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CARDINAL INVARIANTS FOR C-CROSS TOPOLOGIESANDRZEJ KUCHARSKI AND SZYMON PLEWIKAbstrat. C-ross topologies are introdued. Modi�ations ofthe Kuratowski-Ulam Theorem are onsidered. Cardinal invari-ants add , of , ov and non with respet to meager or nowheredense subsets are ompared. Remarks on invariants of (nwdY )are mentioned for dense subspaes Y ⊆ X .
1. IntrodutionLet X ×Y = {(x, y) : x ∈ X and y ∈ Y } denote the Cartesian prod-ut of sets X and Y . For a subset G ⊆ X × Y let Gx denote a vertialsetion {y ∈ Y : (x, y) ∈ G} and let Gy denote a horizontal setion

{x ∈ X : (x, y) ∈ G}. Let X be a set and F be a family of subsetsof X. Assume that X =
⋃

F . Consider following ardinal invariantsassign to X and F .
• The minimal ardinality of a subset Y ⊆ X with Y /∈ F is denotedby non (F).
• The minimal ardinality of a subfamily W ⊆ F suh that ⋃

W /∈ Fis denoted by add (F).
• The minimal ardinality of a subfamily W ⊆ F suh that ⋃

W = Xis denoted by ov (F).
• The minimal ardinality of a subfamily W ⊆ F suh that for any
Y ∈ F there exists Z ∈ W with Y ⊆ Z, whih is denoted by of (F).Reall a few well know (a folklore) fats.
• ov (F) ≤ of (F).
• If X /∈ F , then non (F) ≤ of (F).
• If X /∈ F , then add (F) ≤ ov (F).
• If {{x} : x ∈ X} ⊆ F , then add (F) ≤ non (F).Suh ardinal invariants have been used by many authors. Usually,1991 Mathematis Subjet Classi�ation. Primary: 54A10; Seondary: 03E17,54E52.Key words and phrases. C-ross topology, ardinal invariant, meager set, nowheredense set. 1
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these invariants are onsidered for subsets or subfamilies of the reals
R. Sometimes for other topologial spaes. For instane J. Kraszewski[10℄ studied inequalities between suh ardinal invariants for Cantorubes. Z. Piotrowski and A. Szyma«ski [19℄ onsidered ardinal fun-tions add , ov and non for arbitrary topologial spaes. Nevertheless,ompare the last survey artile by A. Blass [2℄ whih ontains a hugebibliography.Let X be a topologial spae with a topology µ. The ideal of allnowhere dense subset of X is denoted by nwdX or by nwdµ; but MXor Mµ denote the σ−ideal of all meager subsets of X. A family Fof non-empty subsets of X is a π-network if eah non-empty opensubset of X ontains a member of F . Any π-network is alled π-basewhenever it ontains open sets, only. The minimal ardinality of a π-base for X is denoted by π(X). In this note it is assumed that anyardinal invariant is in�nite. A topologial spae whih satis�es theBaire ategory theorem is alled Baire spae. If a T1-spae X is densein itself, then ⋃ nwdX = X and X /∈ nwdX and {{x} : x ∈ X} ⊆ nwdX .Additionally, ifX is a Baire spae, then X /∈ MX and ov (nwdX) ≥ ω1.For topologial spaes X and Y let γ be a family of all subsets of
X × Y suh that for eah G ∈ γ all vertial setions Gx are open in
Y and all horizontal setions Gy are open in X. The family γ is atopology on X × Y . It is usually alled the ross topology. A funtion
f : X × Y → Z is separately ontinuous whenever all maps (whihmake one of the two variables onstant) y → f(z, y) and x → f(x, z) areontinuous. In fat, the ross topology γ is the weak topology on X×Ygenerated by the family of all separately ontinuous funtions into anytopologial spae. The produt topology on X × Y is denoted by τ .The topology τ is generated by the family of retangles {U × V : U ⊆
X is open and V ⊆ Y is open}. The topology of separate ontinuityon X × Y is denoted by σ. The topology σ is the weak topology on
X ×Y generated by the family of all separately ontinuous real-valuedfuntions. The topology γ is �ner than the produt topology τ and thetopology of separate ontinuity σ. Topologies τ , σ and γ have beenompared a few time in the literature. The �rst systemati study wasdone by C. J. Knight, W. Moran and J. S. Pym [8℄ and [9℄, see alsoJ. E. Hart and K. Kunen [6℄ or M. Henriksen and R. G. Woods [7℄ forsome omments and exhaustive referenes.2



