that if U € P and U C W, then U meets V, i.e. UNV # 0.

In fact, the condition (S) gives reasons to look into I-favorable spaces
with respect to skeletal families. Any P closed under a winning strategy
for Player I fulfills (S), by Lemma[0 There holds, see [4] Theorem 1.6,
compare [10] Lemmas 3 and 4: A topological space has a club filter if,
and only if it is I-favorable. In the next part we modify a little the
definition of club filters. We introduce 7 -clubs, i.e. club filters with

some additional properties.
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Suppose a completely regular space X is I-favorable. Let 7 be the
family of all cozero subsets of X. For each W € 7T fix sequences
{UV :n €w}and {VYV : n € w} witnessing W € T,,,. First, for each k
choose of(0) € T. Next, put o3,(W) = U and o3, (W) =V, and
0 (S) = o;(0) for other S € |J{7™ : n > 0}. Then, a family P C 7 is
closed under strategies o}, whenever P C P,. Also, P is closed under
finite unions, whenever it is closed under the strategy which assigns
the union Ay U A; U...U A, to each sequence (Ag, Ay,...,A4,). And
also, P is closed under finite intersections, whenever it is closed under

the strategy which assigns the intersection Ag N A; N...N A, to each
(Ao, Ay, ..., Ay).

Consider a collection C = {P(Q) : Q € [T]“}. Assume that each
P € C is countable and closed under a winning strategy for Player [ and
all strategies o}, and closed under finite intersections and finite unions.
Then, the family C is called 7-club. By the definitions, any 7-club C
is closed under w-chains with respect to the inclusion. Each P € C is
a countable ring of sets and P C P, and it is closed under a winning
strategy for Player I. By Theorem [I0, the Qp-map ¢ : X — X/P is
skeletal and onto a metrizable separable space, for every P € C.

Thus, we are ready to build an inverse system with skeletal bonding
maps onto metrizable separable spaces. Any 7 -club C is directed by the
inclusion. For each P € C it is assigned the space X /P and the skeletal
function gp : X — X/P. lf P, R € C and P C R, then put ¢X([z]r) =
[z]p. Thus, we have defined the inverse system {X/R,¢x,C}. Spaces
X/R are metrizable and separable, bonding maps ¢ are skeletal and
the directed set C is o-complete.

Theorem 11. Let X be a I-favorable completely reqular space. IfC is a
T -club, then the limit Y = @{X/R, qx,C} contains a dense subspace
which is homeomorphic to X.

Proof. For any P € C, put f(x)p = gp(z). We have defined the func-
tion f: X — Y such that f(z) = {f(x)p}. f R,P € C and P C R,
then ¢%(f(z)r) = f(x)p. Thus f(z) is a thread, i.e. f(z) €Y.

The function f is continuous. Indeed, let mp be the projection of Y
to X/P. By [5] Proposition 2.5.5, the family {7'(¢p[U]) : U € P € C}
is a base for Y. Also,

F 5 (@p[U)) = 43 (gp[U]) = U

holds for any U € P € C.



Verify that f is injection. Let z,y € X and x # y. Take P € C such
that + € U and y € V for some disjoint sets U,V € P. Sets gp[U]
and gp[V] are disjoint, hence 75" (gp[U]) and 75" (gp[V]) are disjoint
neighbourhoods of f(x) and f(y), respectively.

There holds f[U] = f[X] N 75" (¢p[U]), whenever U € P € C.
Indeed, f[U] C 75" (gp[U]) implies f[U] C f[X]N75' (gp[U]). Suppose,
there exists y € 7' (gp[U]) N f[X] such that y & f[U]). Take z € X
such that f(z) =y and x & U. We get mp(f(x)) = gp(x) € qp[U], but
this follows f(x) & 75" (gp[U]), a contradiction.

Thus, f is open, since 7 = [ JC is a base for X. But f[X] C Y is
dense, since the family {7 (¢p[U]) : U € P € C}is a base for Y. [

5. RECONSTRUCTION OF [-FAVORABLE SPACES

Now, we are ready to prove the announce analog of Shchepin’s openly
generated spaces.

