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CARDINAL INVARIANTS FOR C-CROSS TOPOLOGIESANDRZEJ KUCHARSKI AND SZYMON PLEWIKAbstra
t. C-
ross topologies are introdu
ed. Modi�
ations ofthe Kuratowski-Ulam Theorem are 
onsidered. Cardinal invari-ants add , 
of , 
ov and non with respe
t to meager or nowheredense subsets are 
ompared. Remarks on invariants 
of (nwdY )are mentioned for dense subspa
es Y ⊆ X .
1. Introdu
tionLet X ×Y = {(x, y) : x ∈ X and y ∈ Y } denote the Cartesian prod-u
t of sets X and Y . For a subset G ⊆ X × Y let Gx denote a verti
alse
tion {y ∈ Y : (x, y) ∈ G} and let Gy denote a horizontal se
tion

{x ∈ X : (x, y) ∈ G}. Let X be a set and F be a family of subsetsof X. Assume that X =
⋃

F . Consider following 
ardinal invariantsassign to X and F .
• The minimal 
ardinality of a subset Y ⊆ X with Y /∈ F is denotedby non (F).
• The minimal 
ardinality of a subfamily W ⊆ F su
h that ⋃

W /∈ Fis denoted by add (F).
• The minimal 
ardinality of a subfamily W ⊆ F su
h that ⋃

W = Xis denoted by 
ov (F).
• The minimal 
ardinality of a subfamily W ⊆ F su
h that for any
Y ∈ F there exists Z ∈ W with Y ⊆ Z, whi
h is denoted by 
of (F).Re
all a few well know (a folklore) fa
ts.
• 
ov (F) ≤ 
of (F).
• If X /∈ F , then non (F) ≤ 
of (F).
• If X /∈ F , then add (F) ≤ 
ov (F).
• If {{x} : x ∈ X} ⊆ F , then add (F) ≤ non (F).Su
h 
ardinal invariants have been used by many authors. Usually,1991 Mathemati
s Subje
t Classi�
ation. Primary: 54A10; Se
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these invariants are 
onsidered for subsets or subfamilies of the reals
R. Sometimes for other topologi
al spa
es. For instan
e J. Kraszewski[10℄ studied inequalities between su
h 
ardinal invariants for Cantor
ubes. Z. Piotrowski and A. Szyma«ski [19℄ 
onsidered 
ardinal fun
-tions add , 
ov and non for arbitrary topologi
al spa
es. Nevertheless,
ompare the last survey arti
le by A. Blass [2℄ whi
h 
ontains a hugebibliography.Let X be a topologi
al spa
e with a topology µ. The ideal of allnowhere dense subset of X is denoted by nwdX or by nwdµ; but MXor Mµ denote the σ−ideal of all meager subsets of X. A family Fof non-empty subsets of X is a π-network if ea
h non-empty opensubset of X 
ontains a member of F . Any π-network is 
alled π-basewhenever it 
ontains open sets, only. The minimal 
ardinality of a π-base for X is denoted by π(X). In this note it is assumed that any
ardinal invariant is in�nite. A topologi
al spa
e whi
h satis�es theBaire 
ategory theorem is 
alled Baire spa
e. If a T1-spa
e X is densein itself, then ⋃ nwdX = X and X /∈ nwdX and {{x} : x ∈ X} ⊆ nwdX .Additionally, ifX is a Baire spa
e, then X /∈ MX and 
ov (nwdX) ≥ ω1.For topologi
al spa
es X and Y let γ be a family of all subsets of
X × Y su
h that for ea
h G ∈ γ all verti
al se
tions Gx are open in
Y and all horizontal se
tions Gy are open in X. The family γ is atopology on X × Y . It is usually 
alled the 
ross topology. A fun
tion
f : X × Y → Z is separately 
ontinuous whenever all maps (whi
hmake one of the two variables 
onstant) y → f(z, y) and x → f(x, z) are
ontinuous. In fa
t, the 
ross topology γ is the weak topology on X×Ygenerated by the family of all separately 
ontinuous fun
tions into anytopologi
al spa
e. The produ
t topology on X × Y is denoted by τ .The topology τ is generated by the family of re
tangles {U × V : U ⊆
X is open and V ⊆ Y is open}. The topology of separate 
ontinuityon X × Y is denoted by σ. The topology σ is the weak topology on
X ×Y generated by the family of all separately 
ontinuous real-valuedfun
tions. The topology γ is �ner than the produ
t topology τ and thetopology of separate 
ontinuity σ. Topologies τ , σ and γ have been
ompared a few time in the literature. The �rst systemati
 study wasdone by C. J. Knight, W. Moran and J. S. Pym [8℄ and [9℄, see alsoJ. E. Hart and K. Kunen [6℄ or M. Henriksen and R. G. Woods [7℄ forsome 
omments and exhaustive referen
es.2