We onsider some modi�ations of the ross topology γ. It is intro-dued the family of C-ross topologies on X × Y . Under some addi-tional assumptions any C-ross topology ful�lls the Kuratowski-UlamTheorem, see Theorem 2. A proof that eah open and dense set withrespet to τ is open and dense with respet to C-ross topology needssome other assumptions about C, see Corollary 3. Speial ases whenthe produt topology of two Baire spae is a Baire spae are gener-alized by Theorem 4. In [7℄ was stated onditions under whih eahnowhere dense set in τ is nowhere dense in γ. Theorem 5 and Corollary6 establish onditions with C-ross topologies on R × R for similar re-sults. Cardinal invariants for various C-ross topologies are alulatedin theorems 7, 8 and 9. In Lemma 10, Corollary 11 and Theorem 12are improved some results onerning o�nality of nowhere dense ormeager sets in separable metri spaes, ompare [1℄.
2. C-ross topologiesLet X and Y be topologial spaes. Consider a family C of subsetsof X × Y whih is losed under �nite intersetions and suh that foreah G ∈ C all vertial setions Gx have non-empty interior in Y , andall horizontal setions Gy have non-empty interior in X. The topologygenerated by C is alled C-ross topology. Obviously, C is a base for the

C-ross topology and topologies τ , σ and γ are C-ross topologies.Let S be the Sorgenfrey line. By Sn and Rn denote produts of n-opies of S and the reals R with produt topologies, respetively. Onean hek that nwdSn = nwdRn. Indeed, the family of all produtsof n-intervals with rational endpoints is a π-base for Sn and Rn. So,both spaes have the same nowhere dense subsets. Reall that, see A.Todd [22℄ or ompare [7℄, topologies σ and τ on a set X are Π-relatedif τ ontains a π-network for the topology σ on X and σ ontainsa π-network for the topology τ on X. Note that, di�erent C-rosstopologies on X × Y have not to be Π-related, see [7℄ Theorem 3.6 forsuitable ounter-examples. The next lemma is a small modi�ation ofProposition 3.2 in [7℄.Lemma 1. If topologies σ and τ on a set X are Π-related, then σ-densesubspaes and τ -dense subspaes are the same. Also, σ-nowhere densesubsets of X and τ -nowhere dense subsets of X are the same. �3



Lemma 1 generalizes the fat that spaes Sn and Rn have the samedense subspaes, and the same nowhere dense sets. In [7℄, it is ap-plied to the topology of separate ontinuity. The plane R × R has thesame dense subspaes and the same nowhere dense sets for the produttopology and for the topology of separate ontinuity, respetively. Thisis not true for the ross topology, see [7℄ Theorem 3.6.a.The proof of the following theorem requires that C ontains a π-network for the produt topology τ and it needs the inequality π(Y ) <add (MX).Theorem 2. Let X × Y be equipped with a C-ross topology suh thatthe family C ontains a π-network for the produt topology τ and let
π(Y ) < add (MX). If a set E ⊆ X × Y is open and dense with respetto the C-ross topology, then there exists a meager subset P ⊆ X suhthat any setion Ex = {y ∈ Y : (x, y) ∈ E} is dense in Y, for eah
x ∈ X \ P .Proof. Let U be a π-base for Y of the ardinality π(Y ). For eah V ∈ Uand any non-empty and open W ⊆ X the retangle W × V has non-empty interior with respet to the C-ross topology, sine the family Contains a π-network for the produt topology. The intersetion E ∩
(W×V ) ontains a non-empty C-ross open subset. By the de�nition ofa C-open set there exists q ∈ V suh that ∅ 6= IntX(E∩(W ×V ))q ⊆ W.For abbreviation let AV = {x ∈ X : ({x} × V ) ∩ E 6= ∅}. Sine W isan arbitrary open subset of X and IntX(E ∩ (W × V ))q ⊆ AV , thenone onludes that eah set AV ⊆ X ontains an open dense subset.Put P = X \