Theorem 12. If X is a I-favorable compact space, then
X = lim{X,,n7, X},
h

oy os

where {Xo,wg,z} 15 a o-complete inverse system, all spaces X, are
compact and metrizable, and all bonding maps 7 are skeletal and onto.

Proof. Let C be a T-club. Put
{Xo, 75,2} = {X/R,q5,C}.

Each space X, = X/R has countable base, by the definition of 7-club.
Also, each Qr-map qr : X — X/R is continuous, by Lemmal[ll Hence,
any space X, is compact and metrizable, by Lemma 4l Each Qr-map
qr + X — X, is skeletal, by Theorem [I0l Thus, all bonding maps 75
are skeletal, too. The space X is homeomorphic to a dense subspace
of im{X,, 77, %}, by Theorem M1l We get X = lim{X,, 77, X}, since
X is compact.

The inverse system {X,,7g, ¥} is o-complete. Indeed, suppose that
PoCPiC...andall P, €C. Let P =|J{P,:n€w}eC. Put

(h([2]p))p, = qgn([x]P) = [z]p,.
Since maps qgn are continuous, we have defined a continuous function
h:X/P — @{X/Pn,q;;:“}. Whenever {[x,]p,} is a thread in the

inverse system {X/P,, q;;:“}, then there exists x € ({[zn]p, : 1 € W},

since sets [z,]p, consists of a centered family of nonempty closed sets
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in a compact space X. Thus h='({[z,]p,}) = [z]p € X/P, hence h is
a bijection. O

To obtain the converse of Theorem [I2lone should consider an inverse
system of compact metrizable spaces with all bonding maps skeletal.
Such assumptions are unnecessary. So, we assume that spaces X, have
countable 7-bases, only.

Theorem 13. Let {X,, 7], X} be a o-complete inverse system such
that all bonding maps w, are skeletal and all projections m, are onto.
If all spaces X, have countable w-base, then the limit lim{ X, 77, X} is

— [
I-favorable.

Proof. Let < denotes the relation which directs . Describe the fol-
lowing strategy for a match playing at the limit X = lim{X,, 7, ¥}.
Assume that Players play with basic sets of the form 7, !(V), where V
is non-empty and open in X, and o € X.

Player I chooses an open non-empty set Ag C X at the beginning.
Let By = {By} be a respond of Player II. Take oy € ¥ such that
By =7, (Vy) € Ap. Fix a countable m-base {V’,V{,.. .} for X,,.

Assume, that we have just settled indexes 0y < 01 < ... < 0, and
m-bases {VF, V¥, ...} for X,,, where 0 < k < n. Additionally assume,
that for any V¥ there exists V"' such that m! (V') = o Y(VE).
Now, Player I plays each set from

A1 = {7 (Vi) - k < nand m < n}

one after the other. Let B,,.; denote the family of all responds of Player
II, for innings from A, ;. Choose 0,,1 > 0, and a countable 7-base
vt vt o) for X, ., which contains the family

{(xg) (V) ik <nand m € w}

g

and such that for any V € B,,; there exists Vj"+1 such that
k+1
O’n+1(V ) V

Let 0 = sup{o, : n € w} € X. Any set 7, [U{UB. : n € w}]
is dense in X,,, since it intersects any 7-basic set V* C X, . The
inverse system is o-complete, hence the set 7, [J{UB, : n € w}] is
dense in X,. The projection 7, is skeletal by Proposition [l So, the

set | J{UB, : n € w} is dense in X by Proposition O

A continuous and open map is skeletal, hence every compact openly

generated space is [-favorable.
11



Corollary 14. Any compact openly generated space is I-favorable. [

The converse is not true. For instance, the Cech-Stone compactifi-
cation SN of positive integers with the discrete topology is I-favorable
and extremally disconnected. But SN is not openly generated, since
a compact extremally disconnected and openly generated space has to
be discrete, see Theorem 11 in [13].
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