We 
onsider some modi�
ations of the 
ross topology γ. It is intro-du
ed the family of C-
ross topologies on X × Y . Under some addi-tional assumptions any C-
ross topology ful�lls the Kuratowski-UlamTheorem, see Theorem 2. A proof that ea
h open and dense set withrespe
t to τ is open and dense with respe
t to C-
ross topology needssome other assumptions about C, see Corollary 3. Spe
ial 
ases whenthe produ
t topology of two Baire spa
e is a Baire spa
e are gener-alized by Theorem 4. In [7℄ was stated 
onditions under whi
h ea
hnowhere dense set in τ is nowhere dense in γ. Theorem 5 and Corollary6 establish 
onditions with C-
ross topologies on R × R for similar re-sults. Cardinal invariants for various C-
ross topologies are 
al
ulatedin theorems 7, 8 and 9. In Lemma 10, Corollary 11 and Theorem 12are improved some results 
on
erning 
o�nality of nowhere dense ormeager sets in separable metri
 spa
es, 
ompare [1℄.
2. C-
ross topologiesLet X and Y be topologi
al spa
es. Consider a family C of subsetsof X × Y whi
h is 
losed under �nite interse
tions and su
h that forea
h G ∈ C all verti
al se
tions Gx have non-empty interior in Y , andall horizontal se
tions Gy have non-empty interior in X. The topologygenerated by C is 
alled C-
ross topology. Obviously, C is a base for the

C-
ross topology and topologies τ , σ and γ are C-
ross topologies.Let S be the Sorgenfrey line. By Sn and Rn denote produ
ts of n-
opies of S and the reals R with produ
t topologies, respe
tively. One
an 
he
k that nwdSn = nwdRn. Indeed, the family of all produ
tsof n-intervals with rational endpoints is a π-base for Sn and Rn. So,both spa
es have the same nowhere dense subsets. Re
all that, see A.Todd [22℄ or 
ompare [7℄, topologies σ and τ on a set X are Π-relatedif τ 
ontains a π-network for the topology σ on X and σ 
ontainsa π-network for the topology τ on X. Note that, di�erent C-
rosstopologies on X × Y have not to be Π-related, see [7℄ Theorem 3.6 forsuitable 
ounter-examples. The next lemma is a small modi�
ation ofProposition 3.2 in [7℄.Lemma 1. If topologies σ and τ on a set X are Π-related, then σ-densesubspa
es and τ -dense subspa
es are the same. Also, σ-nowhere densesubsets of X and τ -nowhere dense subsets of X are the same. �3



Lemma 1 generalizes the fa
t that spa
es Sn and Rn have the samedense subspa
es, and the same nowhere dense sets. In [7℄, it is ap-plied to the topology of separate 
ontinuity. The plane R × R has thesame dense subspa
es and the same nowhere dense sets for the produ
ttopology and for the topology of separate 
ontinuity, respe
tively. Thisis not true for the 
ross topology, see [7℄ Theorem 3.6.a.The proof of the following theorem requires that C 
ontains a π-network for the produ
t topology τ and it needs the inequality π(Y ) <add (MX).Theorem 2. Let X × Y be equipped with a C-
ross topology su
h thatthe family C 
ontains a π-network for the produ
t topology τ and let
π(Y ) < add (MX). If a set E ⊆ X × Y is open and dense with respe
tto the C-
ross topology, then there exists a meager subset P ⊆ X su
hthat any se
tion Ex = {y ∈ Y : (x, y) ∈ E} is dense in Y, for ea
h
x ∈ X \ P .Proof. Let U be a π-base for Y of the 
ardinality π(Y ). For ea
h V ∈ Uand any non-empty and open W ⊆ X the re
tangle W × V has non-empty interior with respe
t to the C-
ross topology, sin
e the family C
ontains a π-network for the produ
t topology. The interse
tion E ∩
(W×V ) 
ontains a non-empty C-
ross open subset. By the de�nition ofa C-open set there exists q ∈ V su
h that ∅ 6= IntX(E∩(W ×V ))q ⊆ W.For abbreviation let AV = {x ∈ X : ({x} × V ) ∩ E 6= ∅}. Sin
e W isan arbitrary open subset of X and IntX(E ∩ (W × V ))q ⊆ AV , thenone 
on
ludes that ea
h set AV ⊆ X 
ontains an open dense subset.Put P = X \