⋂
{AV : V ∈ U}. The set P ⊆ X is meager, sine

π(Y ) < add (MX). For eah point x ∈
⋂
{AV : V ∈ U} the set

IntY Ex ⊆ Y has to be dense. �Theorem 2 is a modi�ation of the Kuratowski-Ulam Theorem, om-pare [15℄, [14℄, [17℄ or [4℄. One an all it the Kuratowski-Ulam Theo-rem, too. The next orollary follows from the Kuratowski-Ulam The-orem whih is applied to the produt topology τ . Its proof needs that
C ontains a π-base instead of a π-network.Corollary 3. Let X × Y be equipped with a C-ross topology suhthat the family C ontains a π-base for the produt topology τ and let
π(Y ) < add (MX) and assume that any non-empty and open subset of
X is not meager. If a set E ⊆ X × Y is open and dense with respet4



to the produt topology, then E ontains a subset G whih is dense andopen with respet to any C-ross topology.Proof. Let U ⊆ C be a π-base for the produt topology τ . The union
G =

⋃
{V ∈ U : V ⊆ E}is a C-ross open set and open dense with respet to the produt topol-ogy. Apply the Kuratowski-Ulam Theorem for the produt topology

τ . There exists a meager subset P ⊆ X suh that the setion Gx ⊆ Yis open and dense, for any x ∈ X \ P . Suppose that a non-empty
C-ross open set V is disjoint with G. For any (p, q) ∈ V we get
IntX V q 6= ∅. So, for eah x ∈ IntX V q the set Gx ⊆ Y is not dense.But the non-meager set IntX V q an not be ontained in the meagerset P , a ontradition. �Reall that, a spae is alled quasiregular if eah non-empty openset ontains the losure of some non-empty open set. Let a spae Y bequasiregular and τ ⊆ C and µ be the C-ross topology. Suppose thatfor any set G ∈ µ all vertial setions Gx ⊆ Y are open. Under suhassumptions Corollary 3 would be dedued from the proof of Lemma3.4 (a) in [7℄. One should adopt the proof, sine the lemma onernsTyhono� spaes and takes the topology γ instead of µ. In fat, ∅ 6=
V ∈ µ implies Intτ clµ V 6= ∅. But µ is �ner than τ , hene V ∩ E = ∅imply clµ V ∩ E = ∅, for eah set E ∈ τ . If additionally E is densewith respet to τ , then it should be V = ∅. So, E has to be dense withrespet to µ, too. 3. C-meager setsLet us examine the Baire ategory theorem with respet to C-rosstopologies. The next theorem is related to results whih were obtainedby A. Kuia [12℄ or D. Gauld, S. Greenwood and Z. Piotrowski [5℄. Ourproof is a small improvement of Theorem 2.Theorem 4. Let X × Y be equipped with a C-ross topology suh thatthe family C ontains a π-network for the produt topology τ and let
π(Y ) < ov (MX). If a family {Eα ⊆ X × Y : α < λ} onsists of setswhih are open and dense with respet to the C-ross topology, thenthe intersetion ⋂

{Eα : α < λ} is non-empty for any ardinal number
λ < min{ov (MX), ov (MY )}. 5



Proof. Assume that U is a π-base for Y of the ardinality π(Y ). If
V ∈ U , then for every non-empty and open W ⊆ X the retangle
W × V has non-empty interior with respet to the C-ross topology.Similarly like in the proof of Theorem 2 one onludes that eah set

AV
α = {x ∈ X : ({x} × V ) ∩ Eα 6= ∅}ontains a dense open subset of X. There exists a point
x ∈

⋂
{AV

α : V ∈ U and α < λ},sine π(Y ) < ov (MX) and λ < ov (MX). Any vertial setion
(Eα)x ⊆ Y ontains a dense open subset of Y . There exists y ∈⋂
{(Eα)x : α < λ}, sine λ < ov (MY ). So, (x, y) ∈