⋂
{AV : V ∈ U}. The set P ⊆ X is meager, sin
e

π(Y ) < add (MX). For ea
h point x ∈
⋂
{AV : V ∈ U} the set

IntY Ex ⊆ Y has to be dense. �Theorem 2 is a modi�
ation of the Kuratowski-Ulam Theorem, 
om-pare [15℄, [14℄, [17℄ or [4℄. One 
an 
all it the Kuratowski-Ulam Theo-rem, too. The next 
orollary follows from the Kuratowski-Ulam The-orem whi
h is applied to the produ
t topology τ . Its proof needs that
C 
ontains a π-base instead of a π-network.Corollary 3. Let X × Y be equipped with a C-
ross topology su
hthat the family C 
ontains a π-base for the produ
t topology τ and let
π(Y ) < add (MX) and assume that any non-empty and open subset of
X is not meager. If a set E ⊆ X × Y is open and dense with respe
t4



to the produ
t topology, then E 
ontains a subset G whi
h is dense andopen with respe
t to any C-
ross topology.Proof. Let U ⊆ C be a π-base for the produ
t topology τ . The union
G =

⋃
{V ∈ U : V ⊆ E}is a C-
ross open set and open dense with respe
t to the produ
t topol-ogy. Apply the Kuratowski-Ulam Theorem for the produ
t topology

τ . There exists a meager subset P ⊆ X su
h that the se
tion Gx ⊆ Yis open and dense, for any x ∈ X \ P . Suppose that a non-empty
C-
ross open set V is disjoint with G. For any (p, q) ∈ V we get
IntX V q 6= ∅. So, for ea
h x ∈ IntX V q the set Gx ⊆ Y is not dense.But the non-meager set IntX V q 
an not be 
ontained in the meagerset P , a 
ontradi
tion. �Re
all that, a spa
e is 
alled quasiregular if ea
h non-empty openset 
ontains the 
losure of some non-empty open set. Let a spa
e Y bequasiregular and τ ⊆ C and µ be the C-
ross topology. Suppose thatfor any set G ∈ µ all verti
al se
tions Gx ⊆ Y are open. Under su
hassumptions Corollary 3 would be dedu
ed from the proof of Lemma3.4 (a) in [7℄. One should adopt the proof, sin
e the lemma 
on
ernsTy
hono� spa
es and takes the topology γ instead of µ. In fa
t, ∅ 6=
V ∈ µ implies Intτ clµ V 6= ∅. But µ is �ner than τ , hen
e V ∩ E = ∅imply clµ V ∩ E = ∅, for ea
h set E ∈ τ . If additionally E is densewith respe
t to τ , then it should be V = ∅. So, E has to be dense withrespe
t to µ, too. 3. C-meager setsLet us examine the Baire 
ategory theorem with respe
t to C-
rosstopologies. The next theorem is related to results whi
h were obtainedby A. Ku
ia [12℄ or D. Gauld, S. Greenwood and Z. Piotrowski [5℄. Ourproof is a small improvement of Theorem 2.Theorem 4. Let X × Y be equipped with a C-
ross topology su
h thatthe family C 
ontains a π-network for the produ
t topology τ and let
π(Y ) < 
ov (MX). If a family {Eα ⊆ X × Y : α < λ} 
onsists of setswhi
h are open and dense with respe
t to the C-
ross topology, thenthe interse
tion ⋂

{Eα : α < λ} is non-empty for any 
ardinal number
λ < min{
ov (MX), 
ov (MY )}. 5