⋂
{Eα : α <

λ}. �Cases when the produt topology of two Baire spae is a Baire spaeare generalized onto C-ross topologies by Theorem 4. This theoremdoes not work whenever π(Y ) ≥ ov (MX). Let Dλ be a Cantor ube.Obviously, π(Dλ) = λ. In [11℄ it was expliitly observed, ompare alsoD. Fremlin, T. Natkanie and I. Reªaw [4℄, that:If a set E ⊆ X × Dλ is open and dense with respet to the produttopology, then there exists a meager subset P ⊆ X suh that any vertialsetion Ex = {y ∈ Dλ : (x, y) ∈ E} is dense in Dλ, for eah x ∈ X \P .This implies that the produt topology on X×Dλ satis�es the Baireategory theorem, whenever X is a Baire spae. Our results suggest alist of questions. For example:Question. Does the Baire ategory theorem hold for the ross topologyon X × Dλ, whenever λ ≥ ov (MX) ≥ ω1?4. The plane equipped with a C-ross topologyFrom now on we onsider the plane R×R with various C-ross topolo-gies. The ross topology on the plane is not quasiregular. Indeed,every graph of an one-to-one funtion is losed and nowhere densewith respet to the ross topology, see [6℄ Proposition 1.2. There aremany one-to-one funtions with τ -dense graphs. Any omplement ofa suh graph witnesses that the ross topology is not quasiregular,sine ∅ 6= V ∈ γ implies Intτ clγ V 6= ∅ by Lemma 3.4 in [7℄. Fromthis lemma it follows that topologies τ and σ are Π-related. Therefore6



nwdτ = nwdσ and Mτ = Mσ. However, these equalities do not holdfor τ and γ. There hold nwdτ ⊂ nwdγ and Mτ ⊂ Mγ. Indeed, sup-pose that F = clτ F ∈ nwdτ . Then clγ F = F , sine γ is �ner then
τ . Hene Intτ F = ∅. Consequently F ∈ nwdγ, sine Intτ clγ F = ∅Analogially, one veri�es that Mτ ⊂ Mγ. Beause any graph of anone-to-one funtion belongs to nwdγ, it should be nwdτ 6= nwdγ and
Mτ 6= Mγ.Theorem 5. If F ∈ nwdτ , then F is nowhere dense with respet toa C-ross topology µ, whenever the family C ontains a π-base for theprodut topology τ .Proof. Let F ∈ nwdτ and let U ⊆ C be a π-base for τ . The union
W =

⋃
{V ∈ U : V ∩ F = ∅} is τ -open and τ -dense. It is also µ-open,sine it is the union of µ-open sets whih belong to U . Suppose that

(p, q) ∈ H = Intµ(R×R\W ). Then for any x ∈ IntR Hq the setion Wxis not dense in R. We have a ontradition with the Kuratowski-Ulamtheorem whih one applies with W and τ . �Corollary 6. If F ∈ Mτ , then F is meager with respet to a C-rosstopology, whenever the family C ontains a π-base for the produt topol-ogy τ . �The next theorem is formulated for the ross topology γ. However,it holds for any C-ross topology whih satis�es Theorem 2 and suhthat graphs of one-to-one funtions are nowhere dense. For Hausdor�spaes X and Y graphs of one-to-one funtions are nowhere dense withrespet to the ross topology, see [6℄ Proposition 1.2.4.Theorem 7. of (nwdγ) > 2ω and of (Mγ) > 2ω.Proof. Consider a trans�nite family {Fα : α < 2ω} ⊆ nwdγ . Choose
(p0, q0) ∈ R × R \ F0. Assume that points

{(pβ, qβ) ∈ R × R \ Fβ : β < α}whih have been already hosen onstitute the graph of an one-to-onefuntion. By Theorem 2, there exists a meager subset Pα ⊂ R suhthat the vertial setion (R × R \ Fα)x ⊆ R is open and dense foreah x ∈ R \ Pα. Choose a point p ∈ R \ (Pα ∪ {pβ : β < α}) anda point q ∈ (R × R \ Fα)p \ {qβ : β < α}. Put p = pα and q = qα.The set {(pα, qα) : α < 2ω} ⊂ nwdγ is ontained in no Fα. Heneof (nwdγ) > 2ω. The proof that of (Mγ) > 2ω is analogial. �7



Theorem 8. If µ is a C-ross topology suh that the family C ontainsa π-base for the produt topology τ , then ov (Mµ) = ov (MR).Proof. Let F ⊂ nwdR be a family of losed subsets whih witnessesov (MR) = ov (nwdR). Put H = {R×V : V ∈ F}. By the de�nitions
H ⊆ nwdτ . By Theorem 5, one infers H ⊂ nwdµ. Sine ⋃

H = R × R,then ov (Mµ) ≤ ov (MR).Assume that {Fα : α < ov (Mµ)} ⊂ nwdµ is a family of µ-losed setwhih witnesses ov (Mµ). By Theorem 2, there is a meager set Pα ⊆ Rsuh that for any setion (R×R\Fα)x ⊆ R is a dense and open for eahindex α and any point x ∈ R\Pα. Suppose that ov (Mµ) < ov (MR).Hene, there exist a point x ∈ R \
⋃
{Pα : α < ov (Mµ)} and a point

y ∈
⋂
{(R × R \ Fα)x : α < ov (Mµ)}. So, (x, y) /∈

⋃
{Fα : α <ov (Mµ)}, a ontradition. �Theorem 9. Let µ be a C-ross topology suh that the family C ontainsa π-base for the produt topology τ . If X /∈ MR, then the square X×Xis not meager with respet to µ. Moreover, non (Mµ) = non (MR).Proof. Take X /∈ MR. Suppose that, the square X × X is meagerwith respet to µ. This means F1 ∪ F2 ∪ . . . = X × X, where any set

Fn ∈ nwdµ. Apply Theorem 2 with X×X. There exist meager subsets
Pn ⊂ X suh that any setion (X × X \ Fn)x ⊆ X is open and dense,for eah x ∈ X \ Pn. Hene, for any point x ∈ X \ (P1 ∪ P2 ∪ . . .)the intersetion ⋂

{(X × X \ Fn)x : n = 1, 2, . . .} is not meager, aontradition. So, if a set X ⊆ R witnesses non (MR), then X × Xwitnesses non (Mµ). This follows non (Mµ) ≤ non (MR).From Theorem 5 one infers that any not µ-meager set is not τ -meager, too. Hene, non (Mµ) ≥ non (MR). �Question. Is add (Mγ) 6= add (MR) onsistent with ZFC?5. Misellanea of ofinalityIf a Hausdor� spae X is dense in itself, then of (nwdX) ≥ ω1.Indeed, let U0, U1, . . . be an in�nite sequene of pairwise disjoint, non-empty and open subsets of X. Assume that F0, F1, . . . is a sequeneof nowhere dense subsets. For eah n hoose a point xn ∈ Un \ Fn.8



A family of all points xn is a nowhere dense subset of X and no Fnontains this family. So, no sequene of nowhere dense subsets wit-nesses of (nwdX). But for some T1-spaes it an be of (nwdX) = ω0.For example, whenever X is ountable and all its o-�nite subsets areopen, only.Let Y be a separable dense in itself metri spae. There holdsadd (nwdY ) = ω0 = non (nwdY ), sine Y ontains a opy of the ratio-nals as a dense subset. If Y /∈ MY , then ov (MY ) = ov (nwdY ) ≥ ω1.Many di�erenes our for spaes onstruted under additional set-theoretial axioms, ompare [2℄. However, the equality of (MR) =of (nwdR) was already proved by D. Fremlin [3℄, and a simpler proofwas given by B. Balar, F. Hernández-Hernández and M. Hru²ák [1℄.From [1℄, see Theorem 1.6 and Fat 1.5, it follows that of (MR) =of (nwdY ). Little is known about relations between of (MX) andof (nwdX), whenever X is an arbitrary topologial spae. For metrispaes we extrat topologial properties used in [1℄, see the proof ofFat 1.5, to get the following.Lemma 10. Let X be a dense in itself metri spae. If Q is a densesubset of X, then for eah F ∈ nwdX there exists G ∈ nwdQ suh that
F ⊆ clX G.Proof. Let Bn be the union of all balls with the radius 1