Proof. Assume that U is a π-base for Y of the 
ardinality π(Y ). If
V ∈ U , then for every non-empty and open W ⊆ X the re
tangle
W × V has non-empty interior with respe
t to the C-
ross topology.Similarly like in the proof of Theorem 2 one 
on
ludes that ea
h set

AV
α = {x ∈ X : ({x} × V ) ∩ Eα 6= ∅}
ontains a dense open subset of X. There exists a point
x ∈

⋂
{AV

α : V ∈ U and α < λ},sin
e π(Y ) < 
ov (MX) and λ < 
ov (MX). Any verti
al se
tion
(Eα)x ⊆ Y 
ontains a dense open subset of Y . There exists y ∈⋂
{(Eα)x : α < λ}, sin
e λ < 
ov (MY ). So, (x, y) ∈

⋂
{Eα : α <

λ}. �Cases when the produ
t topology of two Baire spa
e is a Baire spa
eare generalized onto C-
ross topologies by Theorem 4. This theoremdoes not work whenever π(Y ) ≥ 
ov (MX). Let Dλ be a Cantor 
ube.Obviously, π(Dλ) = λ. In [11℄ it was expli
itly observed, 
ompare alsoD. Fremlin, T. Natkanie
 and I. Re
ªaw [4℄, that:If a set E ⊆ X × Dλ is open and dense with respe
t to the produ
ttopology, then there exists a meager subset P ⊆ X su
h that any verti
alse
tion Ex = {y ∈ Dλ : (x, y) ∈ E} is dense in Dλ, for ea
h x ∈ X \P .This implies that the produ
t topology on X×Dλ satis�es the Baire
ategory theorem, whenever X is a Baire spa
e. Our results suggest alist of questions. For example:Question. Does the Baire 
ategory theorem hold for the 
ross topologyon X × Dλ, whenever λ ≥ 
ov (MX) ≥ ω1?4. The plane equipped with a C-
ross topologyFrom now on we 
onsider the plane R×R with various C-
ross topolo-gies. The 
ross topology on the plane is not quasiregular. Indeed,every graph of an one-to-one fun
tion is 
losed and nowhere densewith respe
t to the 
ross topology, see [6℄ Proposition 1.2. There aremany one-to-one fun
tions with τ -dense graphs. Any 
omplement ofa su
h graph witnesses that the 
ross topology is not quasiregular,sin
e ∅ 6= V ∈ γ implies Intτ clγ V 6= ∅ by Lemma 3.4 in [7℄. Fromthis lemma it follows that topologies τ and σ are Π-related. Therefore6



nwdτ = nwdσ and Mτ = Mσ. However, these equalities do not holdfor τ and γ. There hold nwdτ ⊂ nwdγ and Mτ ⊂ Mγ. Indeed, sup-pose that F = clτ F ∈ nwdτ . Then clγ F = F , sin
e γ is �ner then
τ . Hen
e Intτ F = ∅. Consequently F ∈ nwdγ, sin
e Intτ clγ F = ∅Analogi
ally, one veri�es that Mτ ⊂ Mγ. Be
ause any graph of anone-to-one fun
tion belongs to nwdγ, it should be nwdτ 6= nwdγ and
Mτ 6= Mγ.Theorem 5. If F ∈ nwdτ , then F is nowhere dense with respe
t toa C-
ross topology µ, whenever the family C 
ontains a π-base for theprodu
t topology τ .Proof. Let F ∈ nwdτ and let U ⊆ C be a π-base for τ . The union
W =

⋃
{V ∈ U : V ∩ F = ∅} is τ -open and τ -dense. It is also µ-open,sin
e it is the union of µ-open sets whi
h belong to U . Suppose that

(p, q) ∈ H = Intµ(R×R\W ). Then for any x ∈ IntR Hq the se
tion Wxis not dense in R. We have a 
ontradi
tion with the Kuratowski-Ulamtheorem whi
h one applies with W and τ . �Corollary 6. If F ∈ Mτ , then F is meager with respe
t to a C-
rosstopology, whenever the family C 
ontains a π-base for the produ
t topol-ogy τ . �The next theorem is formulated for the 
ross topology γ. However,it holds for any C-
ross topology whi
h satis�es Theorem 2 and su
hthat graphs of one-to-one fun
tions are nowhere dense. For Hausdor�spa
es X and Y graphs of one-to-one fun
tions are nowhere dense withrespe
t to the 
ross topology, see [6℄ Proposition 1.2.4.Theorem 7. 
of (nwdγ) > 2ω and 
of (Mγ) > 2ω.Proof. Consider a trans�nite family {Fα : α < 2ω} ⊆ nwdγ . Choose
(p0, q0) ∈ R × R \ F0. Assume that points