n
and withenters in F ∈ nwdX . Choose maximal, with respet to the inlusion,sets An ⊂ Q ∩ (Bn \ Bn+1) suh that distanes between points of Anare greater than 1

n
. Put A1 ∪ A2 ∪ . . . = G. �Corollary 11. Let X be a dense in itself metri spae. If Q is a densesubset of X, then of (nwdQ) = of (nwdX).Proof. If Q ⊆ X, then of (nwdQ) ≤ of (nwdX), sine this inequalityholds for any dense in itself topologial spae X. Lemma 10 followsthe inverse inequality. �Consider λω with the produt topology, where a ardinal number λis equipped with the disrete topology. By the theorem of P. �t¥pánekand P. Vop¥nka [21℄, ompare a general version of this theorem [13℄, oneobtains ω1 = add (Mλω) = ov (Mλω) = ov (nwdλω). Any metrizablespae has a σ-disrete base. Eah seletor de�ned on elements of a suhbase witnesses add (nwdλω) = ω0, sine and λω is a metrizable spae.9



Indeed, any suh seletor is a ountable union of disrete subsets andeah disrete subset of a dense in itself T1-spae is nowhere dense. Everynon-empty open subset of λω ontains a family of the ardinality λwhih onsists of non-empty, pairwise disjoint and open subsets. Heneof (nwdλω) > λ. Eah subset of λω of the ardinality less than λ hasto be nowhere dense, therefore non (nwdλω) = λ.Theorem 12. If Xis a metri spae suh that any non-empty opensubset of X has density λ, then of (nwdλω) = of (nwdX).Proof. Let Y (λ) be the universal σ-disrete metri spae in the lass ofall σ-disrete metri spaes of the ardinality less or equal to λ. Onean de�ne Y (λ) similar as the spae Y (S) in [18℄ p. 41 or as Q(τ) in[20℄ p. 217. One an hek that X and λω ontain dense homeomorphiopies of Y (λ), ompare the proof of Theorem 1 in [18℄ or Corollary7.7 in [20℄ or Theorem 1 in [16℄. We are done by Corollary 11. �If Q ⊂ R is the set of rational numbers, then the square Q × Qis γ-dense. Therefore one infers that non (nwdγ) = add (nwdγ) = ω0.Lemma 10 or Corollary 11 hold for the topology σ, sine nwdσ = nwdτ .It is impossible to use γ instead of τ in these fats. Indeed, of (nwdγ) >
2ω implies of (nwdQ×Q) < of (nwdγ), whenever Q × Q inherits itstopology from the topology γ.Referenes[1℄ B. Balar, F. Hernández-Hernández, M. Hru²ák, Combinatoris of dense sub-sets of the rationals, Fund. Math. 183 (2004), 59 - 80.[2℄ A. Blass, Combinatorial ardinal harateristis of the ontinuum, in: Hand-book of Set Theory, to appear.[3℄ D. Fremlin, The partially ordered sets of the measure and Tukey's ordering,Note Mat. 11 (1991), 177 - 214.[4℄ D. Fremlin, T. Natkanie and I. Reªaw, Universally Kuratowski-Ulam spaes,Fund. Math. 165 (2000), no. 3, 239 - 247.[5℄ D. Gauld, S. Greenwood and Z. Piotrowski, Baire produt theorem for sep-arately open sets and separate ontinuity, Proeedings of the 15th SummerConferene on General Topology and its Appliations/1st Turkish Interna-tional Conferene on Topology and its Appliations (Oxford, OH/Istanbul,2000). Topology Pro. 25 (2000), Summer, 129�144 (2002).[6℄ J. E. Hart and K. Kunen, On the regularity of separate ontinuity, TopologyAppl. 123 (2002), 103 - 123.[7℄ M. Henriksen and R. G. Woods, Separate versus joint ontinuity: a tale of fourtopologies, Topology Appl. 97 (1999), 175 - 205.10
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