{(pβ, qβ) ∈ R × R \ Fβ : β < α}whi
h have been already 
hosen 
onstitute the graph of an one-to-onefun
tion. By Theorem 2, there exists a meager subset Pα ⊂ R su
hthat the verti
al se
tion (R × R \ Fα)x ⊆ R is open and dense forea
h x ∈ R \ Pα. Choose a point p ∈ R \ (Pα ∪ {pβ : β < α}) anda point q ∈ (R × R \ Fα)p \ {qβ : β < α}. Put p = pα and q = qα.The set {(pα, qα) : α < 2ω} ⊂ nwdγ is 
ontained in no Fα. Hen
e
of (nwdγ) > 2ω. The proof that 
of (Mγ) > 2ω is analogi
al. �7



Theorem 8. If µ is a C-
ross topology su
h that the family C 
ontainsa π-base for the produ
t topology τ , then 
ov (Mµ) = 
ov (MR).Proof. Let F ⊂ nwdR be a family of 
losed subsets whi
h witnesses
ov (MR) = 
ov (nwdR). Put H = {R×V : V ∈ F}. By the de�nitions
H ⊆ nwdτ . By Theorem 5, one infers H ⊂ nwdµ. Sin
e ⋃

H = R × R,then 
ov (Mµ) ≤ 
ov (MR).Assume that {Fα : α < 
ov (Mµ)} ⊂ nwdµ is a family of µ-
losed setwhi
h witnesses 
ov (Mµ). By Theorem 2, there is a meager set Pα ⊆ Rsu
h that for any se
tion (R×R\Fα)x ⊆ R is a dense and open for ea
hindex α and any point x ∈ R\Pα. Suppose that 
ov (Mµ) < 
ov (MR).Hen
e, there exist a point x ∈ R \
⋃
{Pα : α < 
ov (Mµ)} and a point

y ∈
⋂
{(R × R \ Fα)x : α < 
ov (Mµ)}. So, (x, y) /∈

⋃
{Fα : α <
ov (Mµ)}, a 
ontradi
tion. �Theorem 9. Let µ be a C-
ross topology su
h that the family C 
ontainsa π-base for the produ
t topology τ . If X /∈ MR, then the square X×Xis not meager with respe
t to µ. Moreover, non (Mµ) = non (MR).Proof. Take X /∈ MR. Suppose that, the square X × X is meagerwith respe
t to µ. This means F1 ∪ F2 ∪ . . . = X × X, where any set

Fn ∈ nwdµ. Apply Theorem 2 with X×X. There exist meager subsets
Pn ⊂ X su
h that any se
tion (X × X \ Fn)x ⊆ X is open and dense,for ea
h x ∈ X \ Pn. Hen
e, for any point x ∈ X \ (P1 ∪ P2 ∪ . . .)the interse
tion ⋂

{(X × X \ Fn)x : n = 1, 2, . . .} is not meager, a
ontradi
tion. So, if a set X ⊆ R witnesses non (MR), then X × Xwitnesses non (Mµ). This follows non (Mµ) ≤ non (MR).From Theorem 5 one infers that any not µ-meager set is not τ -meager, too. Hen
e, non (Mµ) ≥ non (MR). �Question. Is add (Mγ) 6= add (MR) 
onsistent with ZFC?5. Mis
ellanea of 
ofinalityIf a Hausdor� spa
e X is dense in itself, then 
of (nwdX) ≥ ω1.Indeed, let U0, U1, . . . be an in�nite sequen
e of pairwise disjoint, non-empty and open subsets of X. Assume that F0, F1, . . . is a sequen
eof nowhere dense subsets. For ea
h n 
hoose a point xn ∈ Un \ Fn.8



A family of all points xn is a nowhere dense subset of X and no Fn
ontains this family. So, no sequen
e of nowhere dense subsets wit-nesses 
of (nwdX). But for some T1-spa
es it 
an be 
of (nwdX) = ω0.For example, whenever X is 
ountable and all its 
o-�nite subsets areopen, only.Let Y be a separable dense in itself metri
 spa
e. There holdsadd (nwdY ) = ω0 = non (nwdY ), sin
e Y 
ontains a 
opy of the ratio-nals as a dense subset. If Y /∈ MY , then 
ov (MY ) = 
ov (nwdY ) ≥ ω1.Many di�eren
es o

ur for spa
es 
onstru
ted under additional set-theoreti
al axioms, 
ompare [2℄. However, the equality 
of (MR) =
of (nwdR) was already proved by D. Fremlin [3℄, and a simpler proofwas given by B. Bal
ar, F. Hernández-Hernández and M. Hru²ák [1℄.From [1℄, see Theorem 1.6 and Fa
t 1.5, it follows that 
of (MR) =
of (nwdY ). Little is known about relations between 
of (MX) and
of (nwdX), whenever X is an arbitrary topologi
al spa
e. For metri
spa
es we extra
t topologi
al properties used in [1℄, see the proof ofFa
t 1.5, to get the following.Lemma 10. Let X be a dense in itself metri
 spa
e. If Q is a densesubset of X, then for ea
h F ∈ nwdX there exists G ∈ nwdQ su
h that
F ⊆ clX G.Proof. Let Bn be the union of all balls with the radius 1

n
and with
enters in F ∈ nwdX . Choose maximal, with respe
t to the in
lusion,sets An ⊂ Q ∩ (Bn \ Bn+1) su
h that distan
es between points of Anare greater than 1

n
. Put A1 ∪ A2 ∪ . . . = G. �Corollary 11. Let X be a dense in itself metri
 spa
e. If Q is a densesubset of X, then 
of (nwdQ) = 
of (nwdX).Proof. If Q ⊆ X, then 
of (nwdQ) ≤ 
of (nwdX), sin
e this inequalityholds for any dense in itself topologi
al spa
e X. Lemma 10 followsthe inverse inequality. �Consider λω with the produ
t topology, where a 
ardinal number λis equipped with the dis
rete topology. By the theorem of P. �t¥pánekand P. Vop¥nka [21℄, 
ompare a general version of this theorem [13℄, oneobtains ω1 = add (Mλω) = 
ov (Mλω) = 
ov (nwdλω). Any metrizablespa
e has a σ-dis
rete base. Ea
h sele
tor de�ned on elements of a su
hbase witnesses add (nwdλω) = ω0, sin
e and λω is a metrizable spa
e.9



Indeed, any su
h sele
tor is a 
ountable union of dis
rete subsets andea
h dis
rete subset of a dense in itself T1-spa
e is nowhere dense. Everynon-empty open subset of λω 
ontains a family of the 
ardinality λwhi
h 
onsists of non-empty, pairwise disjoint and open subsets. Hen
e
of (nwdλω) > λ. Ea
h subset of λω of the 
ardinality less than λ hasto be nowhere dense, therefore non (nwdλω) = λ.Theorem 12. If Xis a metri
 spa
e su
h that any non-empty opensubset of X has density λ, then 
of (nwdλω) = 
of (nwdX).Proof. Let Y (λ) be the universal σ-dis
rete metri
 spa
e in the 
lass ofall σ-dis
rete metri
 spa
es of the 
ardinality less or equal to λ. One
an de�ne Y (λ) similar as the spa
e Y (S) in [18℄ p. 41 or as Q(τ) in[20℄ p. 217. One 
an 
he
k that X and λω 
ontain dense homeomorphi

opies of Y (λ), 
ompare the proof of Theorem 1 in [18℄ or Corollary7.7 in [20℄ or Theorem 1 in [16℄. We are done by Corollary 11. �If Q ⊂ R is the set of rational numbers, then the square Q × Qis γ-dense. Therefore one infers that non (nwdγ) = add (nwdγ) = ω0.Lemma 10 or Corollary 11 hold for the topology σ, sin
e nwdσ = nwdτ .It is impossible to use γ instead of τ in these fa
ts. Indeed, 
of (nwdγ) >
2ω implies 
of (nwdQ×Q) < 
of (nwdγ), whenever Q × Q inherits itstopology from the topology γ.Referen
es[1℄ B. Bal